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As soon as we understand the gentle slope of pressure P in Fig. 15.4,
i.e., the right-hand side of Eq. (15.23), we will also understand the differ-
ence between the behaviors of energy and pressure, the left-hand side of
Eq. (15.23), noted on comparing Fig. 15.3 with Fig. 15.5.
We will show, in section 16.2, that this non-ideal-gas behavior can be

interpreted as resulting from perturbative quark–gluon interactions and
the presence of the latent heat of the vacuum B. An equivalent expla-
nation invoking the presence of quasi-particles with mass, and quantum
numbers of quarks and gluons, will also be considered.

16 Perturbative quark–gluon plasma

16.1 An interacting quark–gluon gas

As explained in section 14.1, the interactions between quarks and gluons
are contained in the QCD Lagrangian Eq. (13.79), improved by gauge-
fixing and FP-ghost terms Eq. (14.1). Strictly considered, the rules for
Feynman diagrams we presented in Eqs. (14.2)–(14.8) are applicable to
processes in perturbative vacuum, whereas to compute thermal proper-
ties of interacting quark and gluons, we are working in matter at finite
temperature T and chemical potential µ. The generalization required is
discussed in detail in the textbook by Kapusta [157].
A lot of effort in the past few decades has gone into the development of

the perturbative expansion of the partition function. The series expan-
sion, in terms of the QCD coupling constant g, has been carried out to or-
der [(g/(4π)]5 = (αs/π)5/2/32 [282]. This series expansion, which was de-
veloped using as reference the perturbative vacuum in empty space, does
not appear to lead to a convergent result for the range of temperatures of
interest to us [36]: the thermodynamic properties vary widely from order
to order, oscillating quite strongly around the Stefan–Boltzmann limit. It
has therefore been claimed that the perturbative QCD thermal expansion
has a zero-range convergence radius in αs.
Our following considerations will be limited to the lowest-order pertur-

bative term combined with the vacuum energy B and allow an excellent
reproduction of the key features of lattice results. It remains to be un-
derstood why this is the case. It is not uncommon to encounter in a
perturbative expansion a semi-convergent series. The issue then is how
to establish a workable scheme. It is, for example, possible that a differ-
ent scheme of perturbative approach, in which the QCD parameters (αs
and masses) are made nonperturbative functions of the medium using an
in-medium renormalization group, would yield a better converging series
in αs.
Considering the inconclusive and rapidly evolving landscape of thermal
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Fig. 16.1. Feynman diagrams contributing to the equation of state of the QGP
in order αs. Wavy lines represent gluons, solid lines represent quarks, and dashed
lines denote the ghost subtractions of non-physical degrees of freedom.

QCD, we will in this book not explore the subject beyond the study of the
consequences of the lowest-order thermal corrections. The lowest-order
contributions are obtained by evaluating the graphs shown in Fig. 16.1.
Evaluation of these diagrams at high temperature for massless quarks and
gluons is possible analytically [91]. For massless quarks and antiquarks
one finds the following two terms in the partition function:

lnZq(β, λ)=
gV

6π2
β−3
[(
1− 2αs

π

)(
1
4
ln4 λq +

π2

2
ln2 λq

)
+
(
1− 50αs

21π

)
7π4

60

]
, (16.1)

where g = nsncnf = 12, for ns = 2s+1 = 2, nc = 3, and nf = 3. The first
term in parentheses is c3, Eq. (4.71c), and the second is c2, Eq. (4.71b).
The quark fugacity λq is related to the baryon-number fugacity, as dis-
cussed in Eq. (11.3). The glue contribution is

lnZg(β, λ) =
8π2

45
β−3
(
1− 15αs

4π

)
, (16.2)

where the last term in parentheses is c1, Eq. (4.71a). Finally, the vacuum
contribution can be added in the form

lnZvac(β) = −βBV. (16.3)

This term insures that the energy density, inside the bag, is positive and
simultaneously that the pressure exerted on the surface of the bag is
negative. The total grand partition function is

lnZQGP = lnZq + lnZg + lnZvac. (16.4)

