THE 3-IRREDUGIBLE PARTIALLY ORDERED SETS

DAVID KELLY

The dimension [4] of a partially ordered set (poset) is the minimum number of linear orders whose intersection is the partial ordering of the poset. For a positive integer m, a poset is m-irreducible [10] if it has dimension m and removal of any element lowers its dimension. By the compactness property of finite dimension, every m-irreducible poset is finite and every poset of dimension $\geqq m$ contains an m-irreducible subposet. Thus, the set of all m irreducible posets (up to isomorphism) can be characterized as the smallest set \mathscr{S} of posets such that a poset has dimension $\leqq(m-1)$ if and only if it does not contain any poset in \mathscr{S}. Henceforth, only 3 -irreducible posets are considered.

In this paper, the set of all 3 -irreducible posets (up to isomorphism) will be exhibited. The number of 3 -irreducible posets with m elements is: $0(m \leqq 5)$, $3(m=6), 21(m=7), 4$ (even $m \geqq 8)$, or $5($ odd $m \geqq 9)$. If a poset and its dual were counted only once, the number would then be: $0(m \leqq 5), 2(m=6)$, $13(m=7)$, 3 (even $m \geqq 8$), or 4 (odd $m \geqq 9$). Let

$$
\mathscr{P}=\left\{A_{n} \mid n \geqq 0\right\} \cup\left\{B, B^{d}, C, C^{d}, D, D^{d}\right\} \cup\left\{E_{n}, E_{n}{ }^{d}, F_{n}, G_{n}, H_{n} \mid n \geqq 0\right\},
$$

where these posets appear in Figure 1, and P^{d} denotes the dual of a poset P. The set \mathscr{P} was introduced by I. Rival and the author in [8], where every poset in \mathscr{P} was shown to be 3 -irreducible. By [7, Theorem 6.1], \mathscr{P} is the smallest set of posets such that a lattice has dimension $\leqq 2$ if and only if it does not contain any poset in \mathscr{P} as a subposet. Let

$$
\begin{array}{r}
\mathscr{R}=\mathscr{P} \cup\left\{C X_{1}, C X_{1}{ }^{d}, C X_{2}, C X_{2}{ }^{d}, C X_{3}, C X_{3}{ }^{d}, E X_{1}, E X_{1}{ }^{d}, E X_{2},\right. \\
\left.F X_{1}, F X_{1}{ }^{d}, F X_{2}\right\} \cup\left\{I_{n}, I_{n}{ }^{d}, J_{n} \mid n \geqq 0\right\},
\end{array}
$$

where these posets appear in Figure 1. We will prove that \mathscr{R} is the set of all 3 -irreducible posets. Using different techniques, W. T. Trotter, Jr. and J. I. Moore, Jr. [11] have given an independent proof of this result.

1. The posets in \mathscr{R} are 3 -irreducible. We use the term completion for what is also called the completion by cuts [3] or MacNeille completion. The completion of a poset P is denoted by $\mathbf{L}(P)$. We will make use of the following five lemmas. Planar lattices are defined in [3] and [7].

Lemma 1 (Banaschewski [2] or Schmidt [9]). The completion of a poset P is

[^0]
A_{n}

B

D

Figure 1. The 3 -irreducible posets

Figure 1-(Continued)

Figure 1-(Continued)

the unique (up to isomorphism) complete lattice L containing P such that every element of L is both a join and a meet of elements of P.

Lemma 2 (Birkhoff [3]). If a lattice contains a finite poset P, then it also contains the completion of P as a subposet.

Proof. Associate each element S of the completion of P, considered as a subset of P, with the join of S in the lattice (with the meet of P replacing the empty join).

Lemma 3 (Baker [1]). A poset and its completion have the same dimension.
Lemma 4 (Baker [1]). A finite lattice is planar if and only if it is of dimension $\leqq 2$.

Lemma 5 (Hiraguchi [5]). Adding one element to a poset increases its dimension by at most one.

We now show that every poset in \mathscr{R} is 3 -irreducible. This statement was already proved for \mathscr{P} in [8], and we will use similar techniques for $\mathscr{R}-\mathscr{P}$. We first verify that the diagrams in Figure 2 are correct. Each poset in Figure 2 is dismantlable [6], and therefore, a lattice by [7, Proposition 2.1]. The correctness of Figure 2 now follows by Lemma 1. The diagrams for the collection $\mathscr{L}=\{\mathbf{L}(P) \mid P \in \mathscr{P}\}$ are given in [7], where each completion is denoted by the corresponding boldface letter (with the same subscript, if any). The completions of $C X_{1}, C X_{2}$ and $C X_{3}$ contain \mathbf{C}^{d} (as a subposet); $\mathbf{L}\left(C X_{3}\right)$ also contains $\mathbf{D} . \mathbf{L}\left(E X_{1}\right)$ contains \mathbf{E}_{0} while $\mathbf{L}\left(E X_{2}\right)$ contains \mathbf{E}_{0} and $\mathbf{E}_{0}{ }_{0}{ }^{d}$. The completions of $F X_{1}$ and $F X_{2}$ contain \mathbf{F}_{0}. For the rest of the paper, n will always denote a non-negative integer. The completion of I_{n} contains \mathbf{E}_{n}, and the completion of J_{n} contains \mathbf{G}_{n}. Lemma 3 now implies that each poset in $\mathscr{R}-\mathscr{P}$ has dimension $\geqq 3$. (Using [7, Proposition 5.3], it can be shown that the completions of the posets in $\mathscr{R}-\mathscr{P}$ do not contain any other lattices in \mathscr{L}, and thus, by Lemma 2 , contain only the corresponding posets in \mathscr{P}.)

