Kolmogorov, Linear and Pseudo-Dimensional Widths of Classes of s-Monotone Functions in $\mathbb{L}_{p}, 0<p<1$

Victor N. Konovalov and Kirill A. Kopotun

Abstract. Let B_{p} be the unit ball in $\mathbb{L}_{p}, 0<p<1$, and let $\Delta_{+}^{s}, s \in \mathbb{N}$, be the set of all s-monotone functions on a finite interval I, i.e., Δ_{+}^{s} consists of all functions $x: I \mapsto \mathbb{R}$ such that the divided differences $\left[x ; t_{0}, \ldots, t_{s}\right]$ of order s are nonnegative for all choices of $(s+1)$ distinct points $t_{0}, \ldots, t_{s} \in$ I. For the classes $\Delta_{+}^{s} B_{p}:=\Delta_{+}^{s} \cap B_{p}$, we obtain exact orders of Kolmogorov, linear and pseudodimensional widths in the spaces $\mathbb{L}_{q}, 0<q<p<1$:

$$
d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{psd}} \asymp d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathrm{L}_{q}}^{\mathrm{kol}} \asymp d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{lin}} \asymp n^{-s}
$$

1 Introduction, Preliminaries, and the Main Result

The general theory of widths deals with approximation of infinite-dimensional function classes by finite-dimensional manifolds which are optimal in a certain sense. It has numerous applications in numerical analysis (what is the optimal rate of convergence attainable by any numerical method for a specific problem?), learning theory (among various hypothesis classes what can be considered optimal?), image compression (what is the best compression ratio?), and many other areas.

Let X be a real linear space of vectors x with (quasi)norm $\|x\|_{X}$, and W and M be nonempty subsets of X. The deviation of W from M is defined by

$$
E(W, M)_{X}:=\sup _{x \in W} \inf _{y \in M}\|x-y\|_{X} .
$$

The Kolmogorov n-width of W is defined by

$$
d_{n}(W)_{X}^{\mathrm{kol}}:=\inf _{M^{n}} E\left(W, M^{n}\right)_{X}, \quad n \geq 0
$$

where the infimum is taken over all affine subsets $M^{n} \subseteq X$ of dimension $\leq n$.
The linear n-width of W is defined by

$$
d_{n}(W)_{X}^{\operatorname{lin}}:=\inf _{M^{n}} \inf _{A} \sup _{x \in W}\|x-A x\|_{X}, \quad n \geq 0
$$

[^0]where the left-hand infimum is taken over all affine subsets $M^{n} \subseteq X$ of dimension at most n, and the middle infimum is taken over all continuous affine maps A from affine subsets of X containing W into M^{n}.

Finally, we will also have estimates for yet another width, the pseudo-dimensional width which was introduced by Maiorov and Ratsaby $[11,12,15]$ using the concept of pseudo-dimension due to Pollard [13]. Namely, let $M=M(T)$ be a set of real-valued functions $x(\cdot)$ defined on the set T, and denote

$$
\operatorname{Sgn}(a):= \begin{cases}1 & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

The pseudo-dimension $\operatorname{dim}_{p s}(M)$ of the set M is the largest integer n such that there exist points $t_{1}, \ldots, t_{n} \in T$ and a vector $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ for which

$$
\operatorname{card}\left\{\left(\operatorname{Sgn}\left(x\left(t_{1}\right)+y_{1}\right), \ldots, \operatorname{Sgn}\left(x\left(t_{n}\right)+y_{n}\right)\right) \mid x \in M\right\}=2^{n}
$$

If n can be arbitrarily large, then $\operatorname{dim}_{p s}(M):=\infty$.
The pseudo-dimensional n-width of W is defined by

$$
d_{n}(W)_{X}^{\text {psd }}:=\inf _{M^{n}} \sup _{x \in W} \inf _{y \in M^{n}}\|x-y\|_{X},
$$

where the left-hand infimum is taken over all subsets $M^{n} \subseteq X$ such that $\operatorname{dim}_{p s}\left(M^{n}\right) \leq$ n. It is known (see [6]) that if M is an arbitrary affine subset in a space X of realvalued functions and $\operatorname{dim} M<\infty$, then $\operatorname{dim}_{p s}(M)=\operatorname{dim}(M)$. Clearly,

$$
\begin{equation*}
d_{n}(W)_{X}^{\mathrm{pd}} \leq d_{n}(W)_{X}^{\mathrm{kol}} \leq d_{n}(W)_{X}^{\mathrm{lin}} \tag{1.1}
\end{equation*}
$$

Let $s \in \mathbb{N}$, and $\Delta_{+}^{s}:=\Delta_{+}^{s}(I)$ be the set of functions $x: I \mapsto \mathbb{R}$ on a finite interval I such that the divided differences $\left[x ; t_{0}, \ldots, t_{s}\right]$ of order s of x are nonnegative for all choices of $(s+1)$ distinct points $t_{0}, \ldots, t_{s} \in I$. We call functions $x \in \Delta_{+}^{s} s$-monotone on I.

It is well known (see $[1,14,16]$) that if x is s-monotone on $[a, b], s \geq 2$, then $x^{(\nu)}$ exists on (a, b) for $\nu \leq s-2$, and, in fact, $x^{(\nu)} \in \Delta_{+}^{s-\nu}(a, b)$. In particular, $x^{(s-2)}$ exists, is convex, and therefore is locally absolutely continuous in (a, b), and has left and right (nondecreasing) derivatives $x_{-}^{(s-1)}$ and $x_{+}^{(s-1)}$ there. Moreover, the set E where $x^{(s-1)}$ fails to exist is countable, and $x^{(s-1)}$ is continuous on $(a, b) \backslash E$. Throughout this paper, if a function $x: I \mapsto \mathbb{R}$ possesses both the left-hand and the right-hand derivatives $x_{-}^{(k)}(t)$ and $x_{+}^{(k)}(t)$, of order $k \in \mathbb{N}$, at a point $t \in I$, then we denote $x^{(k)}(t):=\left(x_{-}^{(k)}(t)+x_{+}^{(k)}(t)\right) / 2$. Evidently, this notation is compatible with that of the derivative $x^{(k)}(t)$ if it exists. We also write $x^{(0)}(t):=x(t), t \in I$.

