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Here V and VI are trivial: IV follows from the bi-determinantal
identity

I A B . ! X . . I I A B . X Y Z
\ A B c\ . Y z\~\ . . G . Y Z

The 2 development of such identities at once gives rise to the dual
type of Sylvester identities given in 3, p. 95. With i = k = 2, from

. l a b c d
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x y z w \_\ a b . . x y z w
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we obtain as respective 2 expansions

(abed | xyzw) — (abc\ xyz) [d j w) + (ab i xy) (cd ] zw) = (ab | zw) (cd | xy)

which is identity (29) of p. 95.
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Pictorial relativity

By I. M. H. ETHEEINGTON, University of Edinburgh.

There are some people who find it easier to absorb abstruse
theories when encouraged by picturesque analogies. There are also
some people, mathematicians, who hold such assistance in austere
contempt. Pictorialism, however, is no new thing in expositions of
relativity, and I will not apologise for the following attempt to
introduce a little more. The object of this note is to suggest ways
of visualising some of the metrics which are of importance in the
general theory of relativity. For each metric two pictures are
supplied; they may be called (A) geometrical and (B) dynamical.
The first is got by taking a section of the four-dimensional continuum
corresponding to a given metric, and immersing this section in
ordinary space. The second shows graphically the magnitude of the
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gravitational force at any point in the field to which the metric
refers. Some interest attaches to a visual comparison of the two
figures. The metric of special relativity is pictured by a horizontal
plane in both representations.

The figures are purely graphical in character, and nothing more
is claimed for them than that they are convenient and appropriate
pictures.

Static forms with spherical symmetry.

Consider the metric

ds2 = - y (r) dt2 + j8 (r) dr2 + r2 dd2 + r2 sin2 6 d<f>2, (1)

which includes as special cases a number of important forms con-
sidered separately below. To obtain a geometrical picture of the
space-time having this metric, since it is static and spherically
symmetric, it will be sufficient to consider a section <f> = 0, t = 0.
In such a section

ds2 = fidr2 + r2dd2 (2)
= dr2 + r2 dd2 + dz2,

where dz = (ft —

Hence, interpreting r, 6, z as cylindrical coordinates in ordinary
space, (2) is the metric of the surface of revolution

3 = | ( J 8 _(A) 2 = 1 (£— l)*dr.

When /} (r) is known, a meridian section of this surface can be
sketched; and this gives our first picture of the metric (1). It is real
provided /S 2s 1, a condition which is satisfied in the examples (i)-(iv)
below. It is not a completely adequate representation, since it does
not take account of the coefficient of dt2, gu = — y; but it is supple-
mented by the second picture, which depends on this coefficient.

The strength of the gravitational field at any point, as measured
by the force on a unit mass there, is given under ordinary conditions
(c/.1 E. 55-4 and 38'5) almost entirely by the Christoffel sĵ mbol
{14, 4} = d (log \/y)/dr, and is therefore represented by the gradient
of the surface of revolution

(B) z = m' log Vy.

1 References in this form are to equations in Eddington, Mathematical Thtwy iif
Relativity, Cambridge, 1930.
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where m' is a constant length. This gives our second picture, which
is simply a graph of the approximate analogue of the gravitational
potential.

Consider now some special cases, obtained by particularising the
functions jS (r), y(r) in (1).

(i) The Schwarzschild metric (E. 38-8), representing an external
spherically symmetric gravitational field. Here

y = 1 — 2m/r = 1/J8, r > 2m > 0.

The representative surfaces are:

(A) z = f {2m/(r - 2m)fdr = {8m (r — 2m)}*. (3)
J2m

This is half a paraboloid of revolution with meridian sections as
shown by the thick lines in Figure 1.

(B) z = \m' log (1 —2m/r) = — mm'jr — mzm'/r2 , (4)

shown by the thick lines in Figure 2. The corresponding model for
the Newtonian external spherically symmetric gravitational field is
the surface z = — mm'fr, which of course is practically the same as
(4) when r/m is large, but is finite when r = 2m.

(ii) Schwarzschild's internal solution of the gravitational equations
(E. 72-1, with a = 2m/a3), representing the internal gravitational field
of a sphere of incompressible liquid. Here

4 - \ (1 - 2mr2/a3)}2,
ft-1 = 1 — 2mr7a3, r<a, a > 9m/4 > 0.

Choosing the constants of integration for continuity with (3) and (4)
at r = a, the representative surfaces are:

(A) z = {8m (a - 2m)}i - \" {2mr2/(a3 - 2mr2)}* dr
Jr

= (4m + a) (o/2m - 1)* — {a3/2m - r2)*, r<a.