It only remains to show that removing any one element from any poset in $\mathscr{R}-\mathscr{P}$ leaves a poset of dimension 2 . It will then follow from Lemma 5 that each poset in $\mathscr{R}-\mathscr{P}$ is of dimension 3 , and therefore, 3 -irreducible. If any element of $C X_{1}$ except b_{1} is removed from $\mathbf{L}\left(C X_{1}\right)$, a planar lattice is left; thus, by Lemma 4 , such a removal from $C X_{1}$ leaves a poset of dimension 2. The completion of the poset $C X_{1}-\left\{b_{1}\right\}$, obtained by merely adding a zero and one, is obviously planar. Thus, applying Lemma $4, C X_{1}-\left\{b_{1}\right\}$ has dimension 2. The remaining posets in $\mathscr{R}-\mathscr{P}$ are handled similarly. For example, for $I_{n}\left(J_{n}\right), d_{1}$ and $d_{2}(c$ and $d)$ play the role that b_{1} did for $C X_{1}$. Only for J_{n} must more than three elements be added to form one of the corresponding completions. This completes the proof that all the posets in \mathscr{R} are 3 -irreducible.
2. Starting the proof that \mathscr{R} contains every 3-irreducible poset. Let L be a finite lattice, and let $P=\mathbf{P}(L)$, the subposet of irreducible elements of L. (An element of a finite lattice is join-irreducible (meet-irreducible) if it is not the joint (meet) of two incomparable elements; an element is irreducible if it is join-irreducible and distinct from 0 , or meet-irreducible and distinct from 1.) The remainder of this paper is devoted to proving the following statement:

$$
\text { If } L \text { contains a poset in } \mathscr{P} \text {, then } P \text { contains a poset in } \mathscr{R} .
$$

Let P be a 3 -irreducible poset, and let $L=\mathbf{L}(P)$. By Lemma 3, L has dimension 3. Therefore, applying [7, Theorem 6.1], L contains a poset in \mathscr{P}. Since $\mathbf{P}(L) \subseteq P$ by Lemma 1, the above statement will show that P contains a poset in \mathscr{R}; thus, $P \in \mathscr{R}$, completing the proof that \mathscr{R} is the set of all 3 -irreducible posets. (Actually, it is easily seen that $\mathbf{P}(\mathbf{L}(P))=P$ for any m-irreducible poset P.)

Figure 2. Completions of the posets in $\mathscr{R}-\mathscr{P}$

$\mathbf{L}\left(F X_{1}\right)$

$\mathbf{L}\left(F X_{2}\right)$

$\mathbf{L}\left(I_{n}\right)$

Figure 2-(Continued)

Figure 2-(Concluded)
For each $Q \in \mathscr{P}$, we will show that if L contains Q, then P contains a poset isomorphic to some R in \mathscr{R}. By duality, it is enough to let Q be a poset in Figure 1. We will consider separately each case where Q is denoted by one of the letters A to H (possibly subscripted). In any case involving a subscript n, we will assume that the smallest n was chosen such that L contains Q or Q^{d}. Unless stated otherwise, we also assume that all previously considered cases and their duals do not occur. These are our "standard assumptions".

The elements of Q are named as in Figure 1. The elements of the poset isomorphic to R will be given in the order determined by the labelling assigned to R or R^{d} in Figure 1 in the following manner: the alphabetical order predominates and then the numerical order on any subscripts is considered. For example, a poset isomorphic to B or B^{d} would be given in the order

$$
\left\{a, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}\right\}
$$

3. L contains A_{n}. For $1 \leqq i \leqq n+3$, let $a_{i}{ }^{\prime}$ be a join-irreducible element of L such that $a_{i}{ }^{\prime} \leqq a_{i}$ but $a_{i}{ }^{\prime} \neq b_{i+1}$. (Subscripts are taken modulo $n+3$). If $a_{1}{ }^{\prime} \leqq b_{k}$ for some $k \geqq 3$, then taking the least such k, $\left\{a_{1}{ }^{\prime}, a_{2}, \ldots, a_{k}\right.$, $\left.b_{1}, b_{2}, \ldots, b_{k}\right\}$ would be isomorphic to A_{k-3}. By the minimality of $n, k=n+3$. By symmetry, $a_{i}{ }^{\prime} \leqq b_{j}$ only if j is $i-1$ or i ($1 \leqq i \leqq n+3$), and thus $\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n+3}{ }^{\prime}, b_{1}, b_{2}, \ldots, b_{n+3}\right\} \cong A_{n}$. Meet-irreducible elements $b_{1}{ }^{\prime}$ $(1 \leqq i \leqq n+3)$ can now be defined dually to yield a subposet of P that is isomorphic to A_{n}. We recall that a crown is a poset isomorphic to A_{n} for some $n \geqq 0$. We have actually proved

Proposition. \dagger) If a finite lattice L contains a crown, then there is a crown in $\mathbf{P}(L)$.

In the above proposition, $\mathbf{P}(L)$ need not contain crowns of the same size as L does. (Consider the lattice of subsets of a four-element set.) Using [$\mathbf{6}$, Theorem 3.1], we obtain the

Corollary. If a finite poset contains no crowns, then its completion is dismantlable.

