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Kolmogorov, Linear and
Pseudo-Dimensional Widths of
Classes of s-Monotone Functions
in Lp, 0 < p < 1

Victor N. Konovalov and Kirill A. Kopotun

Abstract. Let Bp be the unit ball in Lp , 0 < p < 1, and let ∆s
+, s ∈ N, be the set of all s-monotone

functions on a finite interval I, i.e., ∆s
+ consists of all functions x : I 7→ R such that the divided

differences [x; t0, . . . , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, . . . , ts ∈

I. For the classes ∆s
+Bp := ∆s

+ ∩ Bp , we obtain exact orders of Kolmogorov, linear and pseudo-

dimensional widths in the spaces Lq, 0 < q < p < 1:

dn(∆s
+Bp)

psd
Lq

≍ dn(∆s
+Bp)kol

Lq
≍ dn(∆s

+Bp)lin
Lq

≍ n−s.

1 Introduction, Preliminaries, and the Main Result

The general theory of widths deals with approximation of infinite-dimensional func-

tion classes by finite-dimensional manifolds which are optimal in a certain sense. It

has numerous applications in numerical analysis (what is the optimal rate of conver-

gence attainable by any numerical method for a specific problem?), learning theory

(among various hypothesis classes what can be considered optimal?), image com-

pression (what is the best compression ratio?), and many other areas.

Let X be a real linear space of vectors x with (quasi)norm ‖x‖X , and W and M be

nonempty subsets of X. The deviation of W from M is defined by

E(W,M)X := sup
x∈W

inf
y∈M

‖x − y‖X .

The Kolmogorov n-width of W is defined by

dn(W )kol
X := inf

Mn
E(W,Mn)X, n ≥ 0,

where the infimum is taken over all affine subsets Mn ⊆ X of dimension ≤ n.

The linear n-width of W is defined by

dn(W )lin
X := inf

Mn
inf

A
sup
x∈W

‖x − Ax‖X, n ≥ 0,
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where the left-hand infimum is taken over all affine subsets Mn ⊆ X of dimension

at most n, and the middle infimum is taken over all continuous affine maps A from

affine subsets of X containing W into Mn.

Finally, we will also have estimates for yet another width, the pseudo-dimensional

width which was introduced by Maiorov and Ratsaby [11,12,15] using the concept of

pseudo-dimension due to Pollard [13]. Namely, let M = M(T) be a set of real-valued

functions x( · ) defined on the set T, and denote

Sgn(a) :=

{

1 if a > 0,

0 if a ≤ 0.

The pseudo-dimension dimps(M) of the set M is the largest integer n such that there

exist points t1, . . . , tn ∈ T and a vector (y1, . . . , yn) ∈ R
n for which

card
{(

Sgn(x(t1) + y1), . . . , Sgn(x(tn) + yn)
)

∣

∣ x ∈ M
}

= 2n.

If n can be arbitrarily large, then dimps(M) := ∞.

The pseudo-dimensional n-width of W is defined by

dn(W )
psd
X := inf

Mn
sup
x∈W

inf
y∈Mn

‖x − y‖X,

where the left-hand infimum is taken over all subsets Mn ⊆ X such that dimps(Mn) ≤
n. It is known (see [6]) that if M is an arbitrary affine subset in a space X of real-

valued functions and dim M <∞, then dimps(M) = dim(M). Clearly,

(1.1) dn(W )
psd
X ≤ dn(W )kol

X ≤ dn(W )lin
X .

Let s ∈ N, and ∆
s
+ := ∆

s
+(I) be the set of functions x : I 7→ R on a finite interval

I such that the divided differences [x; t0, . . . , ts] of order s of x are nonnegative for all

choices of (s + 1) distinct points t0, . . . , ts ∈ I. We call functions x ∈ ∆
s
+ s-monotone

on I.

