
Proceedings of the Edinburgh Mathematical Society (2014) 57, 111–123
DOI:10.1017/S001309151300093X

MINIMAL RATIONAL CURVES ON COMPLETE TORIC
MANIFOLDS AND APPLICATIONS

YIFEI CHEN1, BAOHUA FU1 AND JUN-MUK HWANG2

1Institute of Mathematics, AMSS, 55 Zhongguancun East Road, Beijing 100190,
People’s Republic of China (yifeichen@amss.ac.cn; bhfu@math.ac.cn)

2Korea Institute for Advanced Study, Hoegiro 87, Seoul 130-722,
Republic of Korea (jmhwang@kias.re.kr)

Dedicated to Professor V. V. Shokurov
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1. Introduction

We work over the complex number field in this paper. For a complete uniruled smooth
variety X, let RatCurvesn(X) be the normalized space of rational curves on X (see [13,
Chapter II, Definition 2.11]). For an irreducible component K of RatCurvesn(X), let
ρ : U → K and µ : U → X be the associated universal family morphisms. An irreducible
component K of RatCurvesn(X) is called a dominating component if µ is dominant, and
a minimal component if, furthermore, for a general point x ∈ X, the variety µ−1(x) is
complete. Members of a minimal component are called minimal rational curves. Note
that a minimal rational curve through a general point x ∈ X does not deform to a
reducible curve through x. The degree of K is the degree of the intersection of −KX

with any member in K. For a fixed minimal component K and a general point x ∈ X,
we define the tangent map τx : Kx := ρ(µ−1(x)) ��� P(TxX) by τx(α) = P(TxC), where
C = µ(ρ−1(α)) is smooth at x. We denote by Cx the closure of the image of τx in P(TxX),
which is called the variety of minimal rational tangents (VMRT) of K at the point x ∈ X.
We recommend [9] for a general introduction to VMRT.

It turns out that the projective geometry of Cx ⊂ P(TxX) encodes a lot of the geo-
metrical properties on X, which can be a useful tool in solving a number of problems
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on uniruled varieties (see the surveys [9,14]). Thus, for a given X, it is worthwhile to
determine Cx. This has been worked out for many examples when X has Picard number 1
(see [9,14]). However, not many cases with large Picard number have been investigated.
The first main result of this paper, Corollary 2.5, gives a description of Cx for a complete
toric manifold. This implies that the minimal components of RatCurvesn(X) correspond
bijectively to some special primitive collections (see Proposition 3.2), which can be easily
read off from the fan defining X. As an application, we get examples of complete toric
manifolds that do not have any minimal component (see Example 3.4). We are also able
to classify toric Fano manifolds admitting a minimal component of degree n = dimX

(see Proposition 3.8). Motivated by a conjecture of Mukai (see [7]), we propose in § 3 a
conjectural upper bound for ρX(dim Cx + 1) when X is a toric Fano manifold.

The last section applies these results to study deformation rigidity of surjective mor-
phisms to some toric manifolds. Recall that a compact complex manifold X is said to have
the target rigidity property (TRP) (see [10]) if, for any surjective morphism f : Y → X

from a compact complex manifold Y , every deformation ft : Y → X, t ∈ C, |t| < 1, of f

comes from automorphisms of X, i.e. there exists a family of automorphisms φt : X → X

such that φ0 = IdX and ft = φt ◦ f . If X is simply connected and not uniruled, then it
has the TRP (see [12]). Conjecturally, all Fano manifolds with Picard number 1, except
projective spaces, have the TRP (see [10, Conjecture 1.1]). On the other hand, one can
construct many uniruled manifolds with arbitrarily large Picard numbers that do not
have the TRP (see, for example, [11]). Very little is known about uniruled manifolds
with large Picard number having the TRP. The only known case is in [11], where the
TRP is proven for the blow-ups of d � 3 distinct points in P2. Even in dimension 2, a
complete classification of uniruled surfaces with the TRP is still unknown.

Following an idea of [11], we show that if a complete toric manifold satisfies some
combinatorial conditions, then it has the TRP (see Theorem 4.4). As a consequence,
any surjective morphism from a toric manifold to such varieties is automatically a toric
morphism. Examples of toric varieties satisfying our combinatorial conditions include
those associated with Weyl chambers (see [16]). As an application, we show that every
projective variety of dimension greater than or equal to 2 is birational to a variety with
the TRP.