This equation was presented explicitly in section 4.6, Eq. (4.70). The re-
sulting perturbative interactions between quarks and gluons are obtained
by differentiating Eq. (16.4) with respect to V , β, and λq; see section 10.1.
Another important consequence of interactions in a conductive color

plasma is the change in location of poles of particle propagators. Rather

https://doi.org/10.1017/9781009290753.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.022


16 Perturbative quark–gluon plasma 305

than of particles, one than speaks of quasi-particles, in our instance ther-
mal quarks and gluons. The idea of quasi-particle thermal gluon and
thermal quark masses is rooted in the desire to characterize, in a simple
way, the behavior of quark and gluon correlators (propagators) evaluated
inside the color-conductive medium. The monograph by Kapusta [157]
offers an excellent early introduction to this still rapidly evolving subject,
and we will restate here a few results of immediate interest.
Allowing for interaction to lowest order in αs, a relation between the

energy E and momentum p = |/p| (a dispersion relation) of quasi-quarks is
fixed by the location of the pole of the quark propagator Eq. (14.2) [270]:

E2 = /p 2 + (mT
q )
2

[
E + p

2p
− E2 − p2

4p2
ln
(
E + p

E − p

)]
. (16.5)

For p → ∞, with E → p+m2/(2p), we recognize the quantity

(mT
q )
2 =

4π
3
αsT

2 (16.6)

as the mass parameter, establishing the relation with the momentum and
controlling the quasi-quark phase space.
Near to p = 0, the long-range oscillations described by Eq. (16.6) require

more attention. They have the energy

Eq(p → 0) =
m(/p → 0, ω;T )√

2
+
p

3

√
2p2

3m(/p → 0, ω;T )
+ · · ·. (16.7)

It is evident from the above that the ‘thermal’ mass of the quark in a
medium may be defined also by considering this zero-momentum limit
[270], rather than the high-momentum limit Eq. (16.6) adopted here.
However, the domain p → 0 is not important in the counting of states in
the phase space, considering the momentum-volume factor d3p = 4πp2 dp.
We conclude that, in the study of the phase space of light thermal quarks
in plasma, we should use for the light-quark energy the high momentum
limit

Eq �
√
p2 + (mT

q )2, q = u,d.

A similar discussion arises for the behavior of gluons. The collective
oscillations in the plasma with the quantum numbers of gluons behave,
at high momentum, according to

Eg �
√
p2 + (mT

g )2,

where

(mT
g )

2 = 2παsT 2
(
1 +

nf
6

)
, (16.8)
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whereas near p → 0

Eg(p → 0) =

√
2
3
mT
g . (16.9)

The thermal mass of gluons introduced in Eq. (16.8) is not the Debye
screening mass limiting the effective range of interactions in plasma. This
quantity corresponds to the static limit in the behavior of the longitudinal
gluon-like plasma oscillations [269]:

(mD
g )
2 = 4παsT 2

(
1 +

nf
6

)
. (16.10)

16.2 The quark–gluon liquid

We consider the properties of the QGP allowing for the lowest-order inter-
actions with a temperature-dependent interaction strength, and vacuum
pressure B. We refer to this model as the quark–gluon liquid [147]. Nat-
urally, we hope and expect to reproduce lattice-QCD results [160]. There
is considerable sensitivity to the value of αs(µ) and it is necessary to use
its precise form; see section 14.2.
Along with many other authors, we adopt the relation

µ � 2πT (16.11)

between the scale of the QCD coupling constant and the temperature of
the thermal bath. On the one hand, the right-hand side is close to the
average collision energy of two massless quanta at T , and on the other,
the relation Eq. (16.11) makes the thermal-QCD expansion least sensitive
to the renormalization scale [283].
In Fig. 16.2, the ‘experimental’ values are the numerical lattice simu-

lations [160], see section 15.5, for 2 (diamonds), 3 (triangles), and 2 +
1 (squares) flavors. The non-interacting Stefan–Boltzmann quark–gluon
gas, Eq. (4.70), with ci = 1 and with the bag constant