Given a function space X and $W \subseteq X$, we denote by $\Delta_{+}^{s} W$ the subset of s monotone functions $x \in W$, i.e., $\Delta_{+}^{s} W:=\Delta_{+}^{s} \cap W$.

Let $\mathbb{L}_{p}:=\mathbb{L}_{p}(I), 0<p \leq \infty$, be the space of all functions x on I with (quasi)norm $\|x\|_{\mathbb{L}_{p}(I)}:=\left(\int_{I}|x(t)|^{p} d t\right)^{1 / p}$. By $B_{p}:=B_{p}(I)$ we denote the unit ball in \mathbb{L}_{p}. Evidently
$\Delta_{+}^{s} B_{p} \subset \mathbb{L}_{q}, 0<q \leq p \leq \infty$, but $\Delta_{+}^{s} B_{p} \not \subset \mathbb{L}_{q}, 0<p<q \leq \infty$. For the integers $r \in \mathbb{N}$, we denote the Sobolev classes

$$
\mathbb{W}_{p}^{r}:=\mathbb{W}_{p}^{r}(I):=\left\{x \mid x^{(r-1)} \in A C_{\mathrm{loc}},\left\|x^{(r)}\right\|_{\mathbb{L}_{p}} \leq 1\right\}, \quad 0<p \leq \infty
$$

Recall that for $1 \leq p, q \leq \infty$, the orders of most widths of the classical Sobolev classes \mathbb{W}_{p}^{r} in \mathbb{L}_{q} are well known. They are asymptotically $n^{-r+\alpha(p, q)}$, where $0 \leq$ $\alpha(p, q) \leq 1 / 2$. In contrast, for $0<p<1$ the behavior of the widths differs essentially. Let

$$
\mathbb{W}_{p, \infty}^{r}:=\left\{x \mid x \in \mathbb{W}_{p}^{r},\|x\|_{\mathbb{L}_{\infty}} \leq 1\right\}, \quad 0<p<1
$$

It was proved in [3] that if $0<p<1$, then

$$
d_{n}\left(\mathbb{W}_{p, \infty}^{r}\right)_{\mathbb{L}_{q}}^{\mathrm{pdd}} \asymp d_{n}\left(\mathbb{W}_{p, \infty}^{r}\right)_{\mathbb{L}_{q}}^{\mathrm{kol}} \asymp d_{n}\left(\mathbb{W}_{p, \infty}^{r}\right)_{\mathbb{L}_{q}}^{\operatorname{lin}} \asymp 1, \quad 0<q \leq \infty
$$

The aim of this paper is to show that s-monotone functions $x \in \Delta_{+}^{s} B_{p}, 0<p<1$, can be approximated well in $\mathbb{L}_{q}, 0<q<p<1$. Our main result is:

Theorem 1 If $s, n \in \mathbb{N}$ and $0<q<p<1$ then

$$
\begin{equation*}
d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{psd}} \asymp d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{kol}} \asymp d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathrm{L}_{q}}^{\mathrm{lin}} \asymp n^{-s}, \quad n \geq s \tag{1.2}
\end{equation*}
$$

2 Upper Bounds

This section is devoted to proving that a function $x \in \Delta_{+}^{s} B_{p}, 0<p<1$, can be well approximated in $\mathbb{L}_{q}, 0<q<p$, by piecewise polynomials associated with it, in a linear fashion. Specifically, we will show that for $x \in \Delta_{+}^{s} \mathbb{L}_{p}$ there is a piecewise polynomial $\sigma_{s, n}(\cdot ; x ; I)$ with $2 n-2$ prescribed knots (see construction below), such that

$$
\begin{equation*}
\left\|x(\cdot)-\sigma_{s, n}(\cdot ; x ; I)\right\|_{\mathbb{L}_{q}(I)} \leq c\|x\|_{\mathbb{L}_{p}(I)} n^{-s}, \quad n \geq 1,0<q<p<1 \tag{2.1}
\end{equation*}
$$

where $c=c(s, p, q)$.

2.1 Auxiliary Results

The following lemma is due to Bullen [1] (see also [9, Lemma 8.3] for discussion of the cases when some or all interpolation points coincide).

Lemma 1 Let $s \in \mathbb{N}, f \in \Delta_{+}^{s}(a, b)$, and let $L_{s-1}\left(f, t ; t_{1}, \ldots, t_{k}\right)$ be the Lagrange (Hermite-Taylor) polynomial of degree $\leq s-1$ interpolating f at the points $t_{i}, 1 \leq i \leq$ s, where $a=: t_{0}<t_{1} \leq \cdots \leq t_{s}<t_{s+1}:=b$. Then

$$
(-1)^{s-i}\left(f(t)-L_{s-1}\left(f, t ; t_{1}, \ldots, t_{s}\right)\right) \geq 0, \quad t \in\left(t_{i}, t_{i+1}\right), i=0, \ldots, s
$$

In other words, $f-L_{s-1}$ changes sign at t_{1}, \ldots, t_{s}.

Lemma 2 Let $n \in \mathbb{N}, 0<p<1$, and let $\left(\alpha_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ matrix with nonnegative entries. Then

$$
\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i j}^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{i j}\right)^{p}\right)^{1 / p}
$$

Proof It is well known (see, e.g., [5, (2.11.5)]) and easy to prove that, in the case $0<p<1$,

$$
\|\mathbf{x}+\mathbf{y}\|_{l_{p}^{n}} \geq\|\mathbf{x}\|_{l_{p}^{n}}+\|\mathbf{y}\|_{l_{p}^{n}}, \quad \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}_{+}^{n}
$$