It is well known (see [1, 14, 16]) that if x is s-monotone on [a, b], s ≥ 2, then

x(ν) exists on (a, b) for ν ≤ s − 2, and, in fact, x(ν) ∈ ∆
s−ν
+ (a, b). In particular,

x(s−2) exists, is convex, and therefore is locally absolutely continuous in (a, b), and

has left and right (nondecreasing) derivatives x(s−1)
− and x(s−1)

+ there. Moreover, the

set E where x(s−1) fails to exist is countable, and x(s−1) is continuous on (a, b) \ E.

Throughout this paper, if a function x : I 7→ R possesses both the left-hand and the

right-hand derivatives x(k)
− (t) and x(k)

+ (t), of order k ∈ N, at a point t ∈ I, then we

denote x(k)(t) :=
(

x(k)
− (t) + x(k)

+ (t)
)

/2. Evidently, this notation is compatible with

that of the derivative x(k)(t) if it exists. We also write x(0)(t) := x(t), t ∈ I.

Given a function space X and W ⊆ X, we denote by ∆
s
+W the subset of s-

monotone functions x ∈ W , i.e., ∆s
+W := ∆

s
+ ∩W .

Let Lp := Lp(I), 0 < p ≤ ∞, be the space of all functions x on I with (quasi)norm

‖x‖Lp(I) :=
(∫

I
|x(t)|p dt

) 1/p
. By Bp := Bp(I) we denote the unit ball in Lp. Evidently
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∆
s
+Bp ⊂ Lq, 0 < q ≤ p ≤ ∞, but ∆

s
+Bp 6⊂ Lq, 0 < p < q ≤ ∞. For the integers

r ∈ N, we denote the Sobolev classes

W
r
p := W

r
p(I) := {x | x(r−1) ∈ ACloc, ‖x(r)‖Lp

≤ 1}, 0 < p ≤ ∞.

Recall that for 1 ≤ p, q ≤ ∞, the orders of most widths of the classical Sobolev

classes W
r
p in Lq are well known. They are asymptotically n−r+α(p,q), where 0 ≤

α(p, q) ≤ 1/2. In contrast, for 0 < p < 1 the behavior of the widths differs essen-

tially. Let

W
r
p,∞ := {x | x ∈ W

r
p, ‖x‖L∞

≤ 1}, 0 < p < 1.

It was proved in [3] that if 0 < p < 1, then

dn(W
r
p,∞)

psd
Lq

≍ dn(W
r
p,∞)kol

Lq
≍ dn(W

r
p,∞)lin

Lq
≍ 1, 0 < q ≤ ∞.

The aim of this paper is to show that s-monotone functions x ∈ ∆
s
+Bp, 0 < p < 1,

can be approximated well in Lq, 0 < q < p < 1. Our main result is:

Theorem 1 If s, n ∈ N and 0 < q < p < 1 then

(1.2) dn(∆s
+Bp)

psd
Lq

≍ dn(∆s
+Bp)kol

Lq
≍ dn(∆s

+Bp)lin
Lq

≍ n−s, n ≥ s.

2 Upper Bounds

This section is devoted to proving that a function x ∈ ∆
s
+Bp, 0 < p < 1, can be

well approximated in Lq, 0 < q < p, by piecewise polynomials associated with it,

in a linear fashion. Specifically, we will show that for x ∈ ∆
s
+Lp there is a piecewise

polynomial σs,n(· ; x ; I) with 2n − 2 prescribed knots (see construction below), such

that

(2.1) ‖x( · ) − σs,n(· ; x ; I)‖Lq(I) ≤ c‖x‖Lp(I)n
−s, n ≥ 1, 0 < q < p < 1,

where c = c(s, p, q).

2.1 Auxiliary Results

The following lemma is due to Bullen [1] (see also [9, Lemma 8.3] for discussion of

the cases when some or all interpolation points coincide).

