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THE 3-IRREDUCIBLE PARTIALLY ORDERED SETS 

DAVID KELLY 

T h e dimension [4] of a partially ordered set (poset) is the minimum number 
of linear orders whose intersection is the partial ordering of the poset. For a 
positive integer m, a poset is m-irreducible [10] if it has dimension m and re
moval of any element lowers its dimension. By the compactness property of 
finite dimension, every w-irreducible poset is finite and every poset of di
mension ^ m contains an w-irreducible subposet. Thus , the set of all m-
irreducible posets (up to isomorphism) can be characterized as the smallest 
set $f of posets such tha t a poset has dimension ^ (m — 1) if and only if it 
does not contain any poset in j ^ . Henceforth, only 3-irreducible posets are 
considered. 

In this paper, the set of all 3-irreducible posets (up to isomorphism) will be 
exhibited. The number of 3-irreducible posets with m elements is: 0(w ^ 5), 
3(m = 6) , 21 (w = 7), 4(even m ^ 8), or 5(odd m ^ 9) . If a poset and its 
dual were counted only once, the number would then be : 0(m ;§ 5), 2(ra = 6), 
13(w = 7) , 3(even m ^ 8) , or 4(odd m ^ 9) . Let 

& = \An\n ^ 0} \J {B,Bd,C,Cd,D,Dd} \J {En, En
d, Fn, Gn, Hn\n ^ 0}, 

where these posets appear in Figure 1, and Pd denotes the dual of a poset P. 
The set SP was introduced by I. Rival and the author in [8], where every 
poset in 0* was shown to be 3-irreducible. By [7, Theorem 6.1], SP is the 
smallest set of posets such tha t a lattice has dimension ^ 2 if and only if 
it does not contain any poset in SP as a subposet. Let 

0t = 0 \J {CXh C X A CX2, CX2
d, CX,, CX,d, EXU EX/, EX2, 

FXh FX,d, FX2) \J [In, In
d, Jn\n ^ 0}, 

where these posets appear in Figure 1. We will prove tha t 3? is the set of all 
3-irreducible posets. Using different techniques, W. T. Trot ter , Jr . and J. I. 
Moore, J r . [11] have given an independent proof of this result. 

1. T h e pose t s in â? are 3- irreducible . We use the term completion for 
what is also called the completion by cuts [3] or MacNeille completion. The 
completion of a poset P is denoted by L ( P ) . We will make use of the following 
five lemmas. Planar lattices are defined in [3] and [7]. 

L E M M A 1 (Banaschewski [2] or Schmidt [9]). The completion of a poset P is 

Received May 3, 1976 and in revised form, October 25, 1976. 

367 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3


368 DAVID KELLY 

V n+2 Jn+3 

(h a2 a 3 &n+:ï 

B c 

D 

ai a 2 a 3 

FIGURE 1. The 3-irreducible posets 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3


PARTIALLY ORDERED SETS 369 

Fn 

&n+Z 

an+2 

FIGURE 1—(Continued) 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3


370 DAVID KELLY 

Jn+3 

an+2 \ 
> bn+2 T) d 

an+i{ 

Jn+l 

Hn 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3


PARTIALLY ORDERED SETS 371 

CXz 

bin &2 n b 

EX1 

FXi FX2 

« i a 2 

L 
FIGURE 1—{Continued) 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3


372 DAVID KELLY 

FIGURE 1—{Concluded) 

the unique (up to isomorphism) complete lattice L containing P such that every 
element of L is both a join and a meet of elements of P. 

LEMMA 2 (Birkhoff [3]). If a lattice contains a finite poset P, then it also con
tains the completion of P as a subposet. 

Proof. Associate each element S of the completion of P, considered as a 
subset of P, with the join of 5 in the lattice (with the meet of P replacing the 
empty join) . 

LEMMA 3 (Baker [1]). A poset and its completion have the same dimension. 

LEMMA 4 (Baker [1]). A finite lattice is planar if and only if it is of dimension 
è 2. 
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LEMMA 5 (Hiraguchi [5]). Adding one element to a poset increases its dimen
sion by at most one. 