Therefore, for any $\mathbf{x}_{j} \in \mathbb{R}_{+}^{n}, 1 \leq j \leq n$, we have

$$
\left\|\sum_{j=1}^{n} \mathbf{x}_{j}\right\|_{l_{p}^{n}} \geq \sum_{j=1}^{n}\left\|\mathbf{x}_{j}\right\|_{l_{p}^{n}}
$$

and hence choosing $\mathbf{x}_{j}=\left(\alpha_{1 j}, \alpha_{2 j}, \ldots, \alpha_{n j}\right), 1 \leq j \leq n$, we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{i j}\right)^{p}\right)^{1 / p} & =\left\|\left(\sum_{j=1}^{n} \alpha_{1 j}, \sum_{j=1}^{n} \alpha_{2 j}, \ldots, \sum_{j=1}^{n} \alpha_{n j}\right)\right\|_{l_{p}^{n}}=\left\|\sum_{j=1}^{n} \mathbf{x}_{j}\right\|_{l_{p}^{n}} \\
& \geq \sum_{j=1}^{n}\left\|\mathbf{x}_{j}\right\|_{l_{p}^{n}}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i j}^{p}\right)^{1 / p}
\end{aligned}
$$

Lemma 3 Let $n \in \mathbb{N}, 0<p, q<1$, and suppose that $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=$ $\left(b_{1}, \ldots, b_{n}\right)$ are n-tuples with nonnegative entries, and $\mathbf{c}:=\left(c_{i j}\right)_{i, j=1}^{n}$ is a nonnegative $n \times n$ matrix. Given a function

$$
f_{q, n}(\mathbf{w} ; \mathbf{a}):=\left(\sum_{i=1}^{n}\left(a_{i} \omega_{i}\right)^{q}\right)^{1 / q}
$$

where $\mathbf{w}:=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{R}_{+}^{n}$, and the set

$$
\Omega_{p}^{n}(\mathbf{b} ; \mathbf{c}):=\mathbb{R}_{+}^{n} \cap\left\{\mathbf{w}: \sum_{i=1}^{n}\left(b_{i} \sum_{j=1}^{n} c_{i j} \omega_{j}\right)^{p} \leq 1\right\}
$$

we have

$$
\max _{\mathbf{w} \in \Omega_{p}^{n}(\mathbf{b} ; \mathbf{c})} f_{q, n}(\mathbf{w} ; \mathbf{a}) \leq n^{1 / q-1} \max _{1 \leq j \leq n}\left\{a_{j}\left(\sum_{i=1}^{n}\left(b_{i} c_{i j}\right)^{p}\right)^{-1 / p}\right\}
$$

Proof By Jensen's inequality, for every $\mathbf{w} \in \mathbb{R}_{+}^{n}$, we have

$$
f_{q, n}(\mathbf{w} ; \mathbf{a})=\left(\sum_{i=1}^{n}\left(a_{i} \omega_{i}\right)^{q}\right)^{1 / q} \leq n^{1 / q-1} \sum_{i=1}^{n} a_{i} \omega_{i}=: g_{q, n}(\mathbf{w} ; \mathbf{a})
$$

It follows from Lemma 2 that

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{i j}\right)^{p} \leq 1 \Rightarrow \sum_{j=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i j}^{p}\right)^{1 / p} \leq 1
$$

Therefore, taking $\alpha_{i j}:=b_{i} c_{i j} \omega_{j}$, we conclude that the set $\Omega_{p}^{n}(\mathbf{b} ; \mathbf{c})$ is a subset of the simplex

$$
S_{p}^{n}(\mathbf{b} ; \mathbf{c}):=\mathbb{R}_{+}^{n} \cap\left\{\mathbf{w}: \sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left(b_{i} c_{i j}\right)^{p}\right)^{1 / p} \omega_{j} \leq 1\right\}
$$

Since $g_{q, n}(\cdot ; \mathbf{a})$ is a linear function it achieves its maximum on $S_{p}^{n}(\mathbf{b} ; \mathbf{c})$ at the vertices

$$
\mathbf{z}_{j}=\left(\sum_{i=1}^{n}\left(b_{i} c_{i j}\right)^{p}\right)^{-1 / p} \mathbf{e}^{j}, \quad 1 \leq j \leq n
$$

of $S_{p}^{n}(\mathbf{b} ; \mathbf{c})$ (here, $\mathbf{e}^{j}, 1 \leq j \leq n$, is the standard basis of $\left.\mathbb{R}^{n}\right)$. Therefore,

$$
\begin{aligned}
\max _{\mathbf{w} \in \Omega_{p}^{n}(\mathbf{b} ; \mathbf{c})} f_{q, n}(\mathbf{w} ; \mathbf{a}) & \leq \max _{\mathbf{w} \in \Omega_{p}^{n}(\mathbf{b} ; \mathbf{c})} g_{q, n}(\mathbf{w} ; \mathbf{a}) \leq \max _{\mathbf{w} \in S_{p}^{n}(\mathbf{b} ; \mathbf{c})} g_{q, n}(\mathbf{w} ; a) \\
& =n^{1 / q-1} \max _{1 \leq j \leq n}\left\{a_{j}\left(\sum_{i=1}^{n}\left(b_{i} c_{i j}\right)^{p}\right)^{-1 / p}\right\},
\end{aligned}
$$

and the proof is complete.
The following lemma is an immediate corollary of a stronger Theorem 1 in [8], taking into account [4] (see also [2, Theorem 4.6.3]).

Lemma $4([8])$ Let $s \in \mathbb{N}, 0<p \leq \infty, I:=(-1,1)$, and $x \in \Delta_{+}^{s} \mathbb{L}_{p}(I)$. Denote by

$$
T_{s-1}(t):=T_{s-1}(t ; x ; 0):=\sum_{k=0}^{s-1} \frac{x^{(k)}(0)}{k!} t^{k}, \quad t \in I
$$

the Taylor polynomial of degree $\leq s-1$ at $t=0$. Then, there exists a constant $c=c(s, p)$ such that

$$
\left\|x-T_{s-1}\right\|_{\mathbb{L}_{p}(I)} \leq c\|x\|_{\mathbb{L}_{p}(I)}
$$

2.2 Proof of the Upper Bounds in Theorem 1

Fix $n \geq 1$, and let $\beta \in \mathbb{N}$, to be prescribed. For every $-n \leq i \leq n$, denote

$$
t_{i}:=\operatorname{sign}(i)\left(1-((n-|i|) / n)^{\beta}\right) .
$$

Also,

$$
I_{i}:= \begin{cases}{\left[t_{i-1}, t_{i}\right)} & i=1, \ldots, n, \\ \left(t_{i}, t_{i+1}\right] & i=-1, \ldots,-n .\end{cases}
$$

Note that $t_{-i}=-t_{i}$ and $\left|I_{-i}\right|=\left|I_{i}\right|$ for all $-n \leq i \leq n$. Straightforward computations show that $\beta(n-i)^{\beta-1} n^{-\beta} \leq\left|I_{i}\right| \leq\left(2^{\beta}-1\right)(n-i)^{\beta-1} n^{-\beta}$ for $1 \leq i \leq n-1$, $\left|I_{n}\right|=n^{-\beta}$, and $\left|I_{i+1}\right| \leq\left|I_{i}\right| \leq\left(2^{\bar{\beta}}-1\right)\left|I_{i+1}\right|$ for all $1 \leq i \leq n-1$.

