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Kolmogorov, Linear and
Pseudo-Dimensional Widths of
Classes of s-Monotone Functions
inlL, 0 <p<1

Victor N. Konovalov and Kirill A. Kopotun

Abstract. Let By be the unit ball in L,, 0 < p < 1, and let A}, s € N, be the set of all s-monotone
functions on a finite interval I, i.e., A% consists of all functions x: I +— R such that the divided
differences [x; to, . . . , ts] of order s are nonnegative for all choices of (s + 1) distinct points fo, . . . , ts €
I. For the classes A%B, := A% N B,, we obtain exact orders of Kolmogorov, linear and pseudo-
dimensional widths in the spacesL;, 0 < g < p < 1:

du(A5 B = du(A B0 < du( AL By = .

1 Introduction, Preliminaries, and the Main Result

The general theory of widths deals with approximation of infinite-dimensional func-
tion classes by finite-dimensional manifolds which are optimal in a certain sense. It
has numerous applications in numerical analysis (what is the optimal rate of conver-
gence attainable by any numerical method for a specific problem?), learning theory
(among various hypothesis classes what can be considered optimal?), image com-
pression (what is the best compression ratio?), and many other areas.

Let X be a real linear space of vectors x with (quasi)norm |x||,, and W and M be
nonempty subsets of X. The deviation of W from M is defined by

E(W,M)x := inf ||x — .
(W, My = sup inf }x—ylx
The Kolmogorov n-width of W is defined by
d,(W)ke! .= inf E(W, M")x, n >0,

where the infimum is taken over all affine subsets M" C X of dimension < n.
The linear n-width of W is defined by

d,(W)in .= infinfsup ||x — Ax||x, n>0,
M" A xew
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where the left-hand infimum is taken over all affine subsets M" C X of dimension
at most #n, and the middle infimum is taken over all continuous affine maps A from
affine subsets of X containing W into M".

Finally, we will also have estimates for yet another width, the pseudo-dimensional
width which was introduced by Maiorov and Ratsaby [11,12,15] using the concept of
pseudo-dimension due to Pollard [13]. Namely, let M = M(T) be a set of real-valued
functions x( - ) defined on the set T, and denote

1 ifa>0,
Sgn(a) = {0 ifa<o0

The pseudo-dimension dim,s(M) of the set M is the largest integer n such that there
exist points t1, ..., t, € T and a vector (y1,...,y,) € R" for which

card{ (Sgn(x(t1) + y1),...,Sgn(x(ty) + yu)) | x € M} =2".

If n can be arbitrarily large, then dim,(M) := oo.
The pseudo-dimensional n-width of W is defined by

d,(W)F* := infsup inf |lx —
(W™= infsup inf flx = yllx,

where the left-hand infimum is taken over all subsets M" C X such that dim,(M") <
n. It is known (see [6]) that if M is an arbitrary affine subset in a space X of real-
valued functions and dim M < oo, then dim,(M) = dim(M). Clearly,

(L.1) d,(WR < dy(W)E! < dy (W)

Lets € N, and A% := A’ (I) be the set of functions x: I — R on a finite interval

I such that the divided differences [x; ty, . . ., t;] of order s of x are nonnegative for all
choices of (s + 1) distinct points ty, . . ., t; € I. We call functions x € A’ s-monotone
onl.

It is well known (see [1, 14, 16]) that if x is s-monotone on [a, b], s > 2, then
1) exists on (a,b) for v < s — 2, and, in fact, x*) € AS"(a,b). In particular,
x5~ exists, is convex, and therefore is locally absolutely continuous in (a, b), and
has left and right (nondecreasing) derivatives x5V and fo ~ there. Moreover, the
set E where x®~V fails to exist is countable, and x“~" is continuous on (a, b) \ E.
Throughout this paper, if a function x: I — R possesses both the left-hand and the

right-hand derivatives xg‘)(t) and xﬁrk)(t), of order k € N, at a point ¢ € I, then we
denote xF (¢) := (xg()(t) + xik)(t)) /2. Evidently, this notation is compatible with
that of the derivative x® (¢) if it exists. We also write x(0(¢) := x(¢), t € I.

Given a function space X and W C X, we denote by AW the subset of s-
monotone functions x € W, ie., AW = Al NW.

LetlL, :=IL,(I), 0 < p < 00, be the space of all functions x on I with (quasi)norm

lxlle, @y == (J; [x(2)|? dt) Vr By B, := B,(I) we denote the unit ball in I,. Evidently
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A3B, CIL;,0<q<p<oo,butAiB, ¢ 1,0 < p < q < oo. For the integers
r € N, we denote the Sobolev classes

W= Wi (I) := {x | x""" € ACioc, [|lx"[|, < 1}, 0 < p < oo

Recall that for 1 < p,q < oo, the orders of most widths of the classical Sobolev
classes W/, in I, are well known. They are asymptotically n~"**P9, where 0 <
a(p,q) < 1/2. In contrast, for 0 < p < 1 the behavior of the widths differs essen-
tially. Let

W), o = A{x|x e W, [Ix[, <1}, 0<p<1.

It was proved in [3] thatif 0 < p < 1, then
dy (W), P < dy (W) ) < d,y (W) I < 1, 0< g < oo,
The aim of this paper is to show that s-monotone functions x € A$B,,0 < p < 1,
can be approximated well in L;, 0 < g < p < 1. Our main result is:

Theorem 1 Ifs,n € Nand0 < q < p < 1then

d i _
(1.2) du(AS BT = dy(ALB)[0 = dy(ASBy)" =< n™5, n>s.