2. Varieties of minimal rational tangents on a complete toric manifold

We begin with some preliminary results. The first one is more or less obvious.

Lemma 2.1. Let X be a complete variety on which a connected algebraic group G

acts with an open orbit X0 ⊂ X. Suppose that the stabilizer StabG(x) ⊂ G of a point
x ∈ X0 is connected. For any dominating component K of RatCurvesn(X), the subvariety
Kx ⊂ K is then irreducible.

Proof. The group G acts on the universal family µ : U → X of K. This action descends
to the finite morphism µ′ : U ′ → X obtained by the Stein factorization of µ. Since the
stabilizer StabG(x) is connected, it fixes a point y ∈ µ′−1(x), i.e. StabG(y) = StabG(x).
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It follows that U ′ contains an open subset isomorphic to X0, i.e. µ′ is birational. This
means that Kx is irreducible. �

For the next result, we need to define some notation. Let G be a connected algebraic
group. For an irreducible closed algebraic subvariety S ⊂ G that contains the identity
e ∈ G, let [S] be the subgroup of G generated by elements in S and let 〈S〉 be the
smallest closed algebraic subgroup of G containing S. Clearly, [S] ⊂ 〈S〉. The following
is from [2, Proof of Corollary 1].

Proposition 2.2. Let G be a connected algebraic group over the complex numbers.
Let S be a closed irreducible algebraic subvariety of G containing the identity e ∈ G.
Then [S] = 〈S〉. In particular, if there exists a Lie subalgebra h of the Lie algebra of G

such that S ⊂ exp(h), then dim〈S〉 � dim h.

From now on, let X be a complete toric manifold of dimension n and let T ⊂ X be the
open orbit of the torus (C∗)n. By a toric subvariety of X we mean a subvariety that is toric
under the induced action of a subtorus. A rational curve C ⊂ X is called a standard curve
if, under the normalization ν : P1 → C, we have that ν∗(TX) � O(2)⊕O(1)p⊕On−p−1 for
some integer p. It is easy to see that the deformations of a standard curve C correspond
to a dominating component KC of RatCurvesn(X). As in § 1, for x ∈ T , we denote
by KC

x the collection of members of KC passing through x. Then, dimKC
x = p and

KC
x is irreducible by Lemma 2.1. Just as before, we can define a variety of tangents

VTC
x ⊂ P(TxX) by taking the closure of tangents at x of curves in KC

x that are smooth
at x.

Theorem 2.3. Let X be a complete toric manifold and let C ⊂ X be a standard
curve. The variety of tangents VTC

x of KC at a point x ∈ T is then a linear subspace in
P(TxX).

Proof. Let D = X \ T be the boundary divisor and let ΩX(log D) be the sheaf of
germs of 1-forms with logarithmic poles along D. It is well known that ΩX(log D) � O⊕n

X

(see [15, Proposition 3.1]). Given x ∈ T , we may assume that x is the identity of the
group T by using the torus action. For an irreducible and reduced curve C passing
through x, let 〈C〉 be the smallest toric subvariety of X containing C. Then,

〈C〉 ∩ T = 〈C ∩ T 〉,

where the right-hand side is in the sense of Proposition 2.2. Let V be the subspace of
H0(X, ΩX(log D)) � Cn consisting of vectors that annihilate the tangent vectors TC

along C. From ΩX(log D) � O⊕n
X , the vector space V contains the space

H0(C, T ∗
X |C) ⊂ H0(C, ΩX(log D)|C) = H0(C,O⊕n

C )

= H0(X, O⊕n
X )

= H0(X, ΩX(log D)).

As C is a standard curve, the space H0(C, T ∗
X |C) has dimension n − p − 1, with p =

dim KC
x ; thus, we get that dimV � n − p − 1. By Proposition 2.2 (applied to Cn exp−−→T

https://doi.org/10.1017/S001309151300093X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151300093X


114 Y. Chen, B. Fu and J.-M. Hwang

and with h the vector space generated by vectors tangent to C ∩ T ), this implies that
dim〈C〉 = dim〈C ∩ T 〉 � n − dim V � p + 1.