Let $x \in \Delta_{+}^{s}(I)$. Recall that $x^{(s-1)}$ is nondecreasing, and so has left and right derivatives $x_{-}^{(s-1)}(\tau)$ and $x_{+}^{(s-1)}(\tau), \tau \in I$. We recall our notation $x^{(s-1)}(\tau):=$ $\left(x_{+}^{(s-1)}(\tau)+x_{-}^{(s-1)}(\tau)\right) / 2$, and put

$$
T_{s-1}(t ; x ; \tau):=\sum_{k=0}^{s-1} \frac{x^{(k)}(\tau)}{k!}(t-\tau)^{k}, \quad t \in I
$$

Finally, we denote

$$
T_{s-1}\left(t ; x ; I_{i}\right):= \begin{cases}T_{s-1}\left(t ; x ; t_{i-1}\right) & i=1, \ldots, n \\ T_{s-1}\left(t ; x ; t_{i+1}\right) & i=-1, \ldots,-n\end{cases}
$$

and set

$$
\begin{equation*}
\sigma_{s, n}(t):=\sigma_{s, n}(t ; x ; I):=T_{s-1}\left(t ; x ; I_{i}\right), \quad t \in I_{i}, \quad i= \pm 1, \ldots, \pm n . \tag{2.2}
\end{equation*}
$$

We will estimate the distance of $\sigma_{s, n}(\cdot ; x ; I)$ from $x \in \Delta_{+}^{s} B_{p}$. First we assume that x satisfies

$$
\begin{equation*}
x^{(k)}(0)=0, \quad k=0, \ldots, s-1 . \tag{2.3}
\end{equation*}
$$

It follows from Lemma 1 (or may be proved directly) that in this case $x^{(k)}(t) \geq 0$, $t \in I_{+}:=[0,1)$, and $(-1)^{s-k} x^{(k)}(t) \geq 0, t \in I_{-}:=(-1,0], k=0, \ldots, s-1$. We restrict our discussion to I_{+}, the estimates for I_{-}follow by the observation that $y(t):=(-1)^{s} x(-t), t \in I$, satisfies $y^{(k)}(t)=(-1)^{s-k} x^{(k)}(-t) \geq 0, t \in I_{+}, k=$ $0, \ldots, s-1$, and that $\sigma_{s, n}(t ; y ; I)=(-1)^{s} \sigma_{s, n}(-t ; x ; I)$. Without loss of generality we assume that $\|x\|_{L_{p}\left(I_{+}\right)} \neq 0$.

If $n=1$, then $\sigma_{s, 1}(t) \equiv 0, t \in I$, and by Hölder's inequality we have

$$
\left\|x(\cdot)-\sigma_{s, 1}\right\|_{\mathbb{L}_{q}(I)}=\|x\|_{\mathbb{L}_{q}(I)} \leq 2^{1 / q-1 / p}\|x\|_{\mathbb{L}_{p}(I)} .
$$

From now on, we assume that $n>1$, and denote

$$
\omega_{i}:=\omega_{i}\left(x^{(s-1)} ; I_{i}\right):=x^{(s-1)}\left(t_{i}\right)-x^{(s-1)}\left(t_{i-1}\right), \quad i=1, \ldots, n-1 .
$$

First, if $s=1$ and $t \in I_{i}, 1 \leq i \leq n-1$, then it is readily seen that

$$
\begin{equation*}
\left\|x-\sigma_{1, n}\right\|_{\mathbb{L}_{q}\left(I_{i}\right)} \leq\left|I_{i}\right|^{1 / q} \omega_{i} \tag{2.4}
\end{equation*}
$$

If $s>1$ and $t \in I_{i}, 1 \leq i \leq n-1$, then Taylor's formula with integral remainder and integration by parts yield

$$
\begin{aligned}
x(t)-\sigma_{s, n}(t) & =x(t)-T_{s-1}\left(t ; x ; I_{i}\right) \\
& =\frac{1}{(s-2)!} \int_{t_{i-1}}^{t}\left(x^{(s-1)}(\tau)-x^{(s-1)}\left(t_{i-1}\right)\right)(t-\tau)^{s-2} d \tau
\end{aligned}
$$

Hence, using monotonicity of $x^{(s-1)}$ we conclude that

$$
\begin{equation*}
\left\|x-\sigma_{s, n}\right\|_{\mathbb{L}_{q}\left(I_{i}\right)} \leq \frac{\left|I_{i}\right|^{\mid s-1+1 / q}}{(s-1)!} \omega_{i}, \quad i=1, \ldots, n-1 \tag{2.5}
\end{equation*}
$$

Taking into account (2.4) we see that (2.5) is valid for all $s \geq 1$. It now remains to consider that case $t \in I_{n}$. For any $s \geq 1$, if $t \in I_{n}$ then by Lemma 1 and the fact that $x^{(k)}\left(t_{n-1}\right) \geq 0, k=0, \ldots, s-1$, we have $0 \leq x(t)-\sigma_{s, n}(t)=x(t)-T_{s-1}\left(t ; x ; I_{n}\right) \leq$ $x(t)$. By Hölder's inequality we get

$$
\begin{equation*}
\left\|x-\sigma_{s, n}\right\|_{\mathbb{L}_{q}\left(I_{n}\right)} \leq\|x\|_{\mathbb{L}_{p}\left(I_{n}\right)}\left|I_{n}\right|^{1 / q-1 / p} \tag{2.6}
\end{equation*}
$$

