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THE ACTION OF A MAXIMAL PARABOLIC SUBGROUP ON
THE TRANSPOSITIONS OF THE BABY MONSTER

by ROBERT A. WILSON

(Received 22nd October 1992)

We prove a technical result required by Ivanov and Shpectorov in their construction of a non-split extension
of 34371 by the Baby Monster simple group.

1991 Mathematics subject classification: 2ODO8.

1. Introduction

The construction by Ivanov and Shpectorov [1] of a non-split extension 34 3 7 1B,
where B denotes Fischer's {3,4}-transposition group, often called the Baby Monster,
depends on a number of factors. First, Shapiro's Lemma is applied to the inertial group
2-2E6(2) to show that there is a non-split group 3«s7i9S5ooo.B>

where the action is given by inducing up the alternating character of 2-2£6(2):2. Then
the 2-local geometry of B is lifted to this group, and is eventually shown to generate a
subgroup 34 3 7 1B.

To prove this, many detailed facts are required about the action on the module
313371955000 of t n e parabolic subgroups of this geometry. At the time when this problem
was drawn to my attention, in a talk given by Shpectorov at the Oberwolfach meeting
on Groups and Geometries in August 1991, there was one major problem remaining. It
was suggested that my new explicit construction of the Baby Monster [3] could be used
to solve this. What follows is the story of this solution.

2. The problem

The 2-local geometry of B has the diagram shown in Fig. 1, in which the node for a
particular type in the geometry is labelled with the subgroup of B which stabilizes an
element of that type. Let P s 2 5 + 5 + 1 0 + 1 0L5(2) be a maximal parabolic of the end type,
and let £> = O2(P)s2s + 5 + 1 0 + 1 ° . Let S = C(t)s2-2£6(2):2 be the centralizer of an
involution t of class 2/4. The module M for B, of dimension 13571955000 over GF(3), is
the monomial induced up from the non-trivial linear character of S. The result required
by Ivanov and Shpectorov can be restated in group-theoretic terms as follows:
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[232](M22:2xS3) [23 4](I4(2)x2)
P*

• • • • •
21+22-Co2 [235](£.3(2) x 55) [230]-L5(2)

FIGURE 1. The 2-local geometry of B.

Conjecture 1. For each geB, Q9nS is not contained in S'.

Alternatively, we can say that for all geB, QnS9 is not contained in S'9. We will
adopt whichever point of view is computationally more convenient.

To prove this conjecture, we need to find an element in (Q9nS) — S' for a
representative Qg of each orbit of S on conjugates of Q. First, therefore, we need to
determine the orbits of S on conjugates of Q, or equivalently, the orbits of S on
conjugates of P. This is in turn equivalent to finding the orbits of P on conjugates of S,
or the orbits of P on the conjugates of t, where S=CB(t).

Once we have found representatives tg for these orbits we need to find in each case an
element in the corresponding set (Q n S9)-S'9=Qn (S-S1)9.

3. Computerising the problem

In [3] we showed how to construct 4370x4370 matrices over GF(2), generating the
Baby Monster. These can be manipulated using the programs of the "Meat-axe" [2]. A
matrix multiplication takes typically 2 minutes CPU time on an IBM3090, or 15
minutes on a SUN ELC.

To begin with we computed the complete module structure for V\s, where V= F4370

is the 4370-dimensional module for B over GF(2). This structure is illustrated in Fig. 2.
The first crucial observation is that S fixes a unique non-zero vector in V. Thus there

is a one-to-one correspondence between the transpositions in B and the 13571955000
images of this vector. We call these vectors sacred vectors. Thus to find the orbits of P
on transpositions, it suffices to find the orbits of P on sacred vectors.

The second observation is that there is a 2-dimensional indecomposable subquotient,
which represents S/S'. Restricting to S', this becomes a direct sum of two trivial
modules. Thus there is a vector fixed by S' but not by S. Lifting back to V, we obtain a
1782-dimensional subspace which is invariant under S' but not under S. This can now
be used to determine fairly quickly whether a particular element of S is in S'.

The next task is to find explicit subgroups S and P in the matrix group isomorphic to
B. It is quite straightforward to find (a conjugate of) S, since it is an involution
centralizer. It is much harder to find P. In fact we had a subgroup 25 • Ls(2) < Th< B
from an earlier calculation (see [4]). We then took an element a of order 10 in 25 • L5(2)
and found its centralizer in B, by first finding C(a5) and then finding the centralizer of
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FIGURE 2. Module structure for V\s.