2 Upper Bounds

This section is devoted to proving that a function x € A$B,, 0 < p < 1, can be
well approximated in IL;, 0 < g < p, by piecewise polynomials associated with it,
in a linear fashion. Specifically, we will show that for x € A}IL, there is a piecewise
polynomial o5 ,,(- 5 x; I) with 2n — 2 prescribed knots (see construction below), such
that

(2.1) [|x(-) = osn(-52;1)

Lo <clxl,mn™, n>1,0<g<p<l,
where ¢ = ¢(s, p, q).

2.1 Auxiliary Results

The following lemma is due to Bullen [1] (see also [9, Lemma 8.3] for discussion of
the cases when some or all interpolation points coincide).

Lemma 1 Lets € N, f € A’(a,b), and let Li_,(f,t;t1,...,t) be the Lagrange
(Hermite—Taylor) polynomial of degree < s — 1 interpolating f at the pointst;, 1 < i <
sswherea=:1t) <t < - <t; <ty :=b Then

(=D (f(O) = Ly (f, t5t1, .., 1)) =0, tE€ (i,ti1), i=0,...,s.

In other words, f — L,_, changes sign att,, ...t
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Lemma 2 Letn € N, 0 < p < 1, and let (aij)?,jzl be an n X n matrix with
nonnegative entries. Then

()" (55"

j=1 =1 i=1

Proof It is well known (see, e.g., [5, (2.11.5)]) and easy to prove that, in the case
0<p<l,
I+ ylly > lx

pt HY”[; , foranyx,y e RY.

Therefore, for any x; € R}, 1 < j < n, we have

n n
I8, = 3 Il
j=1 j=1

and hence choosing x; = (a1}, azj, . . ., ayj), 1 < j < 1, we have

n n

(5(50))" = | (S S S0

i=1 j=1 P

5

n

=[x
j=1

n

" 1/p
= Z ( Z O‘fj) :
i—1

j=1

n
> I
=1

Lemma 3 Letn € N,0 < p,q < 1, and suppose that a = (ay,...,a,) andb =
(b, ..., b,) are n-tuples with nonnegative entries, and ¢ := (Ci]')?,jzl is a nonnegative
n x n matrix. Given a function

- 1/q
Jan(wsa) := (Z(aiwi)q) :
i=1
wherew = (w1, ...,w,) € RY, and the set
n n P
oo =REN{wi Y (B ) <1},
j=1

i=1

we have
n

max f,,(w;a) < n'/77! max {aj(Z(bicij)P) 71/}7}.

weQ (bso) 1<j<n —
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Proof By Jensen’s inequality, for every w € R, we have
n 1/q ot n
fanwi) = (Y(@w?) < 0N iy = gga(wia).
i=1 i=1

It follows from Lemma 2 that

S(Sw) 1 = () <

=1 j=1 i

Therefore, taking «;; := bjc;jw;, we conclude that the set Q;’,(b ; €) is a subset of the
simplex

Shlbse) =R {w: zn:(zn:(biqj)ﬂ) < 1}

j=1  i=1

Since g, (@) is a linear function it achieves its maximum on Sy (b; ) at the vertices

- ~1/p . ,
= (Z(bicij)p) e, 1<j<n,
i=1

of SZ(b ;¢) (here, e/, 1 < j < m, is the standard basis of R"). Therefore,

max w;a) < max w;a) < max w;a
we (bic) fan(wsa) we (b gq"( ) wes (bs )gq”( )

=0 (0er) "}

and the proof is complete. ]

The following lemma is an immediate corollary of a stronger Theorem 1 in [8],
taking into account [4] (see also [2, Theorem 4.6.3]).

Lemma 4 ([8]) Lets€ N,0< p <oo,I:=(-1,1), andx € A{LL,(I). Denote by

s—1 x(k)(O) L

Ty (1) := T,y (t;x50) := o ik,

tel,
k=0

the Taylor polynomial of degree < s—1 att = 0. Then, there exists a constant ¢ = c(s, p)
such that

flx — Ts—IH:Lpa) sc ||x||1Lp(1)
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2.2 Proof of the Upper Bounds in Theorem 1

Fixn > 1,and let 8 € N, to be prescribed. For every —n < i < #n, denote

= sign(i)(l - ((n— |i\)/n) j)

Also,
I o— ti_1,t) i=1,...,n,
. (t,‘,t,‘H] i:—l,..‘,—n.
Note that t_; = —#; and |I_;| = |[;] for all —=n < i < n. Straightforward computa-

tions show that S(n — )7~ 'n=7 < L] < 2P -1 - mPBor1<i<n-—1,
L] = n=% and |I;;1| < || < 2% — 1)|I;1y| forall 1 <i<n—1.

Let x € AS (I ). Recall that x“~1 is nondecreasing, and so has left and right
derivatives x"* (7') and x )(T), 7 € I. We recall our notation x5~ V(r) :=

(« V(1) +x57V(1)) /2, and put

s—1
T ((t;x;7) Zx (T)(—Tk tel

k=0

Finally, we denote

To_1(tsxst— i=1,...,n,
Ty (t5%50) =13 . ° i ) .
Ts—l(t;x;tﬁl) l:_l,-.-,—ﬂ,

and set
(2.2) Osu(t) == 0su(tsxsI) =Ty (t5x51), te€l, i==1,...,%n.

We will estimate the distance of o, ,(-;x;I) from x € A’ B,,. First we assume that x
satisfies

(2.3) fP0)y=0, k=0,...,s—1.

It follows from Lemma 1 (or may be proved directly) that in this case 0 @) >0,
t €1, :=[0,1),and (=1)**x® () > 0,t € I_ := (-1,0,, k = 0,...,5 — 1.
We restrict our discussion to I, the estimates for I_ follow by the observation that
y(t) = (=1)x(—t), t € I, satisfies y®(t) = (=1 x®(—t) > 0,¢t € I, k =
0