Lemma 1 Let s ∈ N, f ∈ ∆
s
+(a, b), and let Ls−1( f , t ; t1, . . . , tk) be the Lagrange

(Hermite–Taylor) polynomial of degree ≤ s− 1 interpolating f at the points ti , 1 ≤ i ≤
s, where a =: t0 < t1 ≤ · · · ≤ ts < ts+1 := b. Then

(−1)s−i
(

f (t) − Ls−1( f , t ; t1, . . . , ts)
)

≥ 0, t ∈ (ti , ti+1), i = 0, . . . , s.

In other words, f − Ls−1 changes sign at t1, . . . , ts.
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Lemma 2 Let n ∈ N, 0 < p < 1, and let (αi j )
n
i, j=1 be an n × n matrix with

nonnegative entries. Then

n
∑

j=1

(

n
∑

i=1

α
p
i j

) 1/p

≤
(

n
∑

i=1

(

n
∑

j=1

αi j

) p) 1/p

.

Proof It is well known (see, e.g., [5, (2.11.5)]) and easy to prove that, in the case

0 < p < 1,

‖x + y‖lnp
≥ ‖x‖lnp

+ ‖y‖lnp
, for any x, y ∈ R

n
+.

Therefore, for any x j ∈ R
n
+, 1 ≤ j ≤ n, we have

∥

∥

∥

n
∑

j=1

x j

∥

∥

∥

lnp

≥

n
∑

j=1

∥

∥x j

∥

∥

lnp
,

and hence choosing x j = (α1 j , α2 j , . . . , αn j), 1 ≤ j ≤ n, we have

(

n
∑

i=1

(

n
∑

j=1

αi j

) p) 1/p

=

∥

∥

∥

(

n
∑

j=1

α1 j ,
n

∑

j=1

α2 j , . . . ,
n

∑

j=1

αn j

)
∥

∥

∥

lnp

=

∥

∥

∥

n
∑

j=1

x j

∥

∥

∥

lnp

≥
n

∑

j=1

∥

∥x j

∥

∥

lnp
=

n
∑

j=1

(

n
∑

i=1

α
p
i j

) 1/p

.

Lemma 3 Let n ∈ N, 0 < p, q < 1, and suppose that a = (a1, . . . , an) and b =

(b1, . . . , bn) are n-tuples with nonnegative entries, and c := (ci j)
n
i, j=1 is a nonnegative

n × n matrix. Given a function

fq,n(w; a) :=
(

n
∑

i=1

(aiωi)
q
) 1/q

,

where w := (ω1, . . . , ωn) ∈ R
n
+, and the set

Ω
n
p(b; c) := R

n
+ ∩

{

w :

n
∑

i=1

(

bi

n
∑

j=1

ci jω j

) p

≤ 1
}

,

we have

max
w∈Ωn

p (b;c)
fq,n(w; a) ≤ n1/q−1 max

1≤ j≤n

{

a j

(

n
∑

i=1

(bici j)
p
)−1/p}

.
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Proof By Jensen’s inequality, for every w ∈ R
n
+, we have

fq,n(w ; a) =

(

n
∑

i=1

(aiωi)
q
) 1/q

≤ n1/q−1

n
∑

i=1

aiωi =: gq,n(w ; a).

It follows from Lemma 2 that

n
∑

i=1

(

n
∑

j=1

αi j

) p

≤ 1 ⇒
n

∑

j=1

(

n
∑

i=1

α
p
i j

) 1/p

≤ 1.

Therefore, taking αi j := bici jω j , we conclude that the set Ω
n
p(b ; c) is a subset of the

simplex

Sn
p(b ; c) := R

n
+ ∩

{

w :

n
∑

j=1

(

n
∑

i=1

(bici j)
p
) 1/p

ω j ≤ 1
}

.

Since gq,n(· ; a) is a linear function it achieves its maximum on Sn
p(b ; c) at the vertices

z j =

(

n
∑

i=1

(bici j)
p
)−1/p

e j , 1 ≤ j ≤ n,

of Sn
p(b ; c) (here, e j , 1 ≤ j ≤ n, is the standard basis of R

n). Therefore,

max
w∈Ωn

p (b;c)
fq,n(w ; a) ≤ max

w∈Ωn
p (b;c)

gq,n(w ; a) ≤ max
w∈Sn

p(b;c)
gq,n(w ; a)

= n1/q−1 max
1≤ j≤n

{

a j

(

n
∑

i=1

(bici j)
p
)−1/p}

,

and the proof is complete.