Combining (2.5) and (2.6) we obtain

$$
\begin{aligned}
\left\|x-\sigma_{s, n}\right\|_{\mathbb{L}_{q}\left(I_{+}\right)}^{q} & =\sum_{i=1}^{n}\left\|x-\sigma_{s, n}\right\|_{\mathbb{L}_{q}\left(I_{i}\right)}^{q} \\
& \leq \frac{1}{((s-1)!)^{q}} \sum_{i=1}^{n-1}\left(\left|I_{i}\right|^{s-1+1 / q} \omega_{i}\right)^{q}+\|x\|_{\mathbb{L}_{p}\left(I_{n}\right)}^{q}\left|I_{n}\right|^{1-q / p}
\end{aligned}
$$

Suppose now that $t \in I_{i}, 2 \leq i \leq n$, is fixed. Since by $(2.3), T_{s-1}\left(\cdot ; x ; I_{1}\right) \equiv 0$, we have

$$
x(t)=x(t)-T_{s-1}\left(t ; x ; I_{i}\right)+\sum_{j=2}^{i}\left(T_{s-1}\left(t ; x ; I_{j}\right)-T_{s-1}\left(t ; x ; I_{j-1}\right)\right)
$$

and note that

$$
\begin{array}{r}
T_{s-1}\left(t ; x ; I_{j}\right)-T_{s-1}\left(t ; x ; I_{j-1}\right)=\sum_{k=0}^{s-1}\left(x^{(k)}\left(t_{j-1}\right)-T_{s-1}^{(k)}\left(t_{j-1} ; x ; I_{j-1}\right)\right) \frac{\left(t-t_{j-1}\right)^{k}}{k!} \\
=\sum_{k=0}^{s-1}\left(x^{(k)}\left(t_{j-1}\right)-T_{s-k-1}\left(t_{j-1} ; x^{(k)} ; I_{j-1}\right)\right) \frac{\left(t-t_{j-1}\right)^{k}}{k!}
\end{array}
$$

Lemma 1 implies (this is also not difficult to show directly) that $x(t) \geq T_{s-1}\left(t ; x ; I_{i}\right)$ and $x^{(k)}\left(t_{j-1}\right) \geq T_{s-k-1}\left(t_{j-1} ; x^{(k)} ; I_{j-1}\right), 0 \leq k \leq s-2$. Therefore,

$$
\begin{aligned}
T_{s-1} & \left(t ; x ; I_{j}\right)-T_{s-1}\left(t ; x ; I_{j-1}\right) \\
& \geq\left(x^{(s-1)}\left(t_{j-1}\right)-T_{0}\left(t_{j-1} ; x^{(s-1)} ; I_{j-1}\right)\right) \frac{\left(t-t_{j-1}\right)^{s-1}}{(s-1)!} \\
& =\frac{\left(t-t_{j-1}\right)^{s-1}}{(s-1)!} \omega_{j-1}
\end{aligned}
$$

and, hence, for any $t \in I_{i}, 2 \leq i \leq n$,

$$
\begin{equation*}
x(t) \geq \sum_{j=2}^{i} \frac{\left(t-t_{j-1}\right)^{s-1}}{(s-1)!} \omega_{j-1} \tag{2.7}
\end{equation*}
$$

Denoting $\bar{t}_{i}:=\left(t_{i}+t_{i-1}\right) / 2$, for $2 \leq j \leq i \leq n$ and $t \in\left[\bar{t}_{i}, t_{i}\right)$, we have

$$
\begin{aligned}
t-t_{j-1} & =\left(t-\bar{t}_{i}\right)+\left(\bar{t}_{i}-t_{i-1}\right)+\sum_{k=j}^{i-1}\left(t_{k}-t_{k-1}\right) \geq \frac{1}{2} \sum_{k=j}^{i}\left(t_{k}-t_{k-1}\right) \\
& =\frac{1}{2} \sum_{k=j}^{i}\left|I_{k}\right| \geq \frac{1}{2}(i-j+1)\left|I_{i}\right|
\end{aligned}
$$

since $\left|I_{1}\right| \geq\left|I_{2}\right| \geq \cdots \geq\left|I_{n}\right|$.
Combining this estimate with (2.7) we obtain

$$
x(t) \geq \frac{\left|I_{i}\right|^{s-1}}{2^{s-1}(s-1)!} \sum_{j=2}^{i}(i-j+1)^{s-1} \omega_{j-1}, \quad t \in\left[\bar{t}_{i}, t_{i}\right), \quad 2 \leq i \leq n
$$

which implies

$$
\begin{align*}
\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{p} & \geq \sum_{i=2}^{n}\|x\|_{\mathbb{L}_{p}\left[\bar{F}_{i}, t_{i}\right]}^{p} \tag{2.8}\\
& \geq \frac{1}{2^{(s-1) p+1}((s-1)!)^{p}} \sum_{i=2}^{n}\left|I_{i}\right|^{(s-1) p+1}\left(\sum_{j=2}^{i}(i-j+1)^{s-1} \omega_{j-1}\right)^{p} \\
& =\sum_{i=1}^{n-1}\left(\frac{\left|I_{i+1}\right|^{s-1+1 / p}}{2^{s-1+1 / p}(s-1)!} \sum_{j=1}^{i}(i-j+1)^{s-1} \omega_{j}\right)^{p} \\
& \geq \sum_{i=1}^{n-1}\left(\bar{c}\left|I_{i}\right|^{s-1+1 / p} \sum_{j=1}^{i}(i-j+1)^{s-1} \omega_{j}\right)^{p}
\end{align*}
$$

where $\bar{c}=2^{-(\beta+1)(s-1+1 / p)}((s-1)!)^{-1}$.
We can rewrite (2.8) in the following equivalent form

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(\frac{\bar{c}\left|I_{i}\right|^{s-1+1 / p}}{\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}} \sum_{j=1}^{i}(i-j+1)^{s-1} \omega_{j}\right)^{p} \leq 1 \tag{2.9}
\end{equation*}
$$