B = 0.19GeVfm−3 (16.12)

is shown as thin lines, dotted for the case of three flavors and dashed
for the case of two flavors. We see that the effect of vacuum pressure
disappears as T → 2Tc, and that the lattice results differ significantly
from those for the free gas, even at T = 4Tc.
To obtain agreement with the lattice results, it is necessary to intro-

duce perturbative coefficients ci, Eqs. (4.71a)–(4.71c), with numerically
computed αs(µ = 2πT ) [147]. The thick lines seen in Fig. 16.2 were ob-
tained allowing for αs(2πT ) shown in Fig. 14.3 with Tc = 160MeV. To
find the behavior near to T = Tc, the only ‘free’ choice we can make is
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Fig. 16.2. Lattice-QCD results [160] for P/T 4 at λq = 1 (for 2 (diamonds),
3 (triangles), and 2 + 1 (squares) flavors) compared with free quark–gluon gas
with bag pressure B = 0.19GeV fm−3, thin dotted (three flavors) and dashed
(two flavors) lines. Thick lines (agreeing with lattice data) are derived from the
quark–gluon liquid model: dotted line, 3 flavors; solid line, 2 + 1 flavors; and
dashed line, 2 flavors.

the value of B, and this is the reason why that particular number was
selected in Eq. (16.12). To achieve the agreement with lattice results seen
in Fig. 16.2, the relevant relation is

B
T 4c
= 2.2, B1/4 = 1.22Tc. (16.13)

The precise relationship between the scale µ and T has negligible impact
on the result shown, as long as the natural order of magnitude seen in
Eq. (16.11) is maintained. Within the simple model we introduced in
section 1.3 to describe the phase transition, Eq. (16.13) implies nearly the
correct number of degrees of freedom freezing in the transition, ∆g � 20.
It has been shown that it is also possible to reproduce the lattice results

using fine-tuned thermal masses (see table I in [204]). In Fig. 16.3, we
show the light-quark (solid thick line) and gluon (dashed thick line) ther-
mal masses which were used to fit the lattice data. The actual thermal
quark and gluon masses, defined in Eqs. (16.6) and (16.8), are also shown
in Fig. 16.3, as thin lines (dashed for gluons) obtained using αs(µ = 2πT ),
from Fig. 14.3. We conclude that the thermal masses required to de-
scribe the reduction of the number of degrees of freedom for T > 2Tc are
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Fig. 16.3. Thermal masses fitted to reproduce lattice-QCD results for nf = 2
[204], thick solid line for quarks, and thick dashed line for gluons. Thin lines,
perturbative QCD result for αs(µ = 2πT ).

just the perturbative QCD result. Importantly, this means that thermal
masses express, in a different way, the effect of perturbative quantum-
chromodynamics, and thus, for T > 2Tc, we have the option of using
Eq. (16.1), or the more complex thermal-mass approach.
However, in the temperature domain T < 2Tc, in which the vacuum

pressure B is relevant, see Fig. 16.2, the thermal mass required to fit lattice
results, as can be seen in Fig. 16.3, is quite different from the perturbative
QCD result, and we believe that the interpretation of lattice results in
this phenomenologically important domain is much less natural than the
quark–gluon-liquid approach. The introduction of thermal masses, in
order to describe the behavior seen in Fig. 15.5, is expressing just the
same fact that the pressure must be some function of the parameter Λ
which is controlling the magnitude of the running αs, and that additional
physics, such as the vacuum pressure B, is required in order to understand
the behavior of the QGP, for T < 2Tc.
We have seen that the suppression of the number of degrees of freedom,

seen in the QGP pressure can be well described by a first-order thermal
QCD result, either using thermal masses, or more directly using the first-
order corrections seen in Eqs. (16.1) and (16.2). However, to describe the
behavior for T → Tc, we should invoke nonperturbative properties of the
vacuum. As discussed at the end of section 15.5, once the variation of
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P/T 4 with T has been described, the deviation of lattice results from the
ideal-gas law, ε− 3P → 0, is also understood.