The following lemma is an immediate corollary of a stronger Theorem 1 in [8],

taking into account [4] (see also [2, Theorem 4.6.3]).

Lemma 4 ([8]) Let s ∈ N, 0 < p ≤ ∞, I := (−1, 1), and x ∈ ∆
s
+Lp(I). Denote by

Ts−1(t) := Ts−1(t ; x ; 0) :=

s−1
∑

k=0

x(k)(0)

k!
tk, t ∈ I,

the Taylor polynomial of degree≤ s−1 at t = 0. Then, there exists a constant c = c(s, p)

such that

‖x − Ts−1‖Lp(I) ≤ c ‖x‖
Lp(I) .
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2.2 Proof of the Upper Bounds in Theorem 1

Fix n ≥ 1, and let β ∈ N, to be prescribed. For every −n ≤ i ≤ n, denote

ti := sign(i)
(

1 −
(

(n − |i|)/n
) β)

.

Also,

Ii :=

{

[ti−1, ti) i = 1, . . . , n,

(ti , ti+1] i = −1, . . . ,−n.

Note that t−i = −ti and |I−i| = |Ii| for all −n ≤ i ≤ n. Straightforward computa-

tions show that β(n − i)β−1n−β ≤ |Ii| ≤ (2β − 1)(n − i)β−1n−β for 1 ≤ i ≤ n − 1,

|In| = n−β , and |Ii+1| ≤ |Ii | ≤ (2β − 1)|Ii+1| for all 1 ≤ i ≤ n − 1.

Let x ∈ ∆
s
+(I). Recall that x(s−1) is nondecreasing, and so has left and right

derivatives x(s−1)
− (τ ) and x(s−1)

+ (τ ), τ ∈ I. We recall our notation x(s−1)(τ ) :=
(

x(s−1)
+ (τ ) + x(s−1)

− (τ )
)

/2, and put

Ts−1(t ; x ; τ ) :=

s−1
∑

k=0

x(k)(τ )

k!
(t − τ )k, t ∈ I.

Finally, we denote

Ts−1(t ; x ; Ii) :=

{

Ts−1(t ; x ; ti−1) i = 1, . . . , n,

Ts−1(t ; x ; ti+1) i = −1, . . . ,−n,

and set

(2.2) σs,n(t) := σs,n(t ; x ; I) := Ts−1(t ; x ; Ii), t ∈ Ii , i = ±1, . . . ,±n.

We will estimate the distance of σs,n(· ; x ; I) from x ∈ ∆
s
+Bp. First we assume that x

satisfies

(2.3) x(k)(0) = 0, k = 0, . . . , s − 1.

It follows from Lemma 1 (or may be proved directly) that in this case x(k)(t) ≥ 0,

t ∈ I+ := [0, 1), and (−1)s−kx(k)(t) ≥ 0, t ∈ I− := (−1, 0], k = 0, . . . , s − 1.

We restrict our discussion to I+, the estimates for I− follow by the observation that

y(t) := (−1)sx(−t), t ∈ I, satisfies y(k)(t) = (−1)s−kx(k)(−t) ≥ 0, t ∈ I+, k =

0, . . . , s − 1, and that σs,n(t ; y ; I) = (−1)sσs,n(−t ; x ; I). Without loss of generality

we assume that ‖x‖Lp(I+) 6= 0.

If n = 1, then σs,1(t) ≡ 0, t ∈ I, and by Hölder’s inequality we have

‖x( · ) − σs,1‖Lq(I)
= ‖x‖

Lq(I) ≤ 21/q−1/p ‖x‖
Lp(I) .