Let Ko ⊂ KC
x be the open subset consisting of standard curves. Denote by locus(Ko) the

closure of the union of members of Ko. Then, locus(Ko) is a (p+1)-dimensional subvariety
of X. Consider the p-dimensional family of toric subvarieties {〈Ct〉}t∈Ko that pass through
the fixed point x. Since there is no positive-dimensional family of toric subvarieties fixing a
point, we have that 〈Ct〉 = 〈Ct′〉 for two general points t, t′ ∈ Ko. Thus, locus(Ko) ⊂ 〈Ct〉
for some general t ∈ Ko. Since dim(locus(Ko)) = p + 1, while dim(〈Ct〉) � p + 1, we have
that 〈Ct〉 = locus(Ko). In particular, we have VTC

x = P(Tx〈Ct〉), which is linear of
dimension p since the toric subvariety 〈Ct〉 is smooth at x. �

Remark 2.4. The same argument works for singular complete toric varieties if one
assumes that the standard curve C is contained in the smooth locus of X.

Corollary 2.5. Let X be a complete toric manifold and let K be a minimal component
of degree p+2. The variety of minimal rational tangents Cx at a general point x ∈ X is a
linear subspace. The locus of curves in K, locus(Ke), passing through the identity e ∈ T

is a toric subvariety in X, which is isomorphic to Pp+1 with trivial normal bundle.

Proof. As a general member of K is a standard curve (see [9, Theorem 1.2]), Theo-
rem 2.3 implies that Cx is a linear subspace for general x ∈ X. As shown in [1, Lemma 3.3],
locus(Kx) is an immersed Pp+1 with trivial normal bundle. By the proof of Theorem 2.3,
the subvariety locus(Ke) is equal to 〈C〉 for a general curve C in Ke; thus, it is a toric
subvariety in X. Being a toric subvariety, the variety locus(Ke) is itself normal; thus, it
is smooth and isomorphic to Pp+1. �

Corollary 2.6. Let X be a complete toric manifold of dimension n and let K be a
minimal component of RatCurvesn(X) of degree p + 2. There then exists an open dense
subset X0 of X isomorphic to Pp+1 × (C∗)n−p−1 as toric varieties, and any member
of K meeting X0 is a line on a fibre of the natural projection φ0 : Pp+1 × (C∗)n−p−1 →
(C∗)n−p−1.

Proof. By [1, Theorem 1.1] (the assumption of the projectivity of X is unnecessary in
this theorem), there exists an open subset U of X that has a Pp+1-bundle structure. By
Corollary 2.5, locus(Ke) is isomorphic to Pp+1. The open subset U contains the image
of the orbit of locus(Ke) under the torus action, which gives a projective bundle over
(C∗)n−p−1. The claim now follows from the fact that any toric projective bundle over
the torus (C∗)n−p−1 is trivial (as a toric bundle). �

3. Combinatorial description of minimal rational curves

We now relate minimal components on X to combinatorial data of the fan corresponding
to X. The basic results on toric varieties can be found in [15]. Recall that X is described
by a finite fan Σ in the vector space NQ = N ⊗Z Q, where N is a free abelian group of
rank n = dimX. As X is smooth and complete, the support of Σ is the whole space NQ,
and every cone in Σ is generated by a part of a basis of N . For any i, we denote by Σ(i)
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the set of all i-dimensional cones in Σ. For each σ ∈ Σ(1), we take a primitive generator
of σ∩N . We denote by G(Σ) the set of all such generators, which is in bijection with the
set of all one-dimensional cones in Σ. The Picard number ρX of X is given by 	G(Σ)−n

(see [15, Corollary 2.5]).

Definition 3.1 (Batyrev [3]).

(i) A non-empty subset P = {x1, . . . , xk} of G(Σ) is called a primitive collection if,
for any i, the elements of P \ {xi} generate a (k − 1)-dimensional cone in Σ, while
P does not generate a k-dimensional cone in Σ.

(ii) For a primitive collection P = {x1, . . . , xk} of G(Σ), let σ(P) be the unique cone
in Σ that contains x1+ · · ·+xk in its interior. Let y1, . . . , ym be generators of σ(P);
there then exists a unique equation with ai ∈ Z>0:

x1 + · · · + xk = a1y1 + · · · + amym.

This is the primitive relation associated with P. The degree of P is deg(P) =
k −

∑
iai. The order of P is k.

Proposition 3.2. Let X be a complete toric manifold of dimension n. There then
exists a bijection between minimal components of degree k on X and primitive collections
P = {x1, . . . , xk} of G(Σ) such that x1 + · · · + xk = 0.