16.3 Finite baryon density

It is in the consideration of the finite baryon density that the issues re-
garding how to model the lattice results we raised in the last section are
most relevant. We believe that it is appropriate to obtain the properties
of QGP in a manner allowing the magnitude of the color interaction to
be controlled by the energy scale which depends on the baryon-chemical
potential. The dependence of the scale µ of αs on the fugacity we adopt
is [264]

µ = 2
√
(πT )2 + µ2q = 2πβ

−1
√
1 +

1
π2
ln2 λq. (16.14)

Like with Eq. (16.11), there is no exact mathematical rationale for this ex-
pression; it is entirely based on intuition and the particle-energy behavior
seen in studies of thermal QCD.
We note that Eq. (16.14) implies that

−β ∂αs(β, λq)
∂β

= µ
∂αs
∂µ

,

λq
∂αs(β, λq)

∂λq
=

lnλq
π2 + ln2 λq

µ
∂αs
∂µ

, (16.15)

T
∂αs(T, µq)

∂T
=

π2T 2

(πT )2 + µ2q
µ
∂αs
∂µ

.

The derivative of the QCD coupling constant can be expressed as, Eqs. (14.18)
and (14.21),

µ
∂αs
∂µ

= −b0α2s − b1α
3
s + · · · ≡ βpert2 . (16.16)

βpert2 is the beta-function of the renormalization group in the two-loop ap-
proximation, with bi defined in Eq. (14.23). β

pert
2 does not depend on the

renormalization scheme, and solutions of Eq. (16.16) differ from higher-
order results by less than the error introduced by the experimental un-
certainty in the measured value of αs(MZ); see section 14.3.
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We are now prepared to study physical properties of the quark–gluon
liquid. The energy density is obtained from Eq. (4.70):

εQGP = −∂lnZQGP(β, λ)
V ∂β

,

= 4B + 3PQGP − β
∂αs
∂β

3∑
i=1

∂ci
∂α

PQGP
∂ci

. (16.17)

We find that

εQGP − 3PQGP = A+ 4B, (16.18)

where

A = (b0α2s + b1α
3
s )
[
2π
3
T 4+

nf5π
18

T 4+
nf
π

(
µ2qT

2+
1
2π2

µ4q

)]
, (16.19)

and PQGP is stated explicitly in Eq. (4.70). We see in Eq. (16.18) the
interesting property

εQGP − 3PQGP
T 4

→ π

18
(12 + 5nf)(b0α2s + b1α

3
s ) + 4

B
T 4

, µq → 0, (16.20)

where the thermal interaction (the first term) is determining the behavior
at T � 2Tc, Fig. 16.2.
A convenient way to obtain the entropy and baryon density uses the

thermodynamic potential F ; see Eq. (4.70) and chapter 10. For the quark–
gluon liquid, we have

F(T, µq, V )
V

= −T

V
lnZ(β, λq, V )QGP = −PQGP(T, µq), (16.21)

with entropy density sQGP and baryon density ρb, which is a third of the
quark density:

sQGP = − dF
V dT

, ρb = −1
3

dF
V dµq

. (16.22)

The entropy density is

sQGP =
32π2

45
c1T

3 + nf

(
7π2

15
c2T

3+c3µ2qT
)
+A π2T

π2T 2 + µ2q
. (16.23)

The coefficients ci are defined in Eq. (4.71a) and are the same as in
Eqs. (16.1), (16.2), and (4.70). The baryon density is

ρb =
nf
3
c3

(
µqT

2 +
1
π2

µ3q

)
+
1
3
A µq
π2T 2 + µ2q

. (16.24)
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16.4 Properties of a quark–gluon liquid

The behavior of the quark–gluon liquid is of particular interest in the
study of

• initial conditions corresponding to an early instant in time during the
heavy-ion collision when the light quarks and gluons are in approximate
chemical equilibrium, but strange quarks have not yet been produced,
thus nf = 2; and

• properties of the fireball of quarks and gluons at the time of its breakup
near to T = Tc, at which strangeness is practically equilibrated, and
nf = 2.5.

