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SUMMARY

Records of seven common-cold outbreaks on the island of Tristan da Cunha are
compared with the corresponding time courses given by the mathematical model
of Kermack & McKendrick (1927) and with an alternative model that directly
involves a constant average duration of individual infection. Using computer
simulation techniques the latter model is shown to be preferred and is then closely
matched to the field data to obtain values for the model parameters. Consideration
is then given to the intensity of epidemics predicted by the model and to the dis-
tribution of the actual epidemics relative to the theoretical epidemic threshold.

INTRODUCTION

The occurrence of common-cold epidemics among the islanders of Tristan da
Cunha has already been discussed in a previous paper (Shibli, Gooch, Lewis &
Tyrrell, 1971). For the purpose of that study daily records of the development of
upper respiratory infection were kept by individuals involved in each of the seven
outbreaks that affected the community between 1964 and 1968. Several observa-
tions were made based upon a collation of these records but the data may also be
used to provide information regarding the time course of each epidemic as a whole.
For example, Fig. 1 shows the development of the outbreak in April 1966 and has
been obtained from the individual record cards in the following manner.

The total number of individuals reporting the onset of symptomatic upper res-
piratory infection was found for each day and these totals then accumulated day-
by-day to give the left-hand curve of Fig. 1. In general, any ordinate of this curve
gives the number of individuals who have become involved in the epidemic during
the corresponding period, but this number of individuals is uniquely fixed for only
the beginning and end of each day. At intermediate times there is uncertainty as
to the appropriate numbers that should be taken, but limits to this uncertainty are
set by the opposing assumptions that the daily totals are achieved immediately at
the beginning and end of each day. The representation of these two extreme as-
sumptions in Fig. 1 gives rise to rectangles which are one unit wide and of heights
equal to the daily totals. The figure thus embodies a statement of these uncertainty
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limits. Identical arguments apply to the right-hand curve, which is composed of
the daily totals of individuals reporting a last day of infection. Any ordinate of the
latter curve gives the number of individuals who have recovered from symptomatic
infection at the appropriate time whilst the numerical difference between the two
curves gives the number of individuals who remain infected.
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Fig. 1. The epidemic of April 1966 constructed by means described in the text. The
number of individuals who have recovered from infection, the number who are
infected and the number of susceptibles remaining are given by the quantities r, ¢
and s respectively. The number of susceptibles at time zero is not known but is
represented by the horizontal dashed line. The dates of ship arrivals are indicated
by rectangles below the abscissa.

The data for all seven epidemics, when prepared as for Fig. 1, show broadly
similar characteristics although the form of the smaller outbreaks tends to be less
distinctive. However, the data seem sufficiently consistent to serve as a set of
empirical functions against which the performance of a mathematical model of the
epidemic process could be checked, and it is with this approach that the present
paper is concerned.

Formulation of mathematical models

The smooth progress of the two curves in Fig. 1 suggests that the main phase of
an epidemic in the present situation could well be described by a deterministic
process. At the beginning and end of the epidemic, however, when the number of
infected individuals is small, the curves show the sort of irregularity associated
with a more stochastic process. In these circumstances an approach using a deter-
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ministic model was adopted and the epidemic data were suitably truncated to
exclude the two extreme phases.

Certain characteristics of the Tristan community allow the corresponding epi-
demic model to be somewhat simplified. Firstly, the moderate size and free social
mixing of the community (Shibli et al. 1971) suggests that topographical or
sociological groupings may not significantly affect the progress of the epidemic;
and secondly, the isolation of the community rules out the effects of emigration and
immigration. The Tristanian community would in fact seem to approach very
closely the ideal homogeneous and closed society whose theoretical consideration
has provided a basis for epidemic theory since its inception.

In conformity with the classic deterministic approach, the following three classes
of individuals are recognized within the community at any time: (a) the class,
numbering s individuals, who are susceptible to infection; (b) the class, numbering
¢ individuals, who are infected and are also assumed to be infectious; (c¢) the class,
numbering r individuals, who have recovered from infection and are assumed to be
immune from reinfection. The number of individuals who are susceptible at the
outbreak of infection, s(0), must also be considered, and this unknown number is
represented in Fig. 1 as the horizontal dashed line, which then allows all three of
the above classes to be related to the epidemic field data.