Proof. If K is a minimal component in RatCurvesn(X) of degree k, by Corollary 2.6,
there exists an open dense toric subvariety X0 � Pk−1 × (C∗)n+1−k such that lines in the
factor Pk−1 give general members of K. The fan defining X0 is the fan of Pk−1 but viewed
as a fan in Rn. This gives a collection P = {x1, . . . , xk} of elements in G(Σ) such that,
for any xi ∈ P, the elements in P \ {xi} generate a (k − 1)-dimensional cone. Moreover,
we have that x1 + · · · + xk = 0, which implies that P does not generate a k-dimensional
cone in Σ, since every cone of Σ is generated by a part of a basis of N . We conclude that
P is a primitive collection of G(Σ).

Now, assume that P = {x1, . . . , xk} is a primitive collection such that x1 + · · · +
xk = 0. Let Σ′ be the subfan of Σ determined by P, i.e. Σ′ is the collection of all
cones in Σ generated by subsets of {x1, . . . , xk}. Let UΣ′ be the toric variety associated
with Σ′; then UΣ′ is isomorphic to Pk−1 × (C∗)n−k+1. On the other hand, UΣ′ is an open
subset of X. Take a line C in Pk−1; its deformations then form a minimal component in
RatCurvesn(X). �

When X is a projective toric manifold, there always exists a minimal component in
RatCurvesn(X) (for example, we can take a dominant family of rational curves that has
the minimal degree with respect to an ample line bundle on X). Proposition 3.2 has
the following corollary, which has been proved by Batyrev (see [3, Proposition 3.2]) in a
completely different way.

Corollary 3.3. Let Σ be a fan that defines a projective toric manifold X. There then
exists a primitive collection P = {x1, . . . , xk} such that x1 + · · · + xk = 0.
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Figure 1. Complete non-projective toric variety.

Example 3.4. The assumption of projectivity of X in the previous corollary is impor-
tant, as shown by the following example of [15, § 2.3]. Let e1, e2, e3 be a basis of Z3.
Let

e4 = −e1 − e2 − e3, e5 = −e1 − e2, e6 = −e2 − e3, e7 = −e1 − e3.

Let Σ be the complete regular fan in R3 obtained by joining 0 with the simplices of the
triangulated tetrahedron in Figure 1. We have that e1 + e2 + e5 = 0; however, the set
{e1, e2, e5} is not a primitive collection, since the cone generated by e2, e5 is not in Σ.
Similarly, we see that {e2, e3, e6}, {e1, e3, e7} are not primitive collections. This implies
that there is no minimal component in RatCurvesn(X). This is another way to see that
the toric variety X defined by Σ is smooth complete but non-projective. The subfan
in Σ generated by e1, e2, e5 gives a toric subvariety that is isomorphic to P2 \ {pt}. If
we denote by C the invariant curve corresponding to the cone generated by e1, e3, then
its cohomology class is given by e1 + e2 + e5 = 0, which implies that its normal bundle
in X is given by O(1) ⊕ O, i.e. C is a standard curve. By Theorem 2.3, the variety of
tangents VTC

x determined by C is isomorphic to P1, while all members of KC
x lie in an

open set in P2 \ {pt}. If we denote by π : Y → X the blow-up of X along the invariant
curve C, then Y is still non-projective since C deforms in X (see [5, Proposition 2]). The
fan Σ(Y ) of Y has a new element e0 = e1 +e3 = −e7. Thus, the non-projective variety Y

has a unique minimal component, and its VMRT is just one point.
If one blows up X along the invariant curve corresponding to the cone generated by e3

and e7, one obtains a projective variety X ′ (see [15, § 2.3]). The fan Σ′ of X ′ has a new
element e8 = −e1 in G(Σ′). This implies that there exists a unique minimal component
in RatCurvesn(X ′), and its VMRT is just a point.

As an application of Proposition 3.2, we give an upper bound for the number of minimal
components in RatCurvesn(X).
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Proposition 3.5. Let X be a complete toric manifold of dimension n and Picard
number ρX . For an integer p, we denote by np the number of minimal components in
RatCurvesn(X) of degree p + 2. We then have that

(i)
n−1∑
p=0

np(p + 2) � n + ρX ;

(ii) if np and nq are non-zero for some integers p and q, then p + q � n − 2;

(iii) if p � (n − 1)/2, then np � 1.