We are interested in estimating the sum in (2.2) from above subject to (2.9). In other words, we want to find (estimate) the maximum value of the function

$$
\left(f_{q, n-1}(\mathbf{w} ; \mathbf{a})\right)^{q}:=\sum_{i=1}^{n-1}\left(a_{i} \omega_{i}\right)^{q}
$$

on the set

$$
\Omega_{p}^{n-1}(\mathbf{b} ; \mathbf{c}):=\mathbb{R}_{+}^{n-1} \cap\left\{\mathbf{w}: \sum_{i=1}^{n-1}\left(b_{i} \sum_{j=1}^{n-1} c_{i j} \omega_{j}\right)^{p} \leq 1\right\}
$$

where $a_{i}:=\left|I_{i}\right|^{s-1+1 / q}, b_{i}:=\bar{c}\left|I_{i}\right|^{s-1+1 / p}\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{-1}$ and $c_{i j}:=(i-j+1)_{+}^{s-1}:=$ $(\max \{i-j+1,0\})^{s-1}, i, j=1, \ldots, n-1$. We now estimate $\sum_{i=1}^{n-1}\left(b_{i} c_{i j}\right)^{p}$, and then apply Lemma 3 in order to estimate this maximum value.

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left(b_{i} c_{i j}\right)^{p} & \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{-p} \sum_{i=1}^{n-1}\left|I_{i}\right|^{(s-1) p+1}(i-j+1)_{+}^{(s-1) p} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{-p} \sum_{i=j}^{n-1}\left|I_{i}\right|^{(s-1) p+1}(i-j+1)^{(s-1) p} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{-p} \sum_{i=j}^{n-1}(n-i)^{(\beta-1)(s p-p+1)} n^{-\beta(s p-p+1)}(i-j+1)^{(s-1) p} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{-p}\left(\frac{n-j}{n}\right)^{\beta(s p-p+1)}
\end{aligned}
$$

We now take $\beta \in \mathbb{N}$ to be such that

$$
\begin{equation*}
\beta \geq p(s q-q+1) /(p-q) \tag{2.10}
\end{equation*}
$$

Then, Lemma 3 (with $n-1$ instead of n) implies

$$
\begin{aligned}
& \max _{\mathbf{w} \in \Omega_{p}^{n-1}(\mathbf{b} ; \mathbf{c})}\left(f_{q, n-1}(\mathbf{w} ; \mathbf{a})\right)^{q} \\
& \leq n^{1-q} \max _{1 \leq j \leq n-1}\left\{a_{j}^{q}\left(\sum_{i=1}^{n-1}\left(b_{i} c_{i j}\right)^{p}\right)^{-q / p}\right\} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{q} n^{1-q} \max _{1 \leq j \leq n-1}\left\{\left|I_{j}\right|^{s q-q+1}\left(\frac{n-j}{n}\right)^{-\beta q(s p-p+1) / p}\right\} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{q} n^{1-q-\beta+\beta q / p} \max _{1 \leq j \leq n-1}\left\{(n-j)^{\beta(1-q / p)-(s q-q+1)}\right\} \\
& \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{q} n^{-s q} .
\end{aligned}
$$

Therefore, using the above as well as the observation that, if β satisfies (2.10), then $\left|I_{n}\right|^{1-q / p}=n^{-\beta(1-q / p)}<n^{-s q}$, we immediately get from (2.2)

$$
\left\|x-\sigma_{s, n}\right\|_{\mathbb{L}_{q}\left(I_{+}\right)}^{q} \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{q} n^{-s q}+\|x\|_{\mathbb{L}_{p}\left(I_{n}\right)}^{q}\left|I_{n}\right|^{1-q / p} \leq c\|x\|_{\mathbb{L}_{p}\left(I_{+}\right)}^{q} n^{-s q}
$$

and so (2.1) is proved for all $x \in \Delta_{+}^{s} \mathbb{L}_{p}$ satisfying (2.3).
In general, if $x \in \Delta_{+}^{s} \mathbb{L}_{p}$, then the function

$$
\tilde{x}(t):=x(t)-T_{s-1}(t ; x ; 0), \quad t \in I
$$

satisfies (2.3), and by Lemma $4\|\tilde{x}\|_{\mathbb{L}_{p}(I)} \leq c\|x\|_{\mathbb{L}_{p}(I)}$, where c depends only on s and p. Therefore, it is enough to set

$$
\sigma_{s, n}(t ; x ; I):=\sigma_{s, n}(t ; \tilde{x} ; I)+T_{s-1}(t ; x ; 0), \quad t \in I
$$

in order to complete the proof of (2.1) for all $x \in \Delta_{+}^{s} \mathbb{L}_{p}$.
Denote by $\Sigma_{\beta, s, n}:=\Sigma_{\beta, s, n}(I)$, where β satisfies (2.10), the space of piecewise polynomials $\sigma: I \mapsto \mathbb{R}$, of order s (of degree $\leq s-1$), with knots at $t_{i}, i= \pm 1, \ldots$, $\pm(n-1)$. Then, for $x \in \Delta_{+}^{s} B_{p}$, clearly $\sigma_{s, n}(\cdot ; x ; I) \in \Sigma_{\beta, s, n}$. Also, by our construction, the mapping $A: \operatorname{span}\left(\Delta_{+}^{s} B_{p}\right) \mapsto \Sigma_{\beta, s, n}$ defined by (2.2) is linear. Since $\operatorname{dim}\left(\Sigma_{\beta, s, n}\right)=s(2 n-1)$, it follows by (1.1) that

$$
d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\text {psd }} \leq d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{kol}} \leq d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{lin}} \leq c n^{-s}, \quad n \geq s, \quad 0<q<p<1
$$

where $c=c(s, p, q)$. This proves the upper bound in (1.2).

3 Lower Bounds

3.1 Auxiliary Results

The following lemma can be proved in exactly the same way as [10, Lemma 2.2, p. 489] (also see [12, Claim 1]).

Lemma 1 Let $m \in \mathbb{N}$ and $V^{m}:=\left\{\left(v_{1}, \ldots, v_{m}\right): v_{i}= \pm 1, i=1, \ldots, m\right\}$. Then there exists a subset $V^{(m)} \subset V^{m}$ of cardinality $\geq 2^{m / 16}$ such that for any $\mathbf{v}, \mathbf{u} \in V^{(m)}$, $\mathbf{v} \neq \mathbf{u}$, the distance $\|\mathbf{v}-\mathbf{u}\|_{m_{1}^{m}} \geq m / 2$.