This is a segment of a sphere. The position of the sphere as it joins
on to the paraboloid (3), is shown for different values of a {i.e. for
varying densities) in Figure 1. The lowest sphere (a = 9m/4) is not
admissible physically, since for continuity of the internal pressure
a > 9m/4.
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(B) z = m' log {1(1 — 2m/a)l — \• (1 - 2mr2/a3)}, r < a.

The surfaces for various a are shown in section in Figure 2.

(iii) The De Sitter World. (E. 67-33, with Rsinx = r and
t for i?£.)

Y = 1 - r2/J?2 = 1//S, 0 < r < # . (5)

(A) z

(B) z = | m ' l o g ( l -r2/R2).

The first representative surface is a hemisphere, while the meridian
sections of the second have roughly the shape of Figure 3, illustrating
the well known fact that a free particle cannot remain at rest in these
coordinates except at the origin.

(iv) The gravitational field of a particle (or sphere of incom-
pressible liquid) in a curved (De Sitter) universe. (E. 45-3, with
a = 3/.R2.) For the external field,

y = 1 — 2m/r - r2/S2 = 1/jS, h < r < k,

where h, 1c are the positive roots of the cubic equation y (r) = 0, h
being slightly greater than 2m and k slightly less than R. This
reduces when m = 0 to case (iii), when R-><x> to case (i).

(B) z = \m' log (1 - 2m/r - r2/R2).

The rough shapes of the surfaces can be found by straightforward
methods of approximation. Completing the surfaces for the internal
field by analogy with Figures 1 and 2, we obtain Figures 4 and 5.
The upper half of Figure 4 can be omitted or considered to coincide
with the lower half.

(v) The gravitational field of a point electron. (E. 78 6 et seq.)

y = 1 — 2m/r + 2am/r2 = J//?, (Q)

where ajm is large so that, unlike cases (i)-(iv), /S and y are positive
for all values of r. The equations of the representative surfaces are

(A) z=V2m\r( 1 - a ' r

J \r (1 - 2m/r + 2am/rz)

(B) z = \m' log (1 - 2m/r + 2am/r2).
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(Figures 6 and 7.) The modification of these surfaces for a non-zero
cosmological constant is easily imagined on the analogy of case (iv)
as compared with (i) and (ii).

The vacuity in Figure 6, within the ridge of cusps r = a, arises
in a different way from the vacuities in Figures 1 and 2 for case (i).
These arose because the signs of /J and y, and hence the signature of
the original ds2, changed when r < 2m, so that inside this sphere the
metric was no longer appropriate to a representation of space-time.
But the ds2 of the electron field does not change its signature in this
way, and in the spatial section which we are considering the form
ds2=fidr2-{-r2d82 remains positive definite; but when this is expressed
in the form ds2 = dr2 + r2dd2 ± dz2, it is the sign of dz2 which changes.
In other words, when we attempt to immerse the spatial section in a
euclidean or pseudo-euclidean 3-space, it is the signature of this
3-space which changes. The vacuity in Figure 6 is thus a defect of
the representation: we cannot deduce from it that the sphere r = a is
a genuine singularity of the field—unless indeed there be some reason
for postulating that " space " must always be capable of immersion
in a euclidean (not pseudo-euclidean) space of higher dimensions.

Expanding universes.

Returning to a consideration of the De Sitter world, it is known
that its metric (1) (5) can by a transformation of coordinates be put
in the form

ds2 = -dt2+ R2 cosh2 (t/R) {dl2 + sin2 £ dd2 + sin2 £ sin2 9 dcf>2), (7)

(E. 67'31, with R (TT/2 — to) = it) which exhibits it as one of the series
of expanding universes discovered by Friedman. In these coordinates
a material particle can remain at rest at any point of space, so the
second of our representative surfaces is simply a horizontal plane.
To obtain an analogy of the first representation we note that a
spatial section t = constant can be regarded as a hypersphere—or,
suppressing two spatial dimensions, a circle—of expanding radius

r = R cosh t/R.

Consider then the surface of revolution with this equation, generated
by rotating a catenary about its directrix. Its transverse section
t = constant is a circle which expands as t increases; and this
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expanding circle, or an expanding sphere with the same diameter,
may be regarded as picturing the metric (7). (See Figure 8.) A
similar picture could be given for any of the expanding universes of
Friedman1 and Lemaitre2.

Rj.8

1 Zeit. f. Phys. 10 (1922), 385.

"Monthly Notices R.A.S, 91 (1931), 483.
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