From now on, we assume that n > 1, and denote

ωi := ωi(x(s−1) ; Ii) := x(s−1)(ti) − x(s−1)(ti−1), i = 1, . . . , n − 1.
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First, if s = 1 and t ∈ Ii , 1 ≤ i ≤ n − 1, then it is readily seen that

(2.4) ‖x − σ1,n‖Lq(Ii )
≤ |Ii |

1/qωi .

If s > 1 and t ∈ Ii , 1 ≤ i ≤ n − 1, then Taylor’s formula with integral remainder and

integration by parts yield

x(t) − σs,n(t) = x(t) − Ts−1(t ; x ; Ii)

=
1

(s − 2)!

∫ t

ti−1

(

x(s−1)(τ ) − x(s−1)(ti−1)
)

(t − τ )s−2 dτ .

Hence, using monotonicity of x(s−1) we conclude that

(2.5) ‖x − σs,n‖Lq(Ii )
≤

|Ii |
s−1+1/q

(s − 1)!
ωi , i = 1, . . . , n − 1.

Taking into account (2.4) we see that (2.5) is valid for all s ≥ 1. It now remains to

consider that case t ∈ In. For any s ≥ 1, if t ∈ In then by Lemma 1 and the fact that

x(k)(tn−1) ≥ 0, k = 0, . . . , s− 1, we have 0 ≤ x(t)−σs,n(t) = x(t)−Ts−1(t ; x ; In) ≤
x(t). By Hölder’s inequality we get

(2.6) ‖x − σs,n‖Lq(In)
≤ ‖x‖Lp(In) |In|

1/q−1/p.

Combining (2.5) and (2.6) we obtain

‖x − σs,n‖
q

Lq(I+)
=

n
∑

i=1

‖x − σs,n‖
q

Lq(Ii )

≤
1

(

(s − 1)!
) q

n−1
∑

i=1

(|Ii |
s−1+1/qωi)

q + ‖x‖
q
Lp(In)|In|

1−q/p.

Suppose now that t ∈ Ii , 2 ≤ i ≤ n, is fixed. Since by (2.3), Ts−1(· ; x ; I1) ≡ 0, we

have

x(t) = x(t) − Ts−1(t ; x ; Ii) +

i
∑

j=2

(

Ts−1(t ; x ; I j) − Ts−1(t ; x ; I j−1)
)

and note that

Ts−1(t ; x ; I j) − Ts−1(t ; x ; I j−1) =

s−1
∑

k=0

(

x(k)(t j−1) − T(k)
s−1(t j−1 ; x ; I j−1)

) (t − t j−1)k

k!

=

s−1
∑

k=0

(

x(k)(t j−1) − Ts−k−1(t j−1 ; x(k) ; I j−1)
) (t − t j−1)k

k!
.

https://doi.org/10.4153/CMB-2008-025-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-025-6


Widths of the Classes of s-Monotone Functions in Lp, 0 < p < 1 243

Lemma 1 implies (this is also not difficult to show directly) that x(t) ≥ Ts−1(t ; x ; Ii)

and x(k)(t j−1) ≥ Ts−k−1(t j−1 ; x(k) ; I j−1), 0 ≤ k ≤ s − 2. Therefore,

Ts−1(t ; x ; I j) − Ts−1(t ; x ; I j−1)

≥
(

x(s−1)(t j−1) − T0(t j−1 ; x(s−1) ; I j−1)
) (t − t j−1)s−1

(s − 1)!

=
(t − t j−1)s−1

(s − 1)!
ω j−1,

and, hence, for any t ∈ Ii , 2 ≤ i ≤ n,

(2.7) x(t) ≥
i

∑

j=2

(t − t j−1)s−1

(s − 1)!
ω j−1.