Statements concerning the transfer of individuals between classes are now
required and a suitable law for the process of infection is derived from the hypo-
thesis that the rate of infection is proportional to the probability of contact be-
tween infected and susceptible individuals. In a randomly mixing society the
deterministic infection rate is then given by Iis, where I is a constant which may be
termed ‘infectivity’. The rate of recovery may be taken as proportional to the
number of infected individuals at any time, that is equated to R¢, where R is a
recovery rate constant. These laws of infection and recovery then give the differen-
tial equations which constitute the model due to Kermack & McKendrick (1927):

MODEL 1
ds/dt = —Iis,
di/dt = Iis— Ri,
dr/dt = Ri.

An alternative to the above model arises with a modified recovery law that
corresponds with the assumption of a constant duration of infection. In this case the
recovery rate at a time (¢ + D) may be equated to the infection rate at time ¢, where
the time interval, D, represents the average duration of individual infection. The
function s, when delayed by a period D, may be written as I[is], then

MODEL 2
ds/dt
di/dt = Iis—1I[is], where
dr|dt = I[is]

— Iis,

[is] = it—D)st—D),t > D
[is]=0,t< D
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METHODS

Preliminary examination of the above models was carried out using a Pace
TR 48 analogue computer and more detailed studies on the second model were then
undertaken by coupling the analogue computer to a Honeywell DDP 516 digital
computer to form a hybrid computer system. The main object of the later studies
was to determine the sets of values for s(0), I and D that gave rise to best agree-
ment with the seven recorded epidemics.

To aid the search for best agreement a special hybrid program was written
which allowed use of the teletype keyboard for prespecification of eight values for
each of the model parameters, and which then supervised the implementation of
the 512 resulting combinations. For each combination of the parameter values the
program compared the performance of the model with the epidemic under study
by calculating the sum-square-error between the appropriate variables of the model
and the daily epidemic data. These error values were automatically printed out in
eight by eight arrays corresponding with increasing values of the first parameter
from column to column and increasing values of the second parameter from row
to row. The third parameter was incremented between successive arrays. This
format allowed the error to be visualized as a three-dimensional function and rapid
location of the minimum was made possible. Determination of the parameter
values to two significant figures usually demanded repetition of the procedure with
successively finer increments between the parameters. A further facility of the
hybrid program allowed sets of values for s(0), I and D to be specified using the
computer teletype and the resultant time-courses of the variables s, ¢ and r were
then automatically typed out.

RESULTS

Implementation of the Kermack and McKendrick model on the analogue com-
puter revealed a discrepancy between the performance of the model and the form of
the recorded epidemics. This is illustrated in Fig. 2(d), where the dashed lines show
the solution of the model which gives minimum error when compared with the
corresponding epidemic data. The failure of the model evidently arises from the
recovery law, which imposes an unduly high recovery rate in the early part of an
epidemic. The second model was shown by the analogue computer to promise
better agreement with the epidemic records and this model was therefore pursued
in preference to the former. Using the hybrid computer as previously deseribed,
least-squared-error solutions were obtained for five of the seven epidemics and the
daily values given by these solutions are shown in Fig. 2 together with their corre-
sponding sets of field data.