Proof. Suppose that we have two primitive collections P1 = {x1, . . . , xk+1} and P2 =
{y1, . . . , yh+1} such that x1 + · · · + xk+1 = y1 + · · · + yh+1 = 0. If P1 ∩ P2 is non-empty,
we may assume that xk+1 = yh+1; we then get that x1 + · · · + xk = y1 + · · · + yh. As
x1, . . . , xk and y1, . . . , yh generate cones in Σ, this implies that the two cones are the
same; thus, P1 = P2. Now (i) follows from Proposition 3.2 and the fact that the number
of elements in G(Σ) is equal to n + ρX .

The other two statements follow from the proof of [10, Proposition 2.2], where it was
shown that two linear subspaces in P(TxX), which are components of VMRTs, have an
empty intersection in P(TxX) for x ∈ X general. �

Remark 3.6. Even in dimension 2, one can construct many examples where the
inequality in (i) is an equality. If one restricts the problem to toric Fano manifolds,
the inequality in (i) becomes an equality for products of copies of S3 with projective
spaces, where S3 is the blow-up of P2 at three general points. In [17, Example 4.7],
Sato constructed a toric Fano 4-fold with ρ = 5 by blowing up P2 × P2, for which the
inequality (i) becomes an equality. It seems a subtle problem to classify cases where
(i) becomes an equality.

Another application of Proposition 3.2 is the following. Recall that if X has a minimal
component of degree n + 1, then X � Pn (see [8]). The following proposition settles the
next case, when X is a toric Fano manifold. Recall that, for a toric Fano manifold, every
element in G(Σ) is a primitive vector in N , G(Σ) is the set of vertices of a polytope Q,
and each facet of Q is the convex hull of a basis of N .

Lemma 3.7 (Casagrande [6, Lemma 3.3]). Assume that X is a toric Fano mani-
fold. If Σ has two different primitive relations x+ y = z and x+w = v, then w = −x− y

and v = −y. Therefore, there exist at most two primitive collections of order 2 and
degree 1 containing x, and the associated primitive relations are x + y = (−w) and
x + w = (−y).

Proposition 3.8. Let X be a toric Fano manifold of dimension n � 3 that admits a
minimal component of degree n. Then, X is isomorphic to Pn−1 ×P1, P(O⊕n−1

P1 ⊕OP1(1))
or a blow-up of Pn−2 on Pn−1 × P1. In particular, we have that ρX � 3.
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Proof. Note that if z1, z2 ∈ G(Σ) are two elements such that the two-dimensional
cone generated by them is not in Σ, then {z1, z2} is a primitive collection. The Fano
condition on X implies that either z1 + z2 = 0 or there exists another element z ∈ G(Σ)
such that z1 + z2 = z (see, for example, [6, p. 1480]).

By Proposition 3.2, the assumption implies that there exists a primitive collection
P = {x1, . . . , xn} such that x1 + · · · + xn = 0. The vector space H := Rx1 + · · · + Rxn

divides N ⊗Z R into two sides. Assume that, on one side, we have at least three elements
y1, y2, y3 in G(Σ). Take an element z ∈ G(Σ) on the other side of H; then each of {z, y1},
{z, y2}, {z, y3} is a primitive collection. By Lemma 3.7, up to reordering, we have that
z + y1 = 0, z + y2 = (−y3) and −y2, −y3 are all elements in G(Σ). This gives that
y1 = y2 + y3. We consider the primitive collections {−y2, y1}, {−y2, y3}. By Lemma 3.7,
we obtain that −y2 + y1 = −y3, which contradicts y1 = y2 + y3. Thus, there exist at
most two elements on each side of H. Let y1, y2 be the two elements on one side of H

and let z1, z2 be those on the other side. If zi is not in {−y1,−y2}, then we may apply
Lemma 3.7, which shows that −y1, −y2 are in G(Σ), a contradiction. Up to reordering,
we may assume that z1 = −y1 and z2 = −y2. Consider the primitive collections {−y1, y2}
and {−y2, y1}. Their primitive relations are −y1 + y2 = xi, −y2 + y1 = xj for some i, j.
This implies that xi + xj = 0, which is not possible, since n � 3. In conclusion, the set
G(Σ) has at most n + 3 elements, while ρX = 	G(Σ) − n. As a consequence, we have
that ρX � 3.

If ρX = 3, there exist two elements y1, y2 on one side of H and an element z on the other
side. Up to reordering, the previous argument shows that z = −y1 and −y1 + y2 = x1,
i.e. y1 + x1 = y2. This shows that X is the blow-up of Pn−1 × P1 along the invariant
subvariety isomorphic to Pn−2 corresponding to the cone generated by x1, y1.