We now show tha t every poset in 0 is 3-irreducible. This s ta tement was 
already proved for 0 in [8], and we will use similar techniques for 0 — 0 . 
We first verify t ha t the diagrams in Figure 2 are correct. Each poset in Figure 2 
is dismantlable [6], and therefore, a lattice by [7, Proposition 2.1]. The cor
rectness of Figure 2 now follows by Lemma 1. The diagrams for the collection 
J2? = { L ( P ) | P G 0) are given in [7], where each completion is denoted by 
the corresponding boldface letter (with the same subscript, if any) . The com
pletions of CXi, CX2 and CX3 contain Gd (as a subposet) ; L (CX 3 ) also con
tains D. L(EXi) contains E0 while h(EX2) contains E0 and E0

d. The com
pletions of FXi and FX2 contain F 0 . For the rest of the paper, n will always 
denote a non-negative integer. The completion of In contains En, and the com
pletion of Jn contains Gn . Lemma 3 now implies tha t each poset in 0 — 0 has 
dimension ^ 3. (Using [7, Proposition 5.3], it can be shown tha t the comple
tions of the posets in 0 — 0 do not contain any other lattices in «if, and thus, 
by Lemma 2, contain only the corresponding posets in 0.) 

I t only remains to show tha t removing any one element from any poset in 
0 — 0 leaves a poset of dimension 2. I t will then follow from Lemma 5 t h a t 
each poset in 0 — 0 is of dimension 3, and therefore, 3-irreducible. If any 
element of CXi except b\ is removed from L ( C X i ) , a planar lattice is left; thus , 
by Lemma 4, such a removal from CX\ leaves a poset of dimension 2. The 
completion of the poset CX\ — {bi}, obtained by merely adding a zero and one, 
is obviously planar. Thus , applying Lemma 4, CX\ — {b\) has dimension 2. 
T h e remaining posets in 0 — 0 are handled similarly. For example, for 
In{Jn), di and d2 (c and d) play the role tha t b\ did for CX\. Only for Jn must 
more than three elements be added to form one of the corresponding comple
tions. This completes the proof t ha t all the posets in 01 are 3-irreducible. 

2. S tar t ing t h e proof t h a t 0 c o n t a i n s every 3- irreducible pose t . L e t L 
be a finite lattice, and let P = P ( £ ) , the subposet of irreducible elements of L. 
(An element of a finite lattice is join-irreducible (meet-irreducible) if it is not 
the joint (meet) of two incomparable elements; an element is irreducible if it is 
join-irreducible and distinct from 0, or meet-irreducible and distinct from 1.) 
The remainder of this paper is devoted to proving the following s ta tement : 

/ / L contains a poset in0, then P contains a poset in 0 . 

Let P be a 3-irreducible poset, and let L = L ( P ) . By Lemma 3, L has 
dimension 3. Therefore, applying [7, Theorem 6.1], L contains a poset in 0 . 
Since P ( L ) C P by Lemma 1, the above s ta tement will show tha t P contains 
a poset in 0t\ thus, P G 0 , completing the proof tha t 0 is the set of all 
3-irreducible posets. (Actually, it is easily seen tha t P ( L ( P ) ) = P for any 
m-irreducible poset P . ) 
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For each Q G &, we will show tha t if L contains Q, then P contains a 
poset isomorphic to some R in 0H. By duali ty, it is enough to let Q be a poset 
in Figure 1. We will consider separately each case where Q is denoted by one 
of the letters A to H (possibly subscripted) . In any case involving a subscript 
n, we will assume tha t the smallest n was chosen such t ha t L contains Ço r Qd. 
Unless s ta ted otherwise, we also assume tha t all previously considered cases 
and their duals do not occur. These are our ' ' s tandard assumpt ions" . 