Denoting t̄i := (ti + ti−1)/2, for 2 ≤ j ≤ i ≤ n and t ∈ [t̄i , ti), we have

t − t j−1 = (t − t̄i) + (t̄i − ti−1) +

i−1
∑

k= j

(tk − tk−1) ≥
1

2

i
∑

k= j

(tk − tk−1)

=
1

2

i
∑

k= j

|Ik| ≥
1

2
(i − j + 1)|Ii |,

since |I1| ≥ |I2| ≥ · · · ≥ |In|.
Combining this estimate with (2.7) we obtain

x(t) ≥
|Ii|

s−1

2s−1(s − 1)!

i
∑

j=2

(i − j + 1)s−1ω j−1, t ∈ [t̄i , ti), 2 ≤ i ≤ n,

which implies

‖x‖
p
Lp(I+) ≥

n
∑

i=2

‖x‖
p
Lp[t̄i ,ti ]

≥
1

2(s−1)p+1
(

(s − 1)!
) p

n
∑

i=2

|Ii|
(s−1)p+1

(

i
∑

j=2

(i − j + 1)s−1ω j−1

) p

=

n−1
∑

i=1

( |Ii+1|
s−1+1/p

2s−1+1/p(s − 1)!

i
∑

j=1

(i − j + 1)s−1ω j

) p

≥
n−1
∑

i=1

(

c̄|Ii|
s−1+1/p

i
∑

j=1

(i − j + 1)s−1ω j

) p

,

(2.8)
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where c̄ = 2−(β+1)(s−1+1/p)
(

(s − 1)!
)−1

.

We can rewrite (2.8) in the following equivalent form

(2.9)

n−1
∑

i=1

( c̄|Ii |
s−1+1/p

‖x‖
Lp(I+)

i
∑

j=1

(i − j + 1)s−1ω j

) p

≤ 1.

We are interested in estimating the sum in (2.2) from above subject to (2.9). In other

words, we want to find (estimate) the maximum value of the function

(

fq,n−1(w ; a)
) q

:=

n−1
∑

i=1

(aiωi)
q,

on the set

Ω
n−1
p (b ; c) := R

n−1
+ ∩

{

w :

n−1
∑

i=1

(

bi

n−1
∑

j=1

ci jω j

) p

≤ 1
}

,

where ai := |Ii |
s−1+1/q, bi := c̄|Ii |

s−1+1/p ‖x‖
−1
Lp(I+) and ci j := (i − j + 1)s−1

+ :=

(max{i − j + 1, 0})s−1, i, j = 1, . . . , n− 1. We now estimate
∑n−1

i=1 (bici j)
p, and then

apply Lemma 3 in order to estimate this maximum value.

n−1
∑

i=1

(bici j)
p ≤ c ‖x‖

−p
Lp(I+)

n−1
∑

i=1

|Ii|
(s−1)p+1(i − j + 1)

(s−1)p
+

≤ c ‖x‖
−p
Lp(I+)

n−1
∑

i= j

|Ii|
(s−1)p+1(i − j + 1)(s−1)p

≤ c ‖x‖
−p
Lp(I+)

n−1
∑

i= j

(n − i)(β−1)(sp−p+1)n−β(sp−p+1)(i − j + 1)(s−1)p

≤ c ‖x‖
−p
Lp(I+)

( n − j

n

) β(sp−p+1)

.

We now take β ∈ N to be such that

(2.10) β ≥ p(sq − q + 1)/(p − q).
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Then, Lemma 3 (with n − 1 instead of n) implies

max
w∈Ω

n−1
p (b;c)

(

fq,n−1(w ; a)
) q

≤ n1−q max
1≤ j≤n−1

{

a
q
j

(

n−1
∑

i=1

(bici j)
p
)−q/p}

≤ c ‖x‖
q
Lp(I+) n1−q max

1≤ j≤n−1

{

|I j |
sq−q+1

( n − j

n

)−βq(sp−p+1)/p}

≤ c ‖x‖
q
Lp(I+) n1−q−β+βq/p max

1≤ j≤n−1
{(n − j)β(1−q/p)−(sq−q+1)}

≤ c ‖x‖
q
Lp(I+) n−sq.