The time courses of the two remaining epidemics were not satisfactorily matched
by model 2 owing to discontinuities which appear in the later phases of each epide-
mic. The form of these discontinuities is apparent in Fig. 3 and their possible cause
was considered in some detail. First, the epidemics were split into five components
corresponding with the five social groups distinguished during a sociological survey
in 1965 (P. A. Munch, personal communication). However, no significant difference
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in the time courses of these components could be distinguished. Secondly, the
locations of houses in which new infections occurred were annotated on a map of
the island’s residential area, a different map being used for each day. By scanning
the completed sequence of maps the spread of the epidemics could be followed and
several possibly significant groupings of houses could be distinguished. However,
examination failed to reveal any relevant differences between the epidemic com-
ponents associated with various combinations of these groups. It became apparent
from these first two investigations that neither sociological nor topographical
grouping could be indicted as the cause of the observed discontinuities.
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Fig. 2. The epidemic records for September 1964, January 1965, January 1966, April
1966 and October 1967 correspond with letters (a¢)—(e) consecutively. The dashed lines
in (d) represent the solution of model 1 that is in closest agreement with the data.
The solid circles in each figure give the solutions of model 2 that are in closest agree-
ment with each set of field data and the upper horizontal lines show the corresponding
levels of susceptibles at time zero.

Another cause of irregular epidemics could be a sudden change in infectivity
related, for example, to temperature or even possibly to an increase in the inherent
virulence of the infective agent itself. However, when such a change was imple-
mented in the analogue computer simulation, agreement with the data was only
marginally improved and the hypothesis of changed infectivity was abandoned.
A final hypothesis considered the data of Fig. 3 to arise from two independent
epidemics involving different viral agents. It may be noted in this respect that both
epidemics were associated with the arrival at Tristan da Cunha of two ships and
that contact with infected passengers has been identified as the origin of common-
cold epidemics on the island (Shibli ef al. 1971). In the case of the May 1967 out-
break one ship arrived 2 days before the first notified infection and another ship
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arrived 1 week later; in February 1968 two ships arrived at the island on the day
preceding the first notification of infection. The hybrid simulation of model 2 was
extended to include a second and concurrent epidemic whose form was determined
by an independent set of the parameters s(o), I and D. The start of the second
epidemic was delayed by a period whose duration gave a seventh parameter that it
was necessary to adjust in matching the double infection model to the irregular
epidemics. The daily values corresponding with the least-squared-error solutions
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that were eventually obtained are shown in Fig. 3.
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Fig. 3. The epidemic records for May 1967 and February 1968 correspond with (a)
and (c¢) respectively. The lower figures (b) and (d) in each case give the number of indi-
viduals infected at any time. The solid circles in each figure give the solutions of
model 2 that are closest in agreement with each set of field data.

Date of
epidemic

Sept. 1964
Jan. 1965
Jan. 1966
Apr. 1966
May 1967
May 1967
Oct. 1967
Feb. 1968
Feb. 1968

The values of (o), I and D are the parameter values for model 2 that give best agreement
with the records of the corresponding epidemics; in stating units ‘individuals’ is abbreviated
to ‘inds’. Double infections are indicated by the use of letters following a common reference

Ident
no.

1
2
3
4
5a
5b
6
Ta
7b

8(0)
(inds.)

36
87
54
114
88
16
44
56
10

Table 1.

I
(ind../day)

0-018
0-0072
0-0086
0-0043
0-0084
0-074
0-016
0-22
0-067

D
(days)

3-2
4-0
3-6
4-6
34
55
3-2
2-8
4-2

NI
0-78
0-91
0-74
0-87
0-90
1-00
0-84
0-96
0-95

number. The last two columns give values of epidemic constants as discussed in the text.
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The values of s(0), I and D that give best agreement between model 2 and the
seven recorded epidemics are listed in Table 1, where statement to two significant
figures is made possible by the sensitivity of the error-squared function to changes
in parameter values. The sensitivity was different for each epidemic but at worst
gave a 109, change in the sum of squares of errors corresponding with unit change
in the second significant figure of each parameter. Typically the change was in
excess of 50 %,. The method used to determine these values required the model to
be expressed in terms of numbers of individuals, but it is of more general value to
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Fig. 4. Theoretical epidemics produced by model 2. In (a) and (c) the left-hand
curves give the number who have been infected as a fraction of the initial number of
susceptibles; the right-hand curves give the fraction who have recovered. The differ-
ence between any pairs of curves gives the fraction who remain infected at any time
and these values are plotted in the lower figures. In (a) and (b) the product s(o)I
is kept at 1/day and D has the values, 4 days (—), 3days (——-) and 2days(....)- In
(c) and (d) the value of D is kept constant at 4 days and the product s(o) I has the
values 1-0/day (—), 0-6/day (———) and 0-4/day (....).