Table 1. Sacred vectors.
Orbit no.

1
2
3
4
5
6
7
8
9

First 0 image

v10

*269

^879

^1894
?
?

Orbit length

10401873920
1950351360
1137704960
71106560
8888320
1904640
119040
4960
1240

dim ivy
4370
4360
4336
3982
3382
2717
1348
363
154

a2 inside C{a5). We obtained a group C(a) = 5x2\+4- A5. A random search in the latter
group soon produced an element to extend 25 -L5(2) to the whole group P.

4. Finding the orbits of P on sacred vectors

It turns out that there are just nine orbits of P on sacred vectors, as listed in Table 1.
In this section we indicate how we found the orbits, and in the next section we indicate
how we proved that this list is correct.

The two smallest orbits correspond to transpositions inside Q, which can easily be
found directly, for example as the 21st powers of random elements of order 42. The
corresponding sacred vectors can then be found by chopping the representation with the
"Meat-axe", or by some short-cut method. Finally the orbit of the vector under B can
be found with the "Meat-axe" program VP ("vector permute").
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The remaining seven orbits were found by random methods. A large number (around
100,000) of sacred vectors was produced by multiplying a fixed sacred repeatedly by
elements of B. Invariants of the various orbits were then obtained by flnding the images
of the vectors in a few P-invariant quotients of V= K437o. We took a chain of quotients

^4370 ~* ^1894 ~* ^879 ~* ^269 ~~* ^74 ~* ^34 ""• ^lO"* ^0>

where the subscript denotes the dimension. We found 7 sacred vectors which map to
zero at different points in this chain. It follows that they are in different P-orbits. For
completeness, as well as simplifying some later calculations, we also determined the P-
invariant subspaces generated by each of these vectors. The results are given in the
appropriate columns of Table 1.

By this stage we had enough statistical evidence to be able to estimate the lengths of
most of the orbits accurately. Moreover, we used the program VP on certain quotients
to obtain divisors of the orbit lengths. This information, together with the fact that all
the orbit lengths are divisible by 155 and divide | P | = 23O.32.5.7.31, was sufficient to
conjecture the orbit lengths as given in Table 1, with a high degree of confidence. Since
these numbers add up to the total number of sacred vectors, namely 13571955000, it is
now sufficient to prove that they are lower bounds for the actual orbit sizes.

5. Proving that the orbit lengths are correct

For each of our nine sacred vectors, we show that it belongs to an orbit at least as
big as stated in Table 1. In fact, we have already done this for the last two cases. The
strategy in the remaining cases is best illustrated by an example. Let us take the seventh
vector, which is conjectured to belong to an orbit of length 119040. First, we worked
inside the 1348-dimensional P-invariant subspace W=(Kv1}

p generated by our sacred
vector v-j. Then we found a quotient W of W in which the image U^ of v7 has just 465
images under P. Let P denote P modulo the kernel of its action on these 465 vectors.
We found words in the generators for P giving elements stabilizing tv Then we noted
that v1 has 256 images under the same words in the corresponding generators of P. It
follows that the full orbit of v7 under P has length at least 465 x 256= 119040.

The same principle applies to the other orbits, although the larger orbits were more
difficult to deal with and required more than two steps.

6. Finding elements in (Q'nS)-S'

For each of the nine orbits of S on conjugates of Q, we need to find an element of Q9

that is in S but not in S'. We adopted different strategies for the large and small orbits.
For the small orbits, where Q3 n S is large, a random element of Q9 has a reasonable

probability of being in S. Moreover, this is a very easy property to check, since it is
equivalent to fixing our given sacred vector. We can then apply our check (see Section
3) to see if the element is in S', and continue until we find one which is not. By using

https://doi.org/10.1017/S0013091500018800 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018800


THE ACTION OF A MAXIMAL PARABOLIC SUBGROUP 189

some further refinements we were able to apply this method for all but the three largest
orbits.

In the three large orbits, however, Q9 nS is too small for a random method to be
effective, and we more or less had to find the group Q9nS explicitly. In fact, it was
more convenient to conjugate by g'1, and look for elements of Q fixing a particular
sacred vector. We worked down a series of quotient spaces similar to that used in
Section 4. At each stage we had an element of Q which fixed the image of the sacred
vector in the given quotient. We then moved to the next quotient and "refined" our
element, so that we obtained a new element fixing the image in the new quotient.
Eventually we obtained an element of Q which actually fixed the given sacred vector,
and tested to see if it was in the appropriate conjugate of 5'. It did not take long to find
an element of the required type in each case.
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