Given the good agreement with the lattice results for vanishing chemical
potential, the following study offers a quantitative description of the rela-
tionship between the temperature and physical properties reached in the
deconfined phase, but with an unknown systematic error when properties
involving baryon density are physically relevant (e.g., in the AGS energy
range).
In the left-hand panels of Fig. 16.4, we show the physical properties at

fixed energy per baryon, in the range 2 GeV≤ E/b ≤ 15 GeV, as functions
of temperature, while in the right-hand panels we study the behavior at
fixed value of the (dimensionless) entropy per baryon 10 ≤ S/b ≤ 60. In
panels (a) and (b) of Fig. 16.4, as we step from line to line from left to
right, the energy per baryon is incremented by 1 GeV; in panels (d) and
(e) the entropy per baryon is incremented by 5 units; in panel (c) we step
from bottom to top incrementing by 1 GeV; and in panel (f) from bottom
to top by 5 entropy units. The light-dashed boundaries are obtained from
the conditions

• on energy density εq,g ≥ 0.5GeV fm−3 (excluding here the latent heat
of the vacuum B � 0.19GeV fm−3), and/or

• baryochemical potential, µb ≤ 1GeV.
We highlight the result for E/b = 8.5GeV by using a thick dashed line
on the left in Fig. 16.4, and that for S/b = 40 by using a thick solid line
on the right.
This systematic exploration should allow one to assess the behavior

of the quark–gluon liquid possibly created in collisions performed in the
energy range between those of the AGS and SPS accelerators, and com-
prising chemically equilibrated u and d quarks and gluons. The particle
multiplicity in the final state tells us that the entropy per baryon is at the
level of 40 units for the high-energy range of the SPS; see section 7.4. The
corresponding temperature which we read from panel (c) for E/b < 8.5
GeV is T < 280 MeV. Evaluation of properties of the final abundances of
particles, section 19.3, shows that it is easier to deposit baryon number
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Fig. 16.4. Left: lines corresponding to fixed energy per baryon E/b = 2 to
15 GeV in steps of 1 GeV: (a) baryo-chemical potential µb (highest E/b at the
bottom), (b) baryon density n/n0 in units of equilibrium nuclear density (highest
E/b at the bottom), and (c) S/b, the entropy per baryon (highest E/b at the
top). Right: lines corresponding to fixed entropy per baryon S/b = 10 to 60 in
steps of 5, from top to bottom: (d) µb, (e) n/n0, and (f) E/b; see the text for
further details.

than energy in the fireball, and, in general, the initial energy per baryon
is smaller than the collisional kinematic limit. Taking E/b � 7 GeV, we
obtain Tch � 220. Before the light-quark flavor has been equilibrated, the
temperature of gluons could be as high as Tth � 250 MeV, for the SPS
top energy.
We see in Fig. 16.4 panels (a) and (d) the appropriate ranges of the

baryo-chemical potential; and in panels (b) and (e) the baryon density in
units of equilibrium nuclear density, n0 = 0.16 fm−3. The dotted lines
in panels (c) and (d) show where Pq,g − B = 0: there, the entropy per
baryon at fixed energy per baryon reaches its maximum as a function
of temperature, and the energy per baryon at fixed entropy per baryon
reaches its minimum. In an equilibrium transition, the QGP transforms
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Fig. 16.5. The analog of Fig. 16.4 for the RHIC energy domain. Left, lines at
fixed energy per baryon E/b = 10 to 190GeV in steps of 20GeV. Right, lines at
fixed entropy per baryon S/b = 50 to 500 in steps of 50; see the text for more
details.