The elements of Q are named as in Figure 1. The elements of the poset iso
morphic to R will be given in the order determined by the labelling assigned 
to R or Rd in Figure 1 in the following manner : the alphabetical order pre
dominates and then the numerical order on any subscripts is considered. For 
example, a poset isomorphic to B or Bd would be given in the order 

{a, bu b2, bz, cu c2, c<s}. 
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3. L c o n t a i n s An. For 1 g i ^ n + 3, let a/ be a join-irreducible element of 
L such tha t a( S a% bu t a/ $ 6 i + i . (Subscripts are taken modulo w + 3). 
If a / ^ ^ for some & ^ 3, then taking the least such k, {a / , a2, . . . , akl 

bu &2, . . . , M would be isomorphic to Ak^. By the minimality of n, k = n + 3. 
By symmetry , a/ ^ ^ only if j is i — 1 or i (1 ^ i ^ » + 3), and thus 
{a / , a2 ', . . . , aw+3', &i, &2, . . . , ^+3} = ^L- Meet-irreducible elements b\ 
(1 ^ i ^ w + 3) can now be defined dually to yield a subposet of P that is 
isomorphic to An. We recall t ha t a crown is a poset isomorphic to An for some 
w ^ 0. We have actually proved 

PROPOSITION, f) 7/ a /m^te lattice L contains a crown, then there is a crown 
inP(L). 

In the above proposition, P ( L ) need not contain crowns of the same size 
as L does. (Consider the lattice of subsets of a four-element set.) Using [6, 
Theorem 3.1], we obtain the 

COROLLARY. 7/ a finite poset contains no crowns, then its completion is dis-
mantlable. 

According to our s tandard assumptions, we henceforth assume tha t L 
contains no crowns. Since L does not contain A0, L has breadth 2 [6, Lemma 
3.4]. Therefore, any element a £ L — (P KJ {0, 1}) can be writ ten as a = 
Xi V x2 = 3>i A 3>2 for suitable Xi, x2, yi, yi G P. We note tha t none of the 
posets in 3% contain a zero or one. From now on, x and y (with or without 
subscripts) will always denote elements of P. 

In each of the remaining cases where L contains the poset Q in &, we now 
outline the procedure tha t will be followed. Each element a of Q is considered 
in turn. If a £ P, we proceed to the next element. If a d P, then it can be 
written as a = x± V x2 = yi A y2- (In the sequel, whenever we write a = x V x2, 
the conditions on x will ensure t ha t x $ Q, and dually.) Often, we can 
simply replace a in Q by one of Xi, x2, yi or 3/2 to obtain a poset Qf isomorphic 
to Q. Otherwise, we will show there is a subposet R of (Q — {a}) U {xi, x2, 
y 1, y2} t ha t is in 3$. This procedure is repeated with Q' or R replacing Q until 
we obtain a subposet of P t ha t is in ^ . The poset isomorphic to R will be given 
in the order determined by the labelling of R or Rd in Figure 1. When R re
places Q, its elements are named as in Figure 1. 

We recall that a down-down fence [7] is a poset {ai,a2,. . . ,an+2, blyb2,. . . ,bn+i} 
in which at < bt and ai+\ < bf (1 ^ i S n + 1) are the only comparabilities. 
(For any En or Fn, the subposet consisting of all the a / s and fr/s is a fence.) 
The following two lemmas will be repeatedly applied in the sequel. 

LEMMA 6. 7/ {ai, a2, . . . , an+2, b\, &2, . . . , bn+i} is a down-down fence in a 
poset L containing no crowns, and y > ai but y > a2, then y > atfor all i ^ 2. 

fThis proposition and its corollary were obtained jointly with I. Rival. 
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Consequently, y is incomparable with every element of the fence except a\ and 
possibly bi. 

Proof. If y > at for some i ^ 3, then choosing the least such i, A^z = 
{au a2, • • • , au bu b2, . . . , &*_!, y}. 

LEMMA 7. Let S = {ai, #2, . . . , <Vh2, bu 62, . . . , <Wi} ^^ & down-down fence 
in a lattice L that contains no crowns. If c = yi A y2 in L and c is incomparable 
with every element of S, then y\ or y2 is incomparable with every element of S. 

Proof. If the statement of the lemma were false, we could assume there were 
integers i and j with 1 ^ i < j ^ n + 2 such that yi > au y2 > ah y\ > ak 

whenever i < k ^ j , and y2 > ax whenever i ^ / < j . Then Aj-i-i ~ 
{at, cif+i, . . . , dj, c, bi, bi+i, . . . , bj-i, y2, yi], contrary to assumption. 