The following property of the pseudo-dimension is well known (see [17], [6]) and immediately follows from the definition.

Lemma 2 Let $T \neq \varnothing$ and $M:=M(T)$ be a family of functions $x: T \mapsto \mathbb{R}$. Fix any function $y: T \mapsto \mathbb{R}$,

$$
\operatorname{dim}_{p s}\{z: z=y+x, x \in M\}=\operatorname{dim}_{p s}(M)
$$

Lemma 3 ([3, Lemma 1]) Let $I:=(0,1)$, and let $a>0, \varepsilon>0$, and $m \in \mathbb{N}$, such that $m \geq 16\left(8+\log _{2}(a / \varepsilon)\right)$, be given. Suppose that a set $\Phi^{(m)}$ of functions $\varphi \in \mathbb{L}_{\infty}(I)$ is such that

$$
\begin{gathered}
\operatorname{card}\left(\Phi^{(m)}\right) \geq 2^{m / 16} \\
\|\varphi\|_{\mathbb{L}_{\infty}(I)} \leq a, \quad \varphi \in \Phi^{(m)}
\end{gathered}
$$

and for some $0<q<1$,

$$
\left\|\phi_{1}-\phi_{2}\right\|_{\mathbb{L}_{q}(I)} \geq \varepsilon, \quad \phi_{1} \neq \phi_{2}, \quad \phi_{1}, \phi_{2} \in \Phi^{(m)}
$$

Then for any $n \in \mathbb{N}$ such that $n \leq\left(16\left(8+\log _{2}(a / \varepsilon)\right)\right)^{-1} m$ we have

$$
d_{n}\left(\Phi^{(m)}\right)_{\mathbb{L}_{q}(I)}^{\mathrm{psd}} \geq 2^{-2-1 / q}\left(2^{q}-1\right)^{1 / q} \varepsilon
$$

3.2 Proof of the Lower Bounds in Theorem 1

Let $\varphi \in C^{\infty}(\mathbb{R})$ be nonnegative with $\operatorname{supp} \varphi=I_{+}=[0,1],\|\varphi\|_{\mathbb{L}_{\infty}(I)}=1$, and $\varphi(t)=1$ if $t \in[1 / 4,3 / 4]$. Denote $\vartheta_{s}:=\left\|\varphi^{(s)}\right\|_{L_{\infty}(I)}^{-1}$.

For $s \in \mathbb{N}$, let

$$
\phi_{s}(t):=\vartheta_{s} \varphi(t), \quad t \in \mathbb{R},
$$

and for $m \in \mathbb{N}$ to be prescribed, take $t_{i}^{*}:=t_{m, i}^{*}:=i / m, 0 \leq i \leq m$, and $I_{i}^{*}:=I_{m, i}^{*}:=$ $\left[t_{i-1}^{*}, t_{i}^{*}\right], 1 \leq i \leq m$. Denote

$$
\kappa:=(s p+1)^{1 / p} 2^{-1 / p} s!
$$

and, for each $1 \leq i \leq m$, set

$$
\phi_{s, m, i}(t):=\kappa m^{-s} \phi_{s}\left(m\left(t-t_{i-1}^{*}\right)\right), \quad t \in \mathbb{R} .
$$

Then, $\operatorname{supp} \phi_{s, m, i}=I_{i}^{*},\left\|\phi_{s, m, i}^{(s)}\right\|_{\mathbb{L}_{\infty}(I)}=\kappa, 0 \leq \phi_{s, m, i}(t) \leq \kappa \vartheta_{s} m^{-s}, t \in I$, and $\phi_{s, m, i}(t)=\kappa \vartheta_{s} m^{-s}, t \in\left[t_{i-1}^{*}+1 /(4 m), t_{i}^{*}-1 /(4 m)\right]$.

Write

$$
\Phi_{s}^{(m)}:=\left\{\phi: \phi=\sum_{i=1}^{m} v_{i} \phi_{s, m, i},\left(v_{1}, \ldots, v_{m}\right) \in V^{(m)}\right\}
$$

where $V^{(m)}$ is the class of sign-vectors defined in Lemma 1. Then, for all $\phi \in \Phi_{s}^{(m)}$,

$$
\|\phi\|_{\mathbb{L}_{\infty}(I)} \leq \kappa \vartheta_{s} m^{-s} \quad \text { and } \quad\left\|\phi^{(s)}\right\|_{\mathbb{L}_{\infty}(I)} \leq \kappa
$$

Set

$$
\psi_{s}(t):=\frac{\kappa}{s!} t_{+}^{s}, \quad t \in I
$$

It is easy to check that $\left\|\psi_{s}\right\|_{L_{p}(I)}=2^{-1 / p}$, and $\psi_{s}^{(s)}(t)=\kappa, t \in I_{+}$.
Clearly, for all $\phi \in \Phi_{s}^{(m)}, \psi_{s}^{(s)}(t)+\phi^{(s)}(t) \geq 0$ a.e. on I, and

$$
\left\|\psi_{s}+\phi\right\|_{\mathbb{L}_{p}(I)}^{p} \leq\left\|\psi_{s}\right\|_{\mathbb{L}_{p}(I)}^{p}+\|\phi\|_{\mathbb{L}_{p}(I)}^{p} \leq 1 / 2+\kappa \vartheta_{s} m^{-s}
$$

Thus, for $m \geq(2 \kappa)^{1 / s} \vartheta_{s}^{1 / s}$ we have $\psi_{s}+\Phi_{s}^{(m)} \subset \Delta_{+}^{s} B_{p}$, and so applying Lemma 2 we have

$$
\begin{equation*}
d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}(I)}^{\mathrm{psd}} \geq d_{n}\left(\psi_{s}+\Phi_{s}^{(m)}\right)_{\mathbb{L}_{q}(I)}^{\mathrm{psd}}=d_{n}\left(\Phi_{s}^{(m)}\right)_{\mathbb{L}_{q}(I)}^{\mathrm{psd}}, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

