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Segmentation of cellular objects is a necessary step in many image processing pipelines of fluorescent 
microscopy images. As an example, High-Throughput Imaging (HTI) assays often require accurate 
detection of nuclei and other subcellular compartments to quantify the biological effects of RNAi or 
chemical reagents [1]. Deep Convolution Neural Networks models (D-CNNs) have surpassed traditional 
image processing approaches for biological object detection [2], are mostly non-parametric, and require 
few and simple image pre-processing steps. However, successful training of these models generally 
requires large numbers (hundreds to thousands) of representative images along with their human expert-
generated ground-truth annotations. This hinders the rapid implementation of D-CNN models for a wide 
range of HTI assays.  
 
Here we describe a novel image analysis workflow based on D-CNNs and transfer learning for the 
segmentation of fluorescently labelled mammalian cell nuclei. The workflow (Fig. 1A) uses few heavily 
augmented  images for training of D-CNNs, generation of preliminary ground-truth annotations by 
traditional image processing methods or by pre-trained D-CNNs, a rapid preliminary ground-truth 
correction step by expert annotators, and two state-of-the-art D-CNNs: U-Net [2] and Mask R-CNN [3]. 
U-Net was converted to an instance segmentation architecture by formulating the classification task as a 
regression task for predicting nucleus edges and internal seeds, which were then used as inputs to a seeded 
watershed algorithm [4]. Mask R-CNN was used without any modifications [5]. 
 
Both D-CNNs were trained using 7 fluorescence microscopy images (1278x1078 pixels), containing on 
average 95 nuclei per image, from a single well of a multi-well plate containing DAPI-stained human 
MCF10A cells (Fig. 1B). The preliminary ground truth annotations for these images were generated using 
traditional image segmentation approaches [2], followed by expert-driven correction of any errors. The 
input fluorescence microscopy images were first heavily augmented, and random patches (256x256 
pixels) of these augmented images were then used to train the U-Net and Mask R-CNN models. The D-
CNNs trained on the random patches of MCF10A cells images were subsequently used in inference mode 
to generate preliminary ground-truth annotations for test microscopy images of another well of MCF10A 
cells (7 images), and for two additional cell lines: U2OS (1 image) and HCT-116 (1 image). The nuclear 
morphology of the U2OS and HCT-116 cells is substantially different from MCF10A cells. These 
preliminary segmentation results were then manually verified and corrected (Fig. 1B).  
 
As seen in Fig. 1B, this analysis workflow can segment individual nuclei in both training (MCF10A) and 
in test images (U2OS and HCT-116), even when the nuclei are tightly packed and touching, such as in the 
case of U2OS and HCT-116 cells. This is remarkable because of their difference in nuclear morphology 
when compared to MCF10A cells, and also because the test image datasets were acquired at a different 
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magnification (20X) from the training image dataset (60X) (Fig. 1B). Quantitative evaluation of D-CNN’s 
performance on images of MCF10A, U2OS and HCT-116 cells, as measured by the average precision 
(AP) at different Intersection over Union (IoU) thresholds for both models (Fig. 1C), indicates that Mask 
R-CNN results were more stable at higher IoU thresholds when compared to U-Net, and that the source 
of the preliminary ground truth annotations (i.e. either from U-Net or Mask R-CNN) for a specific test 
cell line has a strong influence on the performance of each D-CNN (Fig. 1B and 1C).  
 
Altogether, these results show that, by combining input augmentation and transfer learning, D-CNNs can 
be trained with a very limited number of objects to accurately segment nuclei for a variety of cell lines 
with different nuclei morphologies, and that they can be used to generate preliminary ground-truth 
annotations for previously unseen datasets, which can then be further quickly corrected by human experts. 
These advancements will facilitate the adoption of D-CNN workflows for the analysis of large and diverse 
image datasets generated in HTI assays [6]. 
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Figure 1. A) Schematics of the D-CNN(s) based workflow for nuclei segmentation from fluorescence 
microscopy images. B)  Representative images (greyscale) of human MCF10A, U2OS and HCT116 nuclei 
stained with the DAPI DNA dye. Pseudo-colored images of ground truth annotations and inference results 
using the U-Net and Mask-RCNN architectures, respectively, on the greyscale images along with the mean 
average precision (mAP). Scale bars: 15 µm (MCF10A), 25 µm (U2OS), and 25 µm (HCT-116). C) AP 
curves for the D-CNN models for different cell lines. 
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