According to our standard assumptions, we henceforth assume that L contains no crowns. Since L does not contain A_{0}, L has breadth 2 [$\mathbf{6}$, Lemma 3.4]. Therefore, any element $a \in L-(P \cup\{0,1\})$ can be written as $a=$ $x_{1} \vee x_{2}=y_{1} \wedge y_{2}$ for suitable $x_{1}, x_{2}, y_{1}, y_{2} \in P$. We note that none of the posets in \mathscr{R} contain a zero or one. From now on, x and y (with or without subscripts) will always denote elements of P.

In each of the remaining cases where L contains the poset Q in \mathscr{P}, we now outline the procedure that will be followed. Each element a of Q is considered in turn. If $a \in P$, we proceed to the next element. If $a \notin P$, then it can be written as $a=x_{1} \vee x_{2}=y_{1} \wedge y_{2}$. (In the sequel, whenever we write $a=x \vee x_{2}$, the conditions on x will ensure that $x \notin Q$, and dually.) Often, we can simply replace a in Q by one of x_{1}, x_{2}, y_{1} or y_{2} to obtain a poset Q^{\prime} isomorphic to Q. Otherwise, we will show there is a subposet R of $(Q-\{a\}) \cup\left\{x_{1}, x_{2}\right.$, $\left.y_{1}, y_{2}\right\}$ that is in \mathscr{R}. This procedure is repeated with Q^{\prime} or R replacing Q until we obtain a subposet of P that is in \mathscr{R}. The poset isomorphic to R will be given in the order determined by the labelling of R or R^{d} in Figure 1. When R replaces Q, its elements are named as in Figure 1.

We recall that a down-down fence [7] is a poset $\left\{a_{1}, a_{2}, \ldots, a_{n+2}, b_{1}, b_{2}, \ldots, b_{n+1}\right\}$ in which $a_{i}<b_{i}$ and $a_{i+1}<b_{i}(1 \leqq i \leqq n+1)$ are the only comparabilities. (For any E_{n} or F_{n}, the subposet consisting of all the a_{i} 's and b_{j} 's is a fence.) The following two lemmas will be repeatedly applied in the sequel.

Lemma 6. If $\left\{a_{1}, a_{2}, \ldots, a_{n+2}, b_{1}, b_{2}, \ldots, b_{n+1}\right\}$ is a down-down fence in a poset L containing no crowns, and $y>a_{1}$ but $y>a_{2}$, then $y>a_{i}$ for all $i \geqq 2$.

[^1]Consequently, y is incomparable with every element of the fence except a_{1} and possibly b_{1}.

Proof. If $y>a_{i}$ for some $i \geqq 3$, then choosing the least such $i, A_{i-3} \cong$ $\left\{a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{i-1}, y\right\}$.

Lemma 7. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n+2}, b_{1}, b_{2}, \ldots, b_{n+1}\right\}$ be a down-down fence in a lattice L that contains no crowns. If $c=y_{1} \wedge y_{2}$ in L and c is incomparable with every element of S, then y_{1} or y_{2} is incomparable with every element of S.

Proof. If the statement of the lemma were false, we could assume there were integers i and j with $1 \leqq i<j \leqq n+2$ such that $y_{1}>a_{i}, y_{2}>a_{j}, y_{1}>a_{k}$ whenever $i<k \leqq j$, and $y_{2} \ngtr a_{l}$ whenever $i \leqq l<j$. Then $A_{j-i-1} \cong$ $\left\{a_{i}, a_{i+1}, \ldots, a_{j}, c, b_{i}, b_{i+1}, \ldots, b_{j-1}, y_{2}, y_{1}\right\}$, contrary to assumption.

4. L contains D.

(i) $a \notin P . \dagger$ If $a=x \vee x_{2}$ with $x \nless b_{2}$, then x can replace a. Therefore, we can now assume that $a \in P$.
(ii) $b_{2} \notin P$. Let $b_{2}=x_{1} \vee x_{2}$. Applying the dual of Lemma 7 to $S=$ $\left\{b_{1}, b_{3}, a\right\}$ shows that x_{1} or x_{2} can replace b_{2}. We can now assume that a, $b_{2} \in P$.
(iii) $c_{1} \notin P$. If $c_{1}=y \wedge y_{2}$ with $y \ngtr b_{2}$, then y can replace c_{1}. Therefore, $a, b_{2}, c_{1}, c_{2} \in P$.
(iv) $b_{1} \notin P$. Let $b_{1}=x \vee x_{2}=y \wedge y_{2}$ with $x \nless c_{2}$ and $y \ngtr b_{2}$. Then, $y \| b_{3}$ by Lemma 6. If $x>a\left(y<c_{1}\right)$, then $x(y)$ could replace b_{1}. Therefore, we can assume that $x \| a$ and $y \| c_{1}$. Then, $C X_{3} \cong\left\{x, a, b_{2}, y, c_{1}, b_{3}, c_{2}\right\}$, where every element, except possibly b_{3}, is in P.
(v) L contains $C X_{3}$ with only $b_{3} \notin P$. Let $b_{3}=y \wedge y_{2}$ with $y>a_{3}$. Then, $y \| a_{1}$ by Lemma 6 applied to the fence $\left\{b_{3}, a_{3}, a_{1}, c, b_{2}\right\}$. If $y<c$, then y could replace b_{3}; therefore, $y \| c$. Then, $C X_{2} \cong\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, c, y\right\}$, where every element is in P.