Therefore, using the above as well as the observation that, if β satisfies (2.10), then

|In|
1−q/p

= n−β(1−q/p) < n−sq, we immediately get from (2.2)

‖x − σs,n‖
q

Lq(I+)
≤ c ‖x‖

q
Lp(I+) n−sq + ‖x‖

q
Lp(In) |In|

1−q/p ≤ c ‖x‖
q
Lp(I+) n−sq,

and so (2.1) is proved for all x ∈ ∆
s
+Lp satisfying (2.3).

In general, if x ∈ ∆
s
+Lp, then the function

x̃(t) := x(t) − Ts−1(t ; x ; 0), t ∈ I,

satisfies (2.3), and by Lemma 4 ‖x̃‖
Lp(I) ≤ c ‖x‖

Lp(I), where c depends only on s and p.

Therefore, it is enough to set

σs,n(t ; x ; I) := σs,n(t ; x̃ ; I) + Ts−1(t ; x ; 0), t ∈ I,

in order to complete the proof of (2.1) for all x ∈ ∆
s
+Lp.

Denote by Σβ,s,n := Σβ,s,n(I), where β satisfies (2.10), the space of piecewise poly-

nomials σ : I 7→ R, of order s (of degree ≤ s − 1), with knots at ti , i = ±1, . . . ,
±(n − 1). Then, for x ∈ ∆

s
+Bp, clearly σs,n(· ; x ; I) ∈ Σβ,s,n. Also, by our con-

struction, the mapping A : span(∆s
+Bp) 7→ Σβ,s,n defined by (2.2) is linear. Since

dim(Σβ,s,n) = s(2n − 1), it follows by (1.1) that

dn(∆s
+Bp)

psd
Lq

≤ dn(∆s
+Bp)kol

Lq
≤ dn(∆s

+Bp)lin
Lq

≤ cn−s, n ≥ s, 0 < q < p < 1,

where c = c(s, p, q). This proves the upper bound in (1.2).

3 Lower Bounds

3.1 Auxiliary Results

The following lemma can be proved in exactly the same way as [10, Lemma 2.2,

p. 489] (also see [12, Claim 1]).
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Lemma 1 Let m ∈ N and V m := {(v1, . . . , vm) : vi = ±1, i = 1, . . . ,m}. Then

there exists a subset V (m) ⊂ V m of cardinality ≥ 2m/16 such that for any v, u ∈ V (m),

v 6= u, the distance ‖v − u‖lm1
≥ m/2.

The following property of the pseudo-dimension is well known (see [17], [6]) and

immediately follows from the definition.

Lemma 2 Let T 6= ∅ and M := M(T) be a family of functions x : T 7→ R. Fix any

function y : T 7→ R,

dimps{z : z = y + x, x ∈ M} = dimps(M).

Lemma 3 ([3, Lemma 1]) Let I := (0, 1), and let a > 0, ε > 0, and m ∈ N, such

that m ≥ 16
(

8 + log2(a/ε)
)

, be given. Suppose that a set Φ
(m) of functions ϕ ∈ L∞(I)

is such that

card(Φ(m)) ≥ 2m/16,

‖ϕ‖L∞(I) ≤ a, ϕ ∈ Φ
(m),

and for some 0 < q < 1,

‖φ1 − φ2‖Lq(I) ≥ ε, φ1 6= φ2, φ1, φ2 ∈ Φ
(m).

Then for any n ∈ N such that n ≤
(

16
(

8 + log2(a/ε)
)

)−1

m we have

dn(Φ(m))
psd
Lq(I) ≥ 2−2−1/q(2q − 1)1/qε.

3.2 Proof of the Lower Bounds in Theorem 1

Let ϕ ∈ C∞(R) be nonnegative with suppϕ = I+ = [0, 1], ‖ϕ‖L∞(I) = 1, and

ϕ(t) = 1 if t ∈ [1/4, 3/4]. Denote ϑs := ‖ϕ(s)‖−1
L∞(I).