If ρX = 2, i.e. G(Σ) has n + 2 elements, on each side of H, there exists exactly one
element in G(Σ), say, y or z. As {y, z} is a primitive collection, one has that either
y + z = 0 or y + z = xi for some i. The first case corresponds to Pn−1 × P1, while the
second fan corresponds to P(O⊕n−1

P1 ⊕ OP1(1)). �

For a toric Fano manifold X of dimension n, the pseudo-index ιX is the smallest
intersection number −KX · C among all rational curves on X. In [7, Theorem 1] it was
proven that ρX � 2n and ρX(ιX − 1) � n, which confirms a conjecture of Mukai. As an
analogue of this, we would like to propose the following conjecture.

Conjecture 3.9. For a toric Fano manifold Xn, with n � 3, if there exists a minimal
component K of degree p + 2, then ρX · (p + 1) � n(n + 1)/2.

Note that the equality holds if X � (S3)d × P2d or (S3)d × P2d+1, where S3 is the
blow-up of P2 along three general points. In dimension 3, the equality also holds for the
blow-up of P2 × P1 along a P1 contained in P2.

Since ρX � 2n by [7], we may assume that p + 1 > (n + 1)/4, to check Conjecture 3.9.
When n = 3, this implies that p � 1; thus, the minimal component K has degree greater
than or equal to 3. Hence, Conjecture 3.9 is immediate from Proposition 3.8. To check
Conjecture 3.9 for n = 4, note that if p � 2, then the minimal component K has degree
greater than or equal to 4, and we are done by Proposition 3.8. Hence, we need only show
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that if p = 1, then ρX � 5. We can use the classification of four-dimensional toric Fano
manifolds in [4] to check that if ρX � 6, then p = 0, which shows that our conjecture
holds for n = 4.

4. Deformation rigidity of morphisms onto some toric manifolds

Recall that a web (of rank 1) on a complex manifold U is a submanifold W ⊂ PT (U)
with finitely many connected components, each of which is biholomorphic to U by the
natural projection PT (U) → U . A web W on a manifold U is equivalent to a web W ′ on
a manifold U ′ if there exists a biholomorphic map ϕ : U → U ′ such that its differential
dϕ : PT (U) → PT (U ′) sends W bijectively to W ′. Given a web W on U , a holomorphic
vector field v on U is an infinitesimal automorphism of W if, for any relatively compact
domain U0 ⊂ U , the one-parameter family of biholomorphic maps generated by v,

{exp(tv) : U0 → Ut := exp(tv)(U0), t ∈ C, |t| < ε}

for sufficiently small ε, defines an equivalence of webs W |U0 and W |Ut for each t.

Proposition 4.1 (Hwang [11, Proposition 3.1]). Let U be a complex manifold
with pairwise pointwise independent holomorphic vector fields v1, . . . , vd. A holomorphic
vector field v on U is an infinitesimal automorphism of the web defined by v1, . . . , vd if
and only if, for each i = 1, . . . , d, there exists a holomorphic function hi on U such that
[v, vi] = hivi, where the bracket denotes the Lie bracket of vector fields.

Let U be a complex manifold of dimension n. Recall (see [11]) that a d-web of fibra-
tions on U is a collection of Zariski open subsets U1, . . . , Ud of U and surjective proper
holomorphic maps pi : Ui → Vi for some (n − 1)-dimensional complex manifolds Vi such
that, for each i �= j, the fibres of pi, pj through a general point of U are distinct. Note
that the kernel of the differential dpi : T (Ui) → T (Vi) defines a subvariety Wi in PT (U),
and the map Wi → U is birational. Let W = W1 ∪ · · · ∪ Wd; there then exists a unique
maximal Zariski open subset in U , denoted by Dom(W ), over which W defines a web.

The following proposition was essentially proved by Hwang [11, Proposition 4.5].

Proposition 4.2. Let X be a smooth complete variety with a web W of fibrations
and let f : Y → X be a generically finite morphism. The Kodaira–Spencer class τ ∈
H0(Y, f∗T (X)) of any deformation of f then defines a multi-valued vector field on X,
which is locally an infinitesimal automorphism of the web W |Dom(W ).