In summary, we have shown that if L contains D (and contains no crowns), then P contains $D, C X_{2}$ or $C X_{3}$.

5. L contains C.

(i) $a \notin P$. If $a=x \vee x_{2}$ with $x \nless b_{3}$, then x can replace a.
(ii) $b_{3} \notin P$. If $b_{3}=x_{1} \vee x_{2}$, then x_{1} or x_{2} can replace b_{3} by the dual of Lemma 7 applied to $\left\{c_{1}, c_{3}, a\right\}$.

[^2](iii) $c_{1} \notin P$. If $c_{1}=y_{1} \wedge y_{2}$, then y_{1} or y_{2} can replace c_{1} by Lemma 7 applied to $\left\{b_{2}, b_{3}, c_{2}\right\}$.
(iv) $c_{2} \notin P$. If $c_{2}=y_{1} \wedge y_{2}$, then y_{1} or y_{2} can replace c_{2} since, otherwise, we could assume that $y_{1}>c_{1}, y_{1}>c_{3}, y_{2}>c_{3}$, and $y_{2}>c_{1}$, Then, $D \cong$ $\left\{a, c_{1}, b_{3}, c_{3}, y_{1}, y_{2}\right\}$, contrary to assumption. Therefore, $a, b_{3}, c_{1}, c_{2}, c_{3} \in P$.
(v) $b_{1} \notin P$. Let $b_{1}=x \vee x_{2}$ with $x \nless c_{3}$. If $x>a$, then x could replace b_{1}; therefore, $x \| a$. If $x<b_{3}$, then $D^{d} \cong\left\{c_{2}, b_{3}, c_{1}, b_{2}, x, a\right\}$; therefore, $x \| b_{3}$. Then, $C X_{1}{ }^{d} \cong\left\{c_{1}, c_{2}, c_{3}, x, b_{2}, b_{3}, a\right\}$, where every element, except possibly b_{2}, is in P.
(vi) L contains $C X_{1}$ with only $b_{2} \notin P$. Let $b_{2}=y \wedge y_{2}$ with $y>a_{1}$. If $y<c$, then y could replace b_{2}; therefore, $y \| c$. If $y>b_{3}$, then $C X_{2} \cong\left\{a_{1}, a_{2}, a_{3}\right.$, $\left.b_{1}, c, y, b_{3}\right\}$ while if $y>b_{3}$, then $C X_{3} \cong\left\{a_{1}, a_{2}, a_{3}, b_{1}, c, b_{3}, y\right\}$; in both cases, every element is in P.

In summary, P must contain $C, C X_{1}{ }^{d}, C X_{2}{ }^{d}$, or $C X_{3}{ }^{d}$.