For any two different vectors $\mathbf{v}:=\left(v_{1}, \ldots, v_{m}\right)$ and $\mathbf{u}:=\left(u_{1}, \ldots, u_{m}\right)$ in $V^{(m)}$, let

$$
\phi_{1}:=\sum_{i=1}^{m} v_{i} \phi_{s, m, i} \quad \text { and } \quad \phi_{2}:=\sum_{i=1}^{m} u_{i} \phi_{s, m, i}
$$

be the two corresponding functions in $\Phi_{s}^{(m)}$. Since $\|\mathbf{v}-\mathbf{u}\|_{l_{1}^{m}} \geq m / 2$, then there exist $\lceil m / 4\rceil$ indices $i_{1}, \ldots, i_{\lceil m / 4\rceil}$ such that $v_{i_{k}}=-u_{i_{k}}, k=1, \ldots,\lceil m / 4\rceil$. Hence,

$$
\begin{aligned}
\left\|\phi_{1}-\phi_{2}\right\|_{\mathbb{L}_{q}(I)}^{q} & =\int_{I}\left|\sum_{i=1}^{m}\left(v_{i}-u_{i}\right) \phi_{s, m, i}(t)\right|^{q} d t=\sum_{i=1}^{m} \int_{I_{i}^{*}}\left|v_{i}-u_{i}\right|^{q}\left(\phi_{s, m, i}(t)\right)^{q} d t \\
& \geq \kappa^{q} \vartheta_{s}^{q} m^{-s q} \sum_{k=1}^{\lceil m / 4\rceil}\left|v_{i_{k}}-u_{i_{k}}\right|^{q} \int_{t_{i_{k}}^{*}-1+\frac{1}{4 m}}^{t_{i_{k}^{*}}^{*}-\frac{1}{4 m}} d t \\
& =\kappa^{q} \vartheta_{s}^{q} m^{-s q}(2 m)^{-1} \sum_{k=1}^{\lceil m / 4\rceil} 2^{q} \\
& \geq \kappa^{q} 2^{q-3} \vartheta_{s}^{q} m^{-s q}=: \varepsilon^{q} .
\end{aligned}
$$

If we set $a:=\kappa \vartheta_{s} m^{-s}$, and given $n \in \mathbb{N}$, we take $m=\left\lceil 80\left(\kappa 2^{3 / q-1}+1\right)\right\rceil n$, then applying Lemma 3, we conclude that

$$
d_{n}\left(\Phi_{s}^{(m)}\right)_{\mathbb{L}_{q}(I)} \geq c n^{-s}, \quad n \geq 1
$$

where $c=c(s, p, q)$. By virtue of (1.1) and (3.1) this implies

$$
d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\text {lin }} \geq d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{L}_{q}}^{\mathrm{kol}} \geq d_{n}\left(\Delta_{+}^{s} B_{p}\right)_{\mathbb{I}_{q}}^{\text {psd }} \geq c n^{-s}, \quad n \geq s
$$

where $c=c(s, p, q)$. This completes the proof of the lower bound and so of Theorem 1.

References

[1] P. S. Bullen, A criterion for n-convexity. Pacific J. Math. 36(1971), 81-98.
[2] R. A. DeVore and G. G. Lorentz, Constructive approximation. Grundlehren Math. Wiss. 303, Springer-Verlag, Berlin, 1993.
[3] Z. Ditzian, V. N. Konovalov and D. Leviatan, Approximation of Sobolev-type classes with quasi-seminorms. Rocky Mountain J. Math. 35(2005), 445-478.
[4] N. Dyn, G. G. Lorentz and S. D. Riemenschneider, Continuity of the Birkhoff interpolation. SIAM J. Numer. Anal. 19(1982), 507-509.
[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Second edition, Cambridge University Press, 1952.
[6] D. Haussler, Decision-theoretic generalizations of the PAC model for neural net and other learning applications. Inform. and Comput. 100(1992), 78-150.
[7] V. N. Konovalov and D. Leviatan, Shape preserving widths of Sobolev-type classes of s-monotone functions on a finite interval. Israel J. Math. 133(2003), 239-268.
[8] K. A. Kopotun, Whitney theorem of interpolatory type for k-monotone functions. Constr. Approx. 17(2001), 307-317.
[9] K. Kopotun and A. Shadrin, On k-monotone approximation by free knot splines. SIAM J. Math. Anal. 34(2003), 901-924 (electronic).
[10] G. G. Lorentz, M. v. Golitschek and Y. Makovoz, Constructive approximation. Advanced problems. Grundlehren Math. Wiss. 304, Springer-Verlag, Berlin, 1996.
[11] V. Maiorov and J. Ratsaby, The degree of approximation of sets in Euclidean space using sets with bounded Vapnik-Chervonenkis dimension. Discrete Appl. Math. 86(1998), 81-93.
[12] \longrightarrow On the degree of approximation by manifolds of finite pseudo-dimension. Constr. Approx. 15(1999), 291-300
[13] D. Pollard, Convergence of stochastic processes. Springer Series in Statistics, Springer-Verlag, New York, 1984.
[14] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering 187, Academic Press Inc., Boston, MA, 1992.
[15] J. Ratsaby and V. Maiorov, Generalization of the PAC-model for learning with partial information (extended abstract). In: Computational learning theory (Jerusalem, 1997), Lecture Notes in Comput. Sci. 1208(1997), 51-65.
[16] A. W. Roberts and D. E. Varberg, Convex functions. Pure and Applied Mathematics 57, Academic Press, New York-London, 1973.
[17] R. S. Wenocur and R. M. Dudley, Some special Vapnik-Chervonenkis classes. Discrete Math. 33(1981), 313-318.

Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine e-mail: vikono@imath.kiev.ua

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 e-mail: kopotunk@cc.umanitoba.ca

[^0]: Received by the editors December 12, 2005; revised February 10, 2006. Supported by NSERC of Canada.
 AMS subject classification: Primary: 41A46; secondary: 46E35, 41A29.
 Keywords: Kolmogorov width, linear width, pseudo-dimensional widths, s-monotone functions.
 (c)Canadian Mathematical Society 2008.