consider the model in a normalized form where the variables are expressed as
fractions of the initial number of susceptibles s(0). Thus, let

8’ = s/s(0), ds'|dt = —f(t),
" = i/s(0), then di'/dt = f(t)—f(t—D),
and ' = r/s(0), dr'[dt = f(¢t—D),

where f(t) = s(o)I¢'s’.
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It becomes apparent from the normalized model that the resulting temporal
forms of the predicted epidemics are dependent solely upon two factors: first, the
product of infectivity with initial number of susceptibles, and secondly, the average
duration of individual infection. As is shown in Fig. 4, both these factors affect the
size of an epidemic, but in addition the value of s(0) I has a profound effect upon the
time at which an epidemic reaches its pealk.

DISCUSSION

Mathematical epidemiology really began with the work of Kermack & Me-
Kendrick (1927), and in particular with the simple deterministic model reproduced
ag model 1 in this paper. Considering a closed homogeneous society and this simple
three-state infection, the time course of an epidemic is determined by the laws that
are assumed for the rates at which individuals enter and leave the infected state.
The product law describing the rate at which new infectives are generated is based
upon the probability of a susceptible coming into effective contact with an infec-
tious individual in a randomly mixing society, and this law has been adopted by
most later workers in application to both deterministic and stochastic models. On
the other hand, the law stating that the rate of removal is proportional to the
number of infectives has been less readily accepted and alternatives have arisen;
for example, in models of the Reed-Frost variety, first examined by Abbey (1952).
In these models infectives are removed after a given period of infection and the
recovery rate at any time is thus implied by the duration of individual infection. The
fundamental laws of infection and recovery are obviously of vital importance to the
body of mathematical epidemiology as summarized by Bailey (1957) and Bartlett
(1960). These studies have been largely theoretical and the data from Tristan da
Cunha now make it possible to test more thoroughly than was previously possible
whether the fundamental laws adequately describe real epidemics.

In view of the above comments, the basic field data were processed so that as
much as possible of the relevant information was retained for comparison with the
performance of the models. In particular this allowed the simultaneous matching of
the time courses for all three groups of individuals rather than the more common
procedure of using some selected feature such as infection rate as the sole criterion
for the performance of the model. In addition, Figs. 2 and 3 show, as previously
described, the uncertainty arising from the use of daily totals of first and last days
of infection. It is also known that, owing to less than complete co-operation of the
islanders, the data sets are not complete records of an epidemic. The degree of
co-operation has been estimated by one of the island’s Medical Officers as about
80 %,, but provided that under-reporting does not distort the shape of the epidemic
record it does not affect the general agreement between model and data. This
retention of agreement arises as a property seen in the equations of the normalized
model whereby epidemics of different sizes but of identical shape are obtained pro-
vided that any change in s(o) is compensated by an opposite change in I. In this
respect it should be noted that no allowance for under-reporting has been made in
obtaining the values given in Table 1, and in particular that the values given for
I will be proportionately high.
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Despite a measure of uncertainty in the field data, an inconsistency has been
shown between the data and the epidemic model of Kermack & McKendrick. This
inconsistency is removed when the recovery law is replaced by one based directly
on a constant duration of infection and embodied in the revised formulation of
model 2. The revised law would also seem to be more reasonable on the common-
sense ground that the progress of a patient’s infection is independent of other in-
fectives and that in summating the infectives the individual infections will only
lose their identities as the number of infectives rises. In considering the improved
agreement with present epidemic data provided by model 2 it should, however, be
borne in mind that the extent and number of epidemics are too small for statistical
validification of the model.

An expression for the final size of an epidemic as predicted by the new model may
readily be obtained by integration of its first equation,

s(wo) ©
f 1sds = --If ids,
0

8(0)

but f “idt = ND,
0

where N is the final number of individuals involved in the epidemic, and
s(c0) = s{o)—N.