6. L contains B.

(i) $b_{1} \notin P$. If $b_{1}=x_{1} \vee x_{2}$, then x_{1} or x_{2} can replace b_{1} by the dual of Lemma 7 applied to $\left\{c_{2}, c_{3}, a\right\}$.
(ii) $c_{1} \notin P$. Let $c_{1}=y_{1} \wedge y_{2}$. If neither y_{1} nor y_{2} can replace c_{1}, we can assume that $y_{1}>b_{2}, y_{1}>b_{3}, y_{2}>b_{3}$, and $y_{2}>b_{2}$. If $y_{1}>c_{2}$, then $C^{d} \cong$ $\left\{y_{1}, c_{1}, c_{2}, c_{3}, b_{1}, a, b_{2}\right\}$, contrary to assumption. Therefore, $y_{1} \| c_{2}$ and $y_{2} \| c_{3}$. Then, $C X_{2} \cong\left\{b_{1}, a, b_{2}, y_{2}, y_{1}, c_{2}, c_{3}\right\}$, which implies that L contains C^{d} by Lemma 2. Therefore, $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3} \in P$.
(iii) $a \notin P$. Let $a=x_{1} \vee x_{2}$. If neither x_{1} nor x_{2} can replace a, we can assume that $x_{1}<b_{1}, x_{1} \nless b_{2}, x_{2}<b_{2}$, and $x_{2} \nless b_{1}$. If $x_{1}<b_{3}$, then $D \cong\left\{x_{1}, b_{1}, x_{2}, b_{3}\right.$, $\left.c_{1}, c_{3}\right\}$; therefore, $x_{1} \| b_{3}$ and $x_{2} \| b_{3}$. Then, $E X_{2} \cong\left\{x_{1}, x_{2}, b_{3}, b_{1}, c_{3}, b_{2}, c_{1}\right\}$, with every element in P.
7. L contains F_{n}. In addition to our standard assumptions, we assume that L does not contain E_{m} or $E_{m}{ }^{d}$ whenever $0 \leqq m<n$.
(i) $c \notin P$. If $c=x \vee x_{2}$ with $x \nless a_{n+2}$, then x can replace c.
(ii) $d \notin P$. If $d=y \wedge y_{2}$, we can assume by Lemma 7 that y is incomparable with every a_{i} and $b_{i}(1 \leqq i \leqq n+2)$. If $y \nless e$, then $C \cong\left\{c, a_{1}, d, a_{n+2}, b_{1}, e, y\right\}$. Thus, $y<e$ and y can replace d.
(iii) $b_{1} \notin P$. Let $b_{1}=y \wedge y_{2}$ with $y>a_{2}$. If $y>d$, then $D \cong\left\{a_{1}, b_{1}, d\right.$, $\left.b_{2}, y, e\right\}$; therefore, $y \| d$. Thus, by Lemma $6, y$ can replace b_{1}. Therefore, $a_{n+2}, b_{1}, c, d, e \in P$.
(iv) $b_{i} \notin P(2 \leqq i \leqq n+2)$. Let $b_{i}=y \wedge y_{2}$ with $y>d$. Let $j(k)$ be the least (greatest) value of l such that $y>a_{1}$. If $y<e$, then $F_{m} \cong\left\{a_{1}, \ldots, a_{j}\right.$,
$\left.a_{k}, \ldots, a_{n+2}, b_{1}, \ldots, b_{j}, y, b_{k+1}, \ldots, b_{n+2}, c, d, e\right\}$ with $m=n-k+j+1$. (Note that $m \geqq 0$.) By the minimality of $n, m=n$, and consequently, $j=$ $i-1$ and $k=i$. This means that this is the original F_{n} with b_{i} replaced by y; therefore, we can assume that $y \| e$. If $j>1$, then $E_{j-2} \cong\left\{a_{1}, \ldots, a_{j}, b_{1}, \ldots\right.$, $\left.b_{j}, y, d, e\right\}$, which is contrary to assumption since $j \leqq n+1$. If $k<n+2$, then $F_{m} \cong\left\{a_{k}, \ldots, a_{n+2}, y, b_{k+1}, \ldots, b_{n+2}, c, d, e\right\}$ with $m=n-k+1$. Since $k \geqq 2$, this would contradict the minimality of n. Therefore, $j=1$ and $k=n+2$. If $y>b_{1}$, then $D \cong\left\{c, b_{1}, a_{n+2}, d, y, e\right\}$. Therefore, $y \| b_{1}$ and $F X_{1}{ }^{d}=\left\{y, e, b_{1}, a_{n+2}, a_{1}, d, c\right\}$, where every element, except possibly a_{1}, is in P.
(v) L contains $F X_{1}$ with only $b_{2} \notin P$. Let $b_{2}=y \wedge y_{2}$ with $y>b_{3}$. Since y could replace b_{2} if $y<c$, we can assume that $y \| c$. If $y>b_{1}$, then $D \cong$ $\left\{a_{2}, b_{1}, a_{3}, b_{3}, y, c\right\}$. Therefore, $y \| b_{1}$ and $F X_{2} \cong\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{3}, y, c\right\}$, where every element is in P.
8. L contains E_{n}. The standard assumptions apply except that we assume that L does not contain F_{m} only when $m=0$. (Note that cases 7 and 8 cover all situations where L contains some $E_{n}, E_{n}{ }^{d}$ or F_{n}.)
(i) $c \notin P$. If $c=x_{1} \vee x_{2}$, it follows by the dual of Lemma 7 that x_{1} or x_{2} can replace c.
(ii) $a_{1} \notin P$. Let $a_{1}=x_{1} \vee x_{2}$. If neither x_{1} nor x_{2} can replace a_{1}, we can assume by the dual of Lemma 6 that $x_{1}<c, x_{1} \nless b_{3}, x_{2}<b_{3}$, and $x_{2} \nless c$. Then, $D^{d} \cong\left\{d, c, b_{1}, b_{3}, x_{1}, x_{2}\right\}$.