4. L contains D. 

(i) a $ P.f If a = x V x2 with x < b2, then x can replace a. Therefore, 
we can now assume that a £ P. 

(ii) b2 # P . Let 62 = #1 V x2. Applying the dual of Lemma 7 to 5 = 
{bi, 63, ^} shows that Xi or x2 can replace b2. We can now assume that a, 
b2 e P . 

(iii) Ci & P. If ci = y A yi with y > b2, then 3/ can replace C\. Therefore, 
a, b2, ci, c2 G P. 

(iv) &i $ P . Let &i = x V x2 = 3/ A y2 with x < c2 and 3; > Z>2. Then, y \\ bz 

by Lemma 6. If x > a (y < Ci), then x(^) could replace b\. Therefore, we can 
assume that x \\ a and y || Ci. Then, CX3 ~ {x, a, b2, y, C\, bs, c2), where every 
element, except possibly £3, is in P . 

(v) L contains CX3 with only bd d P. Let bz = y A y2 with y > a3. Then, 
3> || «i by Lemma 6 applied to the fence {63, a3, ai, c, ^2}- If y < c, then 3/ could 
replace fr3; therefore, 3/ || c. Then, CX2 = {au a2, a3, &i, fr2, c, 3>}, where every 
element is in P . 

In summary, we have shown that if L contains D (and contains no crowns), 
then P contains D, CX2 or CX3. 

5. L contains C. 

(i) a (? P. If a = x V x2 with x < 63, then x can replace a. 

(ii) bs (I P. If &3 = Xi V X2, then Xi or x2 can replace &3 by the dual of 
Lemma 7 applied to {c\, c3, a}. 

fin each paragraph, the original assumption of the heading will be shown not to hold. In other 
words, we show that the element being considered can be assumed in the sequel to be an 
element of P. 
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(iii) c\ € -P. If C\ = y\ A 3>2, then y± or 3/2 can replace c\ by Lemma 7 
applied to {&2, &3, £2}. 

(iv) c2 (? -P. H C2 = Ji A J2, then 3/1 or ;y2 can replace c2 since, otherwise, 
we could assume that y\ > Ci, 3>i > c3, y2 > c3, and ;y2 > Ci, Then, Z> ~ 
{a, Ci, 63, c3, 3>i, 3;2J, contrary to assumption. Therefore, a, &3, Ci, c2, c3 € -P. 

(v) 61 g P . Let &i = x V x2 with x < c3. If x > a, then x could replace 61; 
therefore, x \\ a. If x < 63, then Dd ~ {c2, b%, ci, b2, #, #} ; therefore, x || ô3. 
Then, CX\d = {ci, c2, c3, x, b2, &3, #}, where every element, except possibly 62, 
is in P . 

(vi) Z contains CX\ with only b2 g P . Let fr2 = y A 3>2 with y > a\. If 
y < c, then y could replace ^2; therefore, y \\ c. If y > 63, then CX2 = {ai, a2, a3, 
&i, £> 3S M while if y > Z>3, then CX3 = {ai, a2, a3, Z>i, c, &3, y) ; in both cases, 
every element is in P . 

In summary, P must contain C, CXid, CX2
d, or CXf. 

6. Z contains B. 

(i) &i (? P- If bi — X\ W x2, then Xi or x2 can replace b\ by the dual of 
Lemma 7 applied to {c2} c3, a}. 

(ii) ci $ P . Let Ci = yi A y2- If neither y\ nor 3^ can replace d, we can 
assume that 3/1 > 62, 3>i > &3, 3>2 > 63, and 3>2 > 62. If 3>i > c2, then Cd = 
{ î, Ci, c2, Cs, 61, a, ô2}, contrary to assumption. Therefore, 3/1 [[ c2 and y2 || c3. 
Then, CX2 •= {b1} a, b2, y2, yh c2, c3}, which implies that Z contains Cd by 
Lemma 2. Therefore, bi} b2, fr3, Ci, c2, c3 G P . 

(iii) a $ P . Let a = Xi V x2. If neither xx nor x2 can replace a, we can assume 
that Xi < fci, Xi < 62, #2 < 62, and x2 < bx. If Xi < 63, then Z> ~ {xi, &i, x2, &3, 
Ci, c3} ; therefore, Xi || fr3 and x2 || è3. Then, £X 2 = {xi, x2, &3, bi, c3, 62, Ci}, with 
every element in P . 