Thus MEV—’_N) = —s(0)ID,

where N' is the intensity of the epidemic, i.e. the proportion of susceptibles affected,
and is given by N/s(0). This result may be compared with that for model 1 obtained
by Kendall (1956), which in present terminology gives

In(1-N') —s(o)]

N’ - R
These two predictions become identical if the duration of infection in model 2 is
taken to correspond with the reciprocal of the removal rate constant in model 1.
This relationship may be readily accepted since each quantity then implies the
same removal rate of infectives over any time increment during the central phase
of an epidemic.

The relationship between epidemic intensity and the triple product s(o)ID is
plotted in Fig. 5 and clearly shows an epidemic threshold at unity value of the triple
product. This threshold, below which epidemics do not occur, is equivalent to that
first discussed by Kermack & McKendrick (1927) in relation to their deterministic
model and subsequently demonstrated in stochastic models by Whittle (1955) and
Kendall (1956). The intensities and triple products of the present epidemics are
given in Table 1 and these values locate each epidemic in Fig. 5, where the closeness
of each point to the calculated intensity curve reflects the overall accuracy of the
hybrid simulation by which s(0), I and D were determined. The epidemics are
clustered well above the theoretical threshold ; if the secondary epidemics of May
1967 and February 1968 are discounted as involving too few individuals for
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realistic analyses, the mean value of s(0)ID for the epidemics is 2-40 with a
standard deviation of 0-48.

A population may be described as subcritical to a particular infection at any
time that its triple product lies below the threshold value of unity; that is, when
the number of its susceptibles is less than 1/1D. However, the birth of new suscep-
tibles, coupled with any loss of immunity by previously infected individuals, will
steadily increase the number of susceptibles. The regular progress of the triple
product may be envisaged as the movement of a point along the abscissa of Fig. 5,
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Fig. 5. The solid line gives the intensity of an epidemic predicted by model 2 as a
function of the triple product s(o)ID. The solid circles show the positions of the
analysed epidemics, which may be identified by the numbers given in Table 1.

the point reaching unity as the population achieves the critical condition and
passing beyond it as the population becomes increasingly supercritical. The velo-
city of the point is given by the product I.D, which for the present epidemics may
be determined from the values given in Table 1. Excluding the secondary epidemics
the velocities range from 0-020 to 0-058 per susceptible. An epidemic may be caused
by the chance presentation of an infective agent when its corresponding point is at
any position beyond the threshold and it is therefore surprising to find that the
epidemics are not evenly distributed beyond the threshold. Furthermore, the
clustering of the epidemics is not explained by assuming more frequent presentation
of infective agent since in this case the epidemics would tend to cluster near to the
threshold.

An explanation of this behaviour could be that theoretical epidemics of an in-
tensity less than 0-7 involve fewer infectives than is required in practice for the
maintenance of the level of infection. The predicted reduction in the number of in-
fectives as intensity is decreased may be seen in Fig. 4 and the effect would seem
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sufficiently marked to cast doubt on the applicability of the present deterministic
infection law, and hence the model, under conditions which would lead to low-
intensity epidemics. The present results therefore seem to argue for the existence
of an empirical threshold below which infections follow stochastic paths to extine-
tion without causing an epidemie. In the case of common-cold epidemics on Tristan
da Cunha this empirical threshold lies between one-and-a-half times and twice the
level of the theoretical threshold.

We hope to make further checks on the validity of the model, in particular to
determine whether it adequately describes the epidemics that occur in other closed
communities, such as residential schools, and also to obtain independent evidence
on epidemic intensities by serological studies.

The authors wish to acknowledge the contribution made to the present work by
Mr F. G. Tattam of the National Institute for Medical Research, who originated
and developed the hybrid computer program. A debt is also owed to the MRC
Tristan da Cunha Working Party for their assistance in this study. Finally, we
wish to express our gratitude to the Tristanian community, whose co-operation
made the present study possible.
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