(iii) $a_{i} \notin P(2 \leqq i \leqq n+1)$. Let $a_{i}=x \vee x_{2}$. Suppose that neither x nor x_{2} can replace a_{i}. If $x_{2}<c, x_{2} \nless b_{i-1}$, and $x_{2} \nless b_{i+2}$, then $E_{0}{ }^{d} \cong\left\{b_{i}, b_{i+1}\right.$, $\left.a_{i-1}, a_{i}, a_{i+1}, c, x_{2}\right\}$, contradicting that $n \geqq 1$. Consequently, we can assume that $x \nless c$ and $x \nless b_{i-1}$. If j is the greatest value of k such that $x<b_{k}$, then $m=n-j+i+1 \geqq 0$ and, by the dual of Lemma $6, E_{m} \cong\left\{a_{i}, \ldots, a_{i-1}\right.$, $\left.x, a_{j}, \ldots, a_{n+2}, b_{1}, \ldots, b_{i}, b_{j}, \ldots, b_{n+3}, c, d\right\}$. By the minimality of $n, j=$ $i+1$ and this is the original E_{n} with a_{i} replaced by x. Therefore, we can assume that $a_{i} \in P$ for $1 \leqq i \leqq n+2$.
(iv) $b_{1} \notin P$. Let $b_{1}=y \wedge y_{2}$ with $y>a_{2}$. If $y>c$, then $D \cong\left\{a_{1}, b_{1}, c\right.$, $\left.b_{2}, y, d\right\}$. Therefore, $y \| c$ and y can replace b_{1} by Lemma 6 .
(v) $b_{i} \notin P(2 \leqq i \leqq n+2)$. Let $b_{i}=y \wedge y_{2}$ with $y>c$. Let $j(k)$ be the least (greatest) value of l such that $y>a_{2}$. If $y<d$, then we can show that y can replace b_{i} similarly as in case 7 (iv) ; therefore, $y \| d$. If $j>1$, then E_{j-2} $\cong\left\{a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{j}, y, c, d\right\}$; therefore, $j=1$ and $k=n+2$. If $y>b_{1}$ and $y>b_{n+3}$, then $D^{d} \cong\left\{y, b_{1}, d, b_{n+3}, a_{1}, a_{n+2}\right\}$. Thus, we can assume that either $y\left\|b_{1}, y\right\| b_{n+3}$ and $E X_{1} \cong\left\{a_{1}, a_{n+2}, c, b_{1}, y, d, b_{n+3}\right\}$, or $y>b_{1}, y \| b_{n+3}$ and $E X_{2} \cong\left\{a_{1}, a_{n+2}, c, b_{1}, d, b_{n+3}, y\right\}$. In both cases, every element, except possibly d, is in P.
(vi) L contains $E X_{1}$ with only $b_{3} \notin P$. Let $b_{3}=y_{1} \wedge y_{2}$ and suppose that neither y_{1} nor y_{2} can replace b_{3}. By symmetry, $y_{1}>b_{1}$, and therefore, $y_{2} \| b_{1}$. We first assume that $y_{1}>b_{2}$. If $y_{2}>b_{2}$, then $D \cong\left\{a_{1}, b_{1}, a_{3}, b_{2}, y_{1}, y_{2}\right\}$. Thus, $y_{2} \| b_{2}$ and $F X_{2} \cong\left\{a_{2}, a_{1}, a_{3}, b_{2}, b_{1}, y_{2}, y_{1}\right\}$, which implies that L contains F_{0} by Lemma 2 . We can now assume that $y_{1}>b_{2}$; consequently $y_{2} \ngtr b_{2}$, and thus, $y_{2}>b_{4}$. If y_{1} and y_{2} are interchanged, and b_{1} and b_{4} are interchanged, we return to the case that was considered first.
(vii) L contains $E X_{2}$ with only $b_{2} \notin P$. Let $b_{2}=y_{1} \wedge y_{2}$ and suppose that neither y_{1} nor y_{2} can replace b_{2}. We can assume that $y_{1}>b_{1}, y_{1}>b_{3}, y_{2}>b_{3}$, and $y_{2} \ngtr c$. If $y_{1}>c$, then $D \cong\left\{a_{2}, c, a_{3}, b_{3}, y_{1}, y_{2}\right\}$. Thus, $y_{1} \| c$ and $F X_{2} \cong$ $\left\{a_{1}, a_{2}, a_{3}, c, b_{3}, y_{1}, y_{2}\right\}$, a contradiction. Therefore, we can assume that all the elements of E_{n}, except possibly d, are in P.
(viii) $d \notin P$. If $d=y_{1} \wedge y_{2}$ and neither y_{1} nor y_{2} can replace d, then we can assume that $y_{1}>b_{1}, y_{1}>b_{n+3}, y_{2}>b_{n+3}$, and $y_{2}>b_{1}$. Then, $I_{n} \cong\left\{a_{1}, \ldots\right.$, $\left.a_{n+2}, b_{1}, \ldots, b_{n+3}, c, y_{1}, y_{2}\right\}$, where every element is in P.
9. L contains G_{n}. In addition to the standard assumptions, we assume that L does not contain H_{m} whenever $0 \leqq m<n$.
(i) $a_{1} \notin P$. If $a_{1}=x \vee x_{2}$ with $x \nless b_{1}$, then x can replace a_{1}.
(ii) $b_{1} \notin P$. If $b_{1}=x_{1} \vee x_{2}$, then by the dual of Lemma 7 applied to $\left\{a_{2}, c, a_{1}\right\}, x_{1}$ or x_{2} can replace b_{1}. Therefore, $a_{1}, a_{n+3}, b_{1}, b_{n+3} \in P$.
(iii) $a_{i} \notin P(2 \leqq i \leqq n+2)$. Let $a_{i}=x \vee x_{2}$ with $x \nless b_{i}$. If $x<c$, then $D^{d} \cong\left\{b_{n+3}, c, a_{n+3}, b_{n+2}, x, b_{n+1}\right\}$ when $i=n+2$, and $G_{n-i+1} \cong\left\{x, a_{i+1}, \ldots\right.$, $\left.a_{n+3}, b_{i}, \ldots, b_{n+3}, c\right\}$ when $i \leqq n+1$. Therefore, $x \| c$. If $x>a_{1}$ and $x>b_{1}$, then $C X_{1} \cong\left\{b_{1}, a_{1}, x, b_{2}, a_{2}, c, a_{3}\right\}$ when $i=2$, and $H_{i-3} \cong\left\{b_{1}, \ldots, b_{i-1}\right.$, $\left.a_{1}, \ldots, a_{i}, c, x\right\}$ when $i \geqq 3$. Therefore, $x>a_{1}$ or $x>b_{1}$; consequently, one of the following two cases must occur:
(a) there is $j(1 \leqq j \leqq i-1)$ such that $x>a_{j}, x>b_{j-1}$ (if $\left.j>1\right)$ and $x \gg b_{j}$; or
(b) there is $k(1 \leqq k \leqq i-2)$ such that $x>b_{k}, x \ngtr b_{k+1}$ and $x>a_{k+1}$.