7. Z contains Pn. In addition to our standard assumptions, we assume that 
Z does not contain Em or Em

d whenever 0 ^ m < n. 

(i) c (? P . If c = x V x2 with x < aw+2, then x can replace c. 

(ii) d d P.Hd = y A y2, we can assume by Lemma 7 that 3/ is incomparable 
with every at and bt (1 ^ 2 ;g w + 2). If y < g, then C ~ {c, ai, d, an+2, bu e, y). 
Thus, y < e and y can replace d. 

(iii) ôi g P . Let 61 = y A y2 with 3/ > a2. U y > d, then Z> ^ {ai, 61, d, 
62, y, e} ; therefore, ŷ || d. Thus, by Lemma 6, y can replace 61. Therefore, 
an+2, 61, c, d, e £ P . 

(iv) &, $ P (2 g i g w + 2). Let 6< = y A 3̂2 with y > d. Let j(fe) be the 
least (greatest) value of / such that y > ah If y < e, then Pm ~ {ai} . . . , ah 
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ak, . . . , an+2, 61, . . . , bjt y, bk+1, . . . , bn+2, c, d, e\ with m = n — k+j + 1. 
(Note t ha t m ^ 0.) By the minimali ty of », m = ft, and consequently, 7 = 
i — 1 and & = i. This means tha t this is the original Fn with bt replaced by y\ 
therefore, we can assume tha t y \\ e. If j > 1, then £ ; _ 2 == \a1} . . . , aj} bu . . . , 
/̂ •, y, J, e], which is contrary to assumption since j S ft + 1. If k < ft + 2, 
then Pm ^ {aA, . . . , aw+2, y, h+u • • > bn+2, c, d, e) with m = n — k + 1. 
Since & ^ 2, this would contradict the minimali ty of ft. Therefore, j = 1 and 
£ = n + 2. If y > 61, then Z) — {c, 61, an+2, d, 3/, e}. Therefore, y || 61 and 
FXid = {y, e, bi, an+2, aly d, c], where every element, except possibly au is in P. 

(v) L contains FXi with only b2 € P . Let b2 = y A y2 with y > 63. Since y 
could replace ^2 if y < c, we can assume tha t y \\ c. If y > bi, then P> ~ 
{a2, b1} a3, 63, y, c). Therefore, y || 61 and PX 2 = {ai, a2, a3, 61, &3, 3>, d , where 
every element is in P. 

8. L c o n t a i n s En. The s tandard assumptions apply except t h a t we assume 

t h a t L does not contain Fm only when m = 0. (Note t h a t cases 7 and 8 cover 

all si tuations where L contains some Eni En
d or Fn.) 

(i) c $ P. If c = Xi V x2, it follows by the dual of Lemma 7 t h a t X\ or 
x2 can replace c. 

(ii) ai g P. Let #i = Xi V x2. If neither X\ nor x2 can replace «i, we can 
assume by the dual of Lemma 6 t ha t X\ < c, X\ < 63, x2 < fr3, and x2 < c. 
Then , D d ^ {d, c, blt 63, * i , ^2}. 

(iii) «j ? P (2 ^ Î ^ w + 1). Let a* = x V x2. Suppose t ha t neither x nor 
x2 can replace at. If x2 < c, x2 < fr*-i, and x2 < fri+2, then P 0

d = {bif bi+i, 
az_i, a f , di+i, c, x2], contradict ing t h a t ft ^ 1. Consequently, we can assume 
t h a t x < c and x < bt-i. If j is the greatest value of k such t ha t x < bk, then 
m = n — j + i -\- 1 ^ 0 and, by the dual of Lemma 6, Em = = { # * , . . . , a*_i, 
x, ay, . . . , an+2, 61, . . . , Z?i, &,-, . . . , 6w+3, c, d}. By the minimali ty of ft, 7 = 
i + 1 and this is the original P„ with at replaced by x. Therefore, we can as
sume tha t ai £ P for 1 ^ i fg ft + 2. 