Recall that a complete manifold X is said to have the target rigidity property (TRP) if,
for any surjective morphism f : Y → X, every deformation of f with Y and X fixed comes
from automorphisms of X. The following simple proposition is one of the motivations for
introducing this property.

Proposition 4.3. Let X be a complete manifold having the TRP. Let f : Y → X be
a surjective morphism from a smooth complete variety Y . Any holomorphic vector field
on Y then descends to a holomorphic vector field on X such that f is equivariant with
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respect to the one-parameter groups of automorphisms of Y and X generated by the
holomorphic vector fields. In particular, if Y is toric, then X is a toric manifold and f is
a toric morphism.

Proof. Let v be a vector field on Y and let φt be the one-parameter subgroup of
automorphisms generated by v. The map f ◦ φt : Y → X gives a deformation of f . As
X has the TRP, there exist automorphisms ψt : X → X such that f ◦ φt = ψt ◦ f , which
gives the claim. �

The main result of this section is the following theorem.

Theorem 4.4. Let X be a complete toric manifold of dimension n defined by a fan
Σ ⊂ NQ. Let G(Σ) be the set of primitive vectors generating one-dimensional cones in Σ.
Assume that there exist n + 1 vectors e1, . . . , en+1 in G(Σ) such that

(i) every n vectors of these ei are linearly independent,

(ii) for any i = 1, . . . , n + 1, the vector −ei is also in G(Σ).

Then, X has the TRP and every surjective morphism from a toric manifold to X is a
toric morphism.

Proof. The proof is a modification of the proof of [11, Main Theorem]. By Proposi-
tion 3.2, the collections {ei,−ei}, i = 1, . . . , n+1, correspond to the minimal components
K1, . . . ,Kn+1 in RatCurvesn(X). By Corollary 2.6, these collections define an (n+1)-web
of fibrations, say Wn+1 on X. The key point is that, for each Ki, the tangent vector field vi

to the foliation of curves in Ki, which is defined a priori only on an open set of X, comes
from a C∗-action on X; thus, vi is a well-defined vector field on X. In particular, it is
an infinitesimal automorphism of any web of fibrations on X (see [11, Proposition 4.4]).
We now need some explicit computations on infinitesimal automorphisms of Wn+1.

There exists a Zariski open subset U of X with analytic coordinates x1, . . . , xn, on
which the web Wn formed by K1, . . . ,Kn is analytically equivalent to the web defined by
the vector fields ∂1, . . . , ∂n, where ∂i = ∂/∂xi. The vector field corresponding to Kn+1

can be written as vn+1 =
∑

ifi∂i for some analytic function fi on U . By our assumption,
each fi is not identically 0 on U . As vn+1 is an infinitesimal automorphism of the web Wn,
by Proposition 4.1, there exist holomorphic functions hj , j = 1, . . . , n, such that

[ n∑
i=1

fi∂i, ∂j

]
= [vn+1, vj ] = hjvj = hj∂j ,

which implies that ∂jfi = 0 for all i �= j; thus, the function fi depends only on xi. Now
assume that we have an infinitesimal automorphism v :=

∑
jgj∂j of the web Wn+1 on

an analytic open subset U0, where the gj are analytic functions on U0. Arguing as before
then shows that the function gj depends only on xj . By Proposition 4.1, there exists a
holomorphic function h such that

[ n∑
j=1

gj∂j ,

n∑
i=1

fi∂i

]
= h ·

n∑
i=1

fi∂i.
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As fi, gi depend only on xi, this gives that
∑n

i=1(gif
′
i − g′

ifi)∂i =
∑n

i=1hfi∂i. In other
words, we have that

fig
′
i − gif

′
i

fi
=

fjg
′
j − gjf

′
j

fj
.

As the right-hand side depends only on xj , while the left-hand side depends only on xi,
it is equal to a constant, say b. We obtain that (gi/fi)′ = b/fi for all i. Thus, there exists
a constant ai such that

gi = aifi + bfi

∫
1
fi

.

This equation shows that we can extend gj to the Zariski open subset U of X by analytic
continuation as multi-valued functions. Moreover, these functions are either univalent or
of infinite monodromy, since the integral yields a logarithm (see [11, Proposition 3.4]).
In particular, any infinitesimal automorphism of Wn+1 is either univalent or of infinite
monodromy.