If (a) holds, then $G_{n-i+j+1} \cong\left\{a_{1}, \ldots, a_{j}, x, a_{i+1}, \ldots, a_{n+3}, b_{1}, \ldots, b_{j}, b_{i}\right.$, $\left.\ldots, b_{n+3}, c\right\}$. By the minimality of $n, j=i-1$ and this is the original G_{n} with a_{i} replaced by x. If case (b) occurs with $k=i-2$, then $D \cong\left\{b_{i-2}, x, a_{i-1}\right.$, $\left.b_{i-1}, a_{i}, b_{i}\right\}$. Otherwise, case (b) occurs with $k \leqq i-3$ and $G_{i-k-3} \cong\left\{b_{k}, \ldots\right.$, $\left.b_{i-1}, a_{k+1}, \ldots, a_{i}, x\right\}$. Therefore, all the elements of G_{n}, except possibly c, are in P.
(iv) $c \notin P$. Let $c=x \vee x_{2}=y \wedge y_{2}$ with $x \nless a_{n+3}$ and $y>b_{1}$. Let $j(k)$ be the greatest (least) value of l such that $y>a_{l}\left(x<b_{l}\right)$; then, $j=1$ or 2 , and $k=n+2$ or $n+3$. If $x>a_{2}$, then $D^{d} \cong\left\{b_{3}, x, a_{3}, b_{2}, a_{2}, b_{1}\right\}$ when $k=3$, and $G_{k-4} \cong\left\{a_{2}, \ldots, a_{k}, b_{2}, \ldots, b_{k}, x\right\}$ when $k \geqq 4$. Therefore, $x \| a$, and
dually, $y \| b_{n+2}$. Similarly, if $x>a_{1}$, then $D \cong\left\{a_{1}, a_{2}, b_{1}, x, a_{3}, b_{2}\right\}$ when $k=2$, and $G_{k-3} \cong\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, x\right\}$ when $k \geqq 3$. Therefore, $x \| a_{i}$ and $y \| b_{i}(1 \leqq i \leqq n+3)$. If $k=j=2$, then $A_{0} \cong\left\{a_{2}, b_{1}, x, a_{3}, b_{2}, y\right\}$. If $k=$ $j+1$, then $C X_{3} \cong\left\{x, a_{j}, b_{j}, y, b_{j+1}, a_{j+1}, a_{j+2}\right\}$. We can therefore assume that $k \geqq j+2$ and thus, $J_{k-j-2} \cong\left\{a_{j}, \ldots, a_{k}, b_{j}, \ldots, b_{k}, x, y\right\}$, where every element is in P.
10. L contains H_{n}. The standard assumptions apply except that we assume that L does not contain G_{m} only when $0 \leqq m<n$.
(i) $a_{1} \notin P$. If $a_{1}=x \vee x_{2}$, then by the dual of Lemma 7, we can assume that $x \| b_{2}$ and $x \| c$. If $x<d$, then $D^{d} \cong\left\{b_{3}, d, a_{2}, b_{2}, x, b_{1}\right\}$ when $n=0$, and $G_{n-1} \cong\left\{x, a_{2}, \ldots, a_{n+2}, b_{2}, \ldots, b_{n+3}, d\right\}$ when $n \geqq 1$. Therefore, $x \| d$ and x can replace a_{1}.
(ii) $b_{1} \notin P$. Let $b_{1}=x_{1} \vee x_{2}$. If neither x_{1} nor x_{2} can replace b_{1}, we can assume that $x_{1}<a_{1}, x_{1} \nless d, x_{2}<d$, and $x_{2} \nless a_{1}$. Then, $D^{d} \cong\left\{b_{n+3}, a_{1}, c, d\right.$, $\left.x_{1}, x_{2}\right\}$. Therefore, $a_{1}, a_{n+2}, b_{1}, b_{n+3} \in P$.
(iii) $c \notin P$. Let $c=y \wedge y_{2}$. Applying Lemma 7 to $\left\{a_{1}, b_{2}, b_{3}\right\}$, we can assume that $y \| a_{1}$ and $y \| b_{2}$. If $y>d$, then $D \cong\left\{b_{1}, b_{2}, d, c, b_{n+3}, y\right\}$. Therefore, $y \| d$ and y can repalce c.
(iv) $a_{i} \notin P(2 \leqq i \leqq n+1)$. By duality, we can assume that $i \leqq \frac{1}{2}(n+3)$. Let $a_{i}=x \vee x_{2}$ with $x \nless b_{i+1}$. If $x<c$ and $x>b_{1}$, then $D \cong\left\{b_{1}, x, a_{1}, b_{2}\right.$, $\left.a_{2}, b_{3}\right\}$ when $i=2$, and $G_{i-3} \cong\left\{b_{1}, \ldots, b_{i}, a_{1}, \ldots, a_{i}, x\right\}$ when $i \geqq 3$. If $x<c$ and $x \| b_{1}$, then $C X_{3} \cong\left\{x, b_{1}, a_{1}, c, a_{2}, b_{2}, b_{3}\right\}$ when $i=2$, and $J_{i-3} \cong$ $\left\{b_{1}, \ldots, b_{i}, a_{1}, \ldots, a_{i}, x, c\right\}$ when $i \geqq 3$. Since the latter case implies that L contains G_{i-3}, we conclude that $x \| c$. If $x<d$, then $D^{d} \cong\left\{b_{4}, d, a_{3}, b_{3}, x, b_{2}\right\}$ when $i=2$ and $n=1$; otherwise, $i \leqq n$ and $G_{n-i} \cong\left\{x, a_{i+1}, \ldots, a_{n+2}, b_{i+1}\right.$, $\left.\ldots, b_{n+3}, d\right\}$. Therefore, $x \| d$. If $x>b_{1}$, then