(iv) Ô! $ P . Let 61 = y A y2 with y > a2. If y > c, then D ^ {«i, 61, c, 
b2, y, d\. Therefore, y \\ c and y can replace b\ by Lemma 6. 

(v) bf g P (2 ^ i g ft + 2). Let ô< = y A y2 with y > c. Let j(ife) be the 
least (greatest) value of / such t ha t y > at. If y < d, then we can show tha t 
y can replace bt similarly as in case 7 (iv) ; therefore, y \\ d. If j > 1, then P j /_2 

= {ai, . . . , a7-, &i, . . . , bj, y, c, d} ; therefore, j = 1 and & = ft + 2. If y > 61 
and y > ôn+3, then Dd ~ {y, bi, d, bn+z, cii, an+2}. Thus , we can assume tha t 
either y || blt y \\ bn+z and EXX ~ {au an+2, c, bu y, d, bn+z\, or y > bu y \\ bn+z 

and EX2= {cii, an+2j c, bi, d, bn+3, y}. In both cases, every element, except 
possibly d, is in P . 
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(vi) L contains EX\ with only b% $ P. Let 63 = ji A y2 and suppose that 
neither yx nor y2 can replace 63. By symmetry, yi > 61, and therefore, y2 || 61. 
We first assume that yx > b2. If 3>2 > b2, then Z> — {&i, 61, a3, &2, 3>i, 3̂2} • 
Thus, 3/2 || &2 and PX2 = {̂ 2, #i, #3, 62, 61, 3>2, ^1}, which implies that L contains 
Fo by Lemma 2. We can now assume that 3/1 > ^2; consequently 3>2 > 62, and 
thus, y2 > 64. If 3>i and 3/2 are interchanged, and b\ and £4 are interchanged, we 
return to the case that was considered first. 

(vii) L contains EX2 with only b2 $ P. Let b2 = yi A 3>2 and suppose that 
neither 3/1 nor y2 can replace b2. We can assume that 3/1 > &i, 3/1 > 63, y2 > 63, 
and 3/2 > c. If 3/1 > c, then 2) ^ {a2, c, a3, &3, 3^, 3̂ 2}. Thus, yi \\ c and FX2 ^ 
{ai, a2, <̂ 3, c} 63, 3̂ 1, 3/2}, a contradiction. Therefore, we can assume that all the 
elements of Eni except possibly d, are in P. 

(viii) d (? P. If d = 3/1 A 3̂2 and neither 3/1 nor 3/2 can replace J, then we can 
assume that 3/1 > 61, 3>i > bn+z, y2 > bn+z, and y2 > 61. Then, 2"w == {ai, . . . , 
an+2, bi, . . . , &w+3, c, 3/1, 3̂ 2}, where every element is in P. 

9. L contains Gn. In addition to the standard assumptions, we assume that 
L does not contain Hm whenever 0 ^ m < n. 

(i) a,\ d P. If a,\ = x V x2 with x < &i, then x can replace ai. 

(ii) b\ £ P . If b\ = Xi V x2, then by the dual of Lemma 7 applied to 
{#2, c, ai}j xi or x2 can replace 61. Therefore, ait an+z, bi, bn+z £ P. 

(iii) at d P (2 S i ^ n -\- 2). Let at = x V x2 with x < &j. If x < c, then 
Dd ^ {&n+3, c, aw+3, bn+2, x, 6n+i} when i = n + 2, and Gn-i+1 ^ {x, a*+i, . . . , 
an+3, bi, . . . , bn+s, c) when i ^ w + 1. Therefore, x || c. If x > a,\ and x > 61, 
then CX\ ~ {&i, ai, x, 62, «2, c, a3} when i = 2, and i^_ 3 = {61, . . . , 6<_i, 
ai, . . . , a*, c, x} when i ^ 3. Therefore, x > ai or x > 61; consequently, one 
of the following two cases must occur: 

(a) there is j (1 ^ j ^ i — 1) such that x > ajt x > bj-i (if j > 1) and 
x > 6y; or 

(b) there is k (1 ^ & ^ i — 2) such that x > ^ , x > bk+1 and x > ak+\. 
If (a) holds, then Gn-i+j+1 ^ {ai, . . . , ajf x, ai+1, . . . , a„+3, 6i, . . . , bh bu 

. . . , ôn+3, c}. By the minimality of n,j = i — 1 and this is the original Gn with 
a,i replaced by x. If case (b) occurs with k = i — 2, then D ~ {bi-2, x, at-u 
bf-ij at, bt}. Otherwise, case (b) occurs with k ^ i — 3 and Gi-k-z ~ {bk, . . . , 
&i_i, ak+i, . . . , af, x}. Therefore, all the elements of Gn, except possibly c, 
are in P. 