To complete the proof we now proceed as in the proof of [11, § 6, Main Theorem].
Assume that we have a surjective morphism f : Y → X. By an argument using the
Stein factorization (see, for example, [12, § 2.2]), we may assume that f is generically
finite. By Proposition 4.2, the Kodaira–Spencer class of any deformation of f defines an
infinitesimal automorphism τ of the web Wn+1 with finite local monodromy. The above
calculation now implies that the multi-valued vector field τ is in fact univalent. This gives
τ ∈ f∗H0(X, TX), i.e. this deformation comes from automorphisms of X. The second
statement follows from Proposition 4.3. �

We consider toric manifolds associated with a root system (see [16]). Let R be a
reduced root system in a Euclidean space E. Let M(R) be the lattice in E generated by
the roots of R and let N(R) be the lattice dual to M(R). For any set of simple roots S

we define the Weyl chamber of S by σS := {v ∈ N(R)Q | ∀u ∈ S, 〈u, v〉 � 0}. Let Σ(R)
be the fan in the lattice N(R) that consists of all Weyl chambers of R and all their faces.
Let X(R) be the toric variety associated with the fan Σ(R). It is projective and smooth.

Corollary 4.5. The toric manifold X(R) has the TRP if and only if R contains no
irreducible component isomorphic to the root system A1.

Proof. Note that X(R1 × R2) � X(R1) × X(R2) and X(A1) � P1, which does not
have the TRP. It is easy to see that if X and Y have the TRP, so does X × Y . Thus,
we can assume that R is an irreducible root system of rank greater than or equal to 2.
Note that, for any cone σS , its opposite −σS is again a cone in Σ(R). In particular,
−G(Σ(R)) = G(Σ(R)). Let e1, . . . , en be primitive vectors on one-dimensional cones
of σS and take any other vector en+1 ∈ G(Σ(R)) outside σS ∪ −σS . The condition of
Theorem 4.4 is then satisfied. �

As an application, we have the following characterization of toric morphisms onto a
projective space.

https://doi.org/10.1017/S001309151300093X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151300093X


122 Y. Chen, B. Fu and J.-M. Hwang

Corollary 4.6. Let Y be a smooth complete toric variety and let f : Y → Pn be a
surjective morphism. Let {p1, . . . , pn+1} be the n + 1 fixed points by the torus action
on Pn. If f−1(pi) is a toric subvariety in Y for all i, then f is a toric morphism.

Proof. Let Bl(Pn) → Pn be the blow-up of the n+1 fixed points and let Bl(Y ) → Y be
the blow-up along

⋃
if

−1(pi); we then have a surjective morphism f̃ : Bl(Y ) → Bl(Pn).
As f−1(pi) is toric, Bl(Y ) is a toric variety. By Theorem 4.4, Bl(Pn) has the TRP, which
implies that f̃ is a toric morphism. This shows that f is a toric morphism (possibly with
respect to another toric structure on Pn). �

As another application of the ideas of [11], we show that every projective variety of
dimension greater than or equal to 2 is birational to a variety with the TRP.

Proposition 4.7. Let X be a projective variety of dimension n � 2. There then exists
a composition of successive blow-ups Z → X such that Z has the TRP.

Proof. Let Bl(Pn) → Pn be the blow-up of Pn along n + 2 points {p1, . . . , pn+2} of
general position. By considering the strict transforms of lines through one of these points,
we obtain a linear (n+2)-web W of rank 1 on Bl(Pn). Through a general point of Bl(Pn),
the web W is locally equivalent to the web generated by the vector fields:

∂i, i = 1, . . . , n,
∑

j

(xj − aj)∂j ,
∑

j

(xj − bj)∂j .

By a similar argument to that in [11, Proposition 3.5] (see also the proof of Theorem 4.4),
one shows that W has no non-zero infinitesimal automorphism. By Proposition 4.2,
this implies that any generically finite surjective morphism to Bl(Pn) has no non-trivial
deformation.

For any projective variety X, we now fix a finite surjective morphism g : X → Pn, and
denote by Z the composition of blow-ups of X along g−1(pi), i = 1, . . . , n + 2. We then
get a generically finite surjective morphism h : Z → Bl(Pn). For any generically finite
surjective morphism f : Y → Z and its deformation ft : Y → Z, the composition h ◦ ft

gives a deformation of the generically finite morphism h◦f : Z → Bl(Pn). By the rigidity
of said morphism onto Bl(Pn), we deduce that h ◦ ft = h ◦ f for all t, which shows that
Z has the TRP. �
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