For s ∈ N, let

φs(t) := ϑsϕ(t), t ∈ R,

and for m ∈ N to be prescribed, take t∗i := t∗m,i := i/m, 0 ≤ i ≤ m, and I∗i := I∗m,i :=

[t∗i−1, t
∗
i ], 1 ≤ i ≤ m. Denote

κ := (sp + 1)1/p2−1/ps!,

and, for each 1 ≤ i ≤ m, set

φs,m,i(t) := κm−sφs

(

m(t − t∗i−1)
)

, t ∈ R.

Then, suppφs,m,i = I∗i , ‖φ(s)
s,m,i‖L∞(I) = κ, 0 ≤ φs,m,i(t) ≤ κϑsm

−s, t ∈ I, and

φs,m,i(t) = κϑsm
−s, t ∈ [t∗i−1 + 1/(4m), t∗i − 1/(4m)].
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Write

Φ
(m)
s :=

{

φ : φ =

m
∑

i=1

viφs,m,i , (v1, . . . , vm) ∈ V (m)
}

,

where V (m) is the class of sign-vectors defined in Lemma 1. Then, for all φ ∈ Φ
(m)
s ,

‖φ‖L∞(I) ≤ κϑsm
−s and ‖φ(s)‖L∞(I) ≤ κ.

Set

ψs(t) :=
κ

s!
t s
+, t ∈ I.

It is easy to check that ‖ψs‖Lp(I) = 2−1/p, and ψ(s)
s (t) = κ, t ∈ I+.

Clearly, for all φ ∈ Φ
(m)
s , ψ(s)

s (t) + φ(s)(t) ≥ 0 a.e. on I, and

‖ψs + φ‖
p
Lp(I) ≤ ‖ψs‖

p
Lp(I) + ‖φ‖

p
Lp(I) ≤ 1/2 + κϑsm

−s.

Thus, for m ≥ (2κ)1/sϑ
1/s
s we have ψs + Φ

(m)
s ⊂ ∆

s
+Bp, and so applying Lemma 2 we

have

(3.1) dn(∆s
+Bp)

psd
Lq(I) ≥ dn(ψs + Φ

(m)
s )

psd
Lq(I) = dn(Φ(m)

s )
psd
Lq(I), n ≥ 1.

For any two different vectors v := (v1, . . . , vm) and u := (u1, . . . , um) in V (m), let

φ1 :=

m
∑

i=1

viφs,m,i and φ2 :=

m
∑

i=1

uiφs,m,i

be the two corresponding functions in Φ
(m)
s . Since ‖v − u‖lm1

≥ m/2, then there exist

⌈m/4⌉ indices i1, . . . , i⌈m/4⌉ such that vik
= −uik

, k = 1, . . . , ⌈m/4⌉. Hence,

‖φ1 − φ2‖
q
Lq(I) =

∫

I

∣

∣

∣

m
∑

i=1

(vi − ui)φs,m,i(t)
∣

∣

∣

q

dt =

m
∑

i=1

∫

I∗i

|vi − ui |
q
(

φs,m,i(t)
) q

dt

≥ κqϑq
s m−sq

⌈m/4⌉
∑

k=1

|vik
− uik

|q
∫ t∗ik

− 1
4m

t∗ik
−1+ 1

4m

dt

= κqϑq
s m−sq(2m)−1

⌈m/4⌉
∑

k=1

2q

≥ κq2q−3ϑq
s m−sq

=: εq.

If we set a := κϑsm
−s, and given n ∈ N, we take m = ⌈80(κ23/q−1 + 1)⌉n, then

applying Lemma 3, we conclude that

dn(Φ(m)
s )Lq(I) ≥ cn−s, n ≥ 1,

where c = c(s, p, q). By virtue of (1.1) and (3.1) this implies

dn(∆s
+Bp)lin

Lq
≥ dn(∆s

+Bp)kol
Lq

≥ dn(∆s
+Bp)

psd
Lq

≥ cn−s, n ≥ s,

where c = c(s, p, q). This completes the proof of the lower bound and so of Theo-

rem 1.
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