(iv) c d P. Let c = x V x 2 = 3'A3'2 with x < aw+3 and y > 6]. Let j(&) 
be the greatest (least) value of / such that y > at(x < bt); then, j = 1 or 2, 
and & = n + 2 orw + 3. If x > a2, then Z)d = {&3, x, a3, ô2, «2, 1̂} when k = 3, 
and Gyt-4 = {a2, . . . , ak, b2, . . . , bk, x] when ^ ^ 4. Therefore, x || a, and 
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dually, y || bn+2. Similarly, if x > ax, then D = {ai, a2, bi, x, a3, fr2} when & = 2, 
and G*_3 = {ai, . . . , ak, blt . . . , bk, x} when & ^ 3. Therefore, x\\ at and 
y || bi (1 ^ i g w + 3) . If £ = 7 = 2, then A0 ^ {a2, &i, x, a3, 62, y}- I f k = 
7 + 1, then CXZ ~ {x, CLj, b h y, bj+i, a ; + i , a ; + 2 } . We can therefore assume tha t 
k ^ j + 2 and thus, Jk-j-2 = {«;, • • • , a*, fry, • • • , bk, x, y}, where every 
element is in P . 

10. L c o n t a i n s Hn. T h e s tandard assumptions apply except t ha t we assume 
tha t L does not contain Gm only when 0 ^ m < n. 

(i) ai $ P . If ai = x V x2, then by the dual of Lemma 7, we can assume 
tha t x || 62 and x \\ c. H x < d, then £>d ^ {63, a

7, a2, a2, x, 61} when » = 0, and 
G^-i == {x, a2, . . . , aw+2, 62, . . . , ^n+3, ^} when w ^ 1. Therefore, x || a7 and x 
can replace ai . 

(ii) bi d P . Let b\ = X\ V x2. If neither xx nor x2 can replace 61, we can 
assume t h a t X\ < cii, x\ < d, x2 < a7, and x2 < ai . Then , Dd ~ {frn+3, ai , c, a7, 
Xi, x 2}. Therefore, a1} an+2, b1} &n+3 G P . 

(iii) c d P. Let c = ;y A j>2. Applying Lemma 7 to {ai, 62, ^3}, we can assume 
tha t 3̂  || ai and y || 62. If y > d, then D ~ {61, a2, d, c, are+3, y}- Therefore, y \\ d 
and y can repalce c. 

(iv) a i d P ( 2 ^ i ^ n + 1). By dual i ty, we can assume t h a t i ^ \{n + 3). 
Let ai = x V x2 with x < o*+i. If x < c and x > bu then Z} = {bi, x, ai , a2, 
a2, &3} when 2 = 2, and C72-_3 ^ {&i, . . . , bu ai , . . . , au x) when i ^ 3. If 
x < c and x || &i, then CX3 ~ {x, 5i, ai , c, a2, &2, fr3} when i = 2, and / z _ 3 = 
{b1} . . . , bt, «i, . . . , a*, x, c} when i ^ 3. Since the lat ter case implies t h a t L 
contains G2_3, we conclude t h a t x || c. If x < a7, then Z>d = {fr4, a1, a3, 03, x, b2\ 
when ^ = 2 and w = 1; otherwise, i ^ n and Gn_< = {x, a*+i, . . . , aw+2, &*+i, 
. . . , èw+3, a7}. Therefore, x || a7. If x > &i, then 

Hn—i+i ~ (x, a î + i , . . . , an+2, bi, bi+\, . . . , 0n+3, c, d\. 