$$
H_{n-i+1} \cong\left\{x, a_{i+1}, \ldots, a_{n+2}, b_{1}, b_{i+1}, \ldots, b_{n+3}, c, d\right\}
$$

Therefore, $x>b_{1}$ and one of the following two cases must occur:
(a) there is $j(1 \leqq j \leqq i-1)$ such that $x>a_{j}, x>b_{j}$ and $x>b_{j+1}$; or
(b) there is $k(1 \leqq k \leqq i-1)$ such that $x>b_{k}, x \ngtr b_{k+1}$ and $x>u_{k}$.

If (a) holds, then

$$
H_{n-i+j+1} \cong\left\{a_{1}, \ldots, a_{j}, x, a_{i+1}, \ldots, a_{n+2}, b_{1}, \ldots, b_{j+1}, b_{i+1}, \ldots,\right.
$$

By the minimality of $n, j=i-1$ and this is the original H_{n} with a_{i} replaced by x. If case (b) occurs, then $D \cong\left\{b_{i-1}, x, a_{i-1}, b_{i}, a_{i}, b_{i+1}\right\}$ when $k=i-1$, and $G_{i-k-2} \cong\left\{b_{k}, \ldots, b_{i}, a_{k}, \ldots, a_{i}, x\right\}$ when $k \leqq i-2$.
(iv) $b_{i} \notin P(2 \leqq i \leqq n+2)$. By duality, we can assume that $i \leqq \frac{1}{2} n+2$. Let $b_{i}=x \vee x_{2}$ with $x \nless a_{i}$. If $x<c$ and $x<d$, then $C X_{3}{ }^{d} \cong\left\{a_{2}, b_{3}, c\right.$,
$\left.a_{1}, b_{1}, d, x\right\}$ when $n=0$ and $i=2$, and $D^{d} \cong\left\{b_{n+3}, a_{2}, c, d, b_{1}, x\right\}$ when $n \geqq 1$. If $x<c$ and $x \| d$, then for $n=0, C X_{1}{ }^{d} \cong\left\{a_{2}, b_{3}, c, a_{1}, x, d, b_{1}\right\}$ when $x>b_{1}$, and $C X_{2}{ }^{d} \cong\left\{a_{2}, b_{3}, c, a_{1}, b_{1}, x, d\right\}$ when $x \| b_{1}$; for $n \geqq 1, i \leqq n+1$ and $H_{n-i+1} \cong\left\{a_{i}, \ldots, a_{n+2}, x, b_{i+1}, \ldots, b_{n+3}, c, d\right\}$. Therefore, $x \| c$. If $x>a_{1}$ and $x \ngtr b_{1}$, then $C X_{1} \cong\left\{a_{1}, b_{1}, x, a_{2}, b_{2}, c, b_{3}\right\}$ when $i=2$, and $H_{i-3} \cong\left\{a_{1}, \ldots\right.$, $\left.a_{i-1}, b_{1}, \ldots, b_{i}, c, x\right\}$ when $i \geqq 3$. Therefore, $x>a_{1}$ or $x>b_{1}$; consequently, $x \| d$ and one of the following two cases must occur:
(a) there is $j(1 \leqq j \leqq i-1)$ such that $x>a_{j-1}$ (if $\left.j>1\right), x \ngtr a_{j}$ and $x>b_{j}$; or
(b) there is $k(1 \leqq k \leqq i-2)$ such that $x>a_{k}, x>a_{k+1}$ and $x>b_{k+1}$. If (a) holds, then

$$
H_{n-i+j+1} \cong\left\{a_{1}, \ldots, a_{j}, a_{i}, \ldots, a_{n+2}, b_{1}, \ldots, b_{j}, x, b_{i+1}, \ldots, b_{n+3}, c, d\right\}
$$

This must be the original H_{n} with b_{i} replaced by x. If case (b) occurs, then $D \cong\left\{a_{i-2}, a_{i-1}, b_{i-1}, x, a_{i}, b_{i}\right\}$ when $k=i-2$, and $G_{i-k-3} \cong\left\{a_{k}, \ldots, a_{i-1}\right.$, $\left.b_{k+1}, \ldots, b_{i}, x\right\}$ when $k \leqq i-3$. With this contradiction, the proof of the final case is complete.

References

1. K. A. Baker, Dimension, join-independence, and breadth in partially ordered sets, 1961 (unpublished).
2. B. Banaschewski, Hüllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2 (1956), 117-130.
3. G. Birkhoff, Lattice theory, 3rd. ed. (American Mathematical Society, Providence, R.I., 1967).
4. B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
5. T. Hiraguchi, On the dimension of partially ordered sets, Sci. Reports Kanazawa Univ. 1 (1951), 77-94.
6. D. Kelly and I. Rival, Crowns, fences and dismantlable lattices, Can. J. Math. 26 (1974), 1257-1271.
7. —— Planar lattices, Can. J. Math. 27 (1975), 636-665.
8. Certain partially ordered sets of dimension three, J. Combinatorial Theory Ser. A 18 (1975), 239-242.
9. J. Schmidt, Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge, Arch. Math. 7 (1956), 241-249.
10. W. T. Trotter, Jr., Irreducible posets with large height exist, J. Combinatorial Theory Ser. A 17 (1974), 337-344.
11. W. T. Trotter, Jr., and J. I. Moore, Jr., Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. (to appear).

University of Manitoba, Winnipeg, Manitoba

[^0]: Received May 3, 1976 and in revised form, October 25, 1976.

[^1]: \dagger This proposition and its corollary were obtained jointly with I. Rival.

[^2]: \dagger In each paragraph, the original assumption of the heading will be shown not to hold. In other words, we show that the element being considered can be assumed in the sequel to be an element of P.