for T above this condition, since the ‘external’ hadron pressure needs to
be balanced. In an exploding system, the breakup occurs at T below this
condition, since the flow of the quark–gluon liquid adds to the pressure
working against the vacuum; see section 3.5.
In Fig. 16.5, a similar discussion of the RHIC physical conditions is

shown, following the same pattern as Fig. 16.4, except for the use of
logarithmic scales. On the left-hand side, the energy range is now 10
GeV ≤ E/b ≤ 190 GeV, and lines are in steps of 20GeV. On the right-
hand side, the specific entropy range is 50 ≤ S/b ≤ 500, in step of 50
units. The lines become denser toward higher energy or entropy. The
dotted lines in panels (c) and (f) indicate where the particle pressure is
balanced by the vacuum pressure.
In the RHIC run at

√
sNN = 130 GeV, the final hadron phase space at

central rapidity, the intrinsic local-rest-frame energy per baryon is E/b �
25 GeV, while the entropy content is S/b � 150, the uncertainties in both
values are of 10%–15%, compare with table 19.4 on page 367. The exact
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Fig. 16.6. The energy density as a function of temperature for a quark–gluon
liquid. Top, at fixed E/b; bottom, at fixed S/b; left for the SPS and right for
the RHIC energy domain. Limits are energy density ε = 0.5 GeV fm−3 and
baryo-chemical potential µb = 1GeV. Lines: left top for fixed E/b = 2 to 15
GeV in steps of 1 GeV; left bottom, at fixed S/b = 10 to 60 in steps of 5; right
top, at fixed E/b = 10 to 190 GeV in steps of 20 GeV; and right bottom, at fixed
S/b = 50 to 500 in steps of 50.

values of E/b and S/b depend on the way one accounts for the influence
on the yield analysis of unresolved (at the time of writing) weak decays
of hyperons and assumptions made about chemical equilibria. Despite
this substantial increase compared to the energy and entropy content
seen at the SPS, the value of Tch consistent with this result is only 30–
40 MeV higher than that at the SPS. For this reason, the increases in
the particle multiplicity we have discussed in section 9.5 are relatively
modest.
The rise of energy density with temperature at fixed E/b and S/b is

shown in Fig. 16.6, for the expected domain of parameters at the SPS
on the left and for the domain of RHIC parameters on the right; the
lines follow the same key as that used in Figs. 16.4 and 16.5. We see
the expected rise with T 4, but the narrow band of values associated with
baryon content is quite striking. In fact, in the right-hand panel the
different lines coalesce, energy density is effectively solely a function of T
for E/b > 10 GeV and S/b > 50.
These results indicate clearly how the presence of baryon-rich quark

matter possibly formed at lower collision energies augments the entropy
and energy content. At large baryon density these results depend strongly
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Fig. 16.7. The entropy density in chemically equilibrated QGP at λq = 1 as
a function of temperature: solid line, nf = 2; long-dashed line, nf = 2.5; and
short-dashed line, ‘pure glue’ nf = 0.

on the validity of the extrapolation made from µb = 0 of the quark–gluon
liquid and there is no way to estimate the associated systematic error
until lattice results of comparable quality for µb 
= 0 become available.
However, it would appear that at above E/b > 3 GeV, conditions suitable
for formation of deconfined state are present.
Entropy plays a very important role in the study of scaling one dimen-

sional hydrodynamic expansion, and the hadron yield in the final state
offers a reliable measure of the product σ0τ0, Eq. (7.27). In Fig. 16.7, the
entropy density σ is shown as a function of temperature. The solid line is
for the case of an equilibrated light-quark–glue system in the limit of van-
ishing chemical potential. We note that initially the entropy rises faster
than the asymptotic T 3 behavior, since the quantum chromodynamics
interactions weaken, and there is an increase in the effective number of
acting quark and gluon degrees of freedom. Thus, the drop in entropy
density on going toward the hadronization condition is considerable. In
order to preserve the entropy content in the fireball when the QGP fire-
ball expands, from T � 300 MeV toward 150 MeV, a volume growth by
a factor of nine must occur.
The ‘pure-glue’ case (short-dashed line) contains as expected about half

of the entropy when one makes a comparison at equal temperature. The
addition of strangeness expressed by increasing nf = 2 to 2.5 adds about
10% to the entropy content.

https://doi.org/10.1017/9781009290753.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.022