Therefore, x > b\ and one of the following two cases must occur: 
(a) there is j (1 ^ j S i — 1) such t h a t x > ajt x > bj and x > fr7+i; or 
(b) there is k (1 ^ k ^ i — 1) such t h a t x > &*, x > fr^+i and x > ak. 

If (a) holds, then 

Hn-i+j+i = {ai, . . . , a7-, x, a i + i , . . . , a^+2, bi, . . . , &^+i, ^i+i, . . . , 
bn+z, c, d). 

By the minimali ty of n, j = i — 1 and this is the original Hn with at replaced 
by x. If case (b) occurs, then D ~ {bi-i, x, a*_i, bu au bi+i] when k = i — 1, 
and Gi-ir-2 == {bk, . . . , bu ak, . . . , a*, x} when k ^ i — 2. 

(iv) M ^ (2 ^ ^ w + 2) , By dual i ty, we can assume t h a t i ^ \n + 2. 
Let 6* = x V x2 with x < a2-. If x < c and x < d, then CX3

d == {a2, ô3, c, 
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dij bi, d, x] when n = 0 and i = 2, and Dd ^ {bn+z, a2, c, d, bi, x] when n ^ 1. 

If x < c and x || d, then for w = 0, CX\ ~ {a2, 63, c, &u x> d, b\) when x > èi, 

and CX2
d = {a2, è3, c, au 61, x, d} when x || 61; for n ^ 1, i ^ n + 1 and 

Hn-i+i ~ {ai, . . . , an+2, x, bi+1, . . . , &w+3, c, d}. Therefore, x |j c. If x > a,\ and 

x > blt then CXi = {ai, Z>i, x, a2, &2, c, 63} when i = 2, and i / z _ 3 = {«i, . . . , 

a*_i, b1} . . . , bt, c, x} when i ^ 3. Therefore, x > ai or x > bx\ consequently, 

x I! d and one of the following two cases must occur: 

(a) there is j (1 ^ j ^ i — 1) such tha t x > a;-_i (if j > 1), x > a;- and 

x > bj] or 

(b) there is k (l S k ^ i — 2) such tha t x > a*, x > a^+i and x > ^ + i . 

If (a) holds, then 

Hn-i+j+l = P b • • • > %> az> • • • J #w+2, 61, . . . , &j, X, frf+i, . . . , &n+3, C, <^}-

This must be the original 77M with bt replaced by x. If case (b) occurs, then 

D ~ (fli-2, di-i, bt-u x, au bt) when k = i — 2, and G ̂ - 3 ^ {%., . . . , a,_i, 

^ + i , . . . , bi, x] when & ̂  i — 3. With this contradiction, the proof of the 

final case is complete. 

REFERENCES 

1. K. A. Baker, Dimension, join-independence, and breadth in partially ordered sets, 1961 
(unpublished). 

2. B. Banaschewski, Hilllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik 
Grundlagen Math. 2 (1956), 117-130. 

3. G. Birkhoff, Lattice theory, 3rd. ed. (American Mathematical Society, Providence, R.I., 
1967). 

4. B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. 
5. T. Hiraguchi, On the dimension of partially ordered sets, Sci. Reports Kanazawa Univ. 1 

(1951), 77-94. 
6. D. Kelly and I. Rival, Crowns, fences and dismantlable lattices, Can. J. Math. 26 (1974), 

1257-1271. 
7. Planar lattices, Can. J. Math. 27 (1975), 636-665. 
8. Certain partially ordered sets of dimension three, J. Combinatorial Theory Ser. A 18 

(1975), 239-242. 
9. J. Schmidt, Zur Kennzeichnung der Dedekind-MacNeilleschen Hiille einer geordneten 

Menge, Arch. Math. 7 (1956), 241-249. 
10. W. T. Trotter, Jr., Irreducible posets with large height exist, J. Combinatorial Theory Ser. A 

17 (1974), 337-344. 
11. W. T. Trotter, Jr., and J. I. Moore, Jr., Characterization problems for graphs, partially 

ordered sets, lattices, and families of sets, Discrete Math, (to appear). 

University of Manitoba, 

Winnipeg, Manitoba 

https://doi.org/10.4153/CJM-1977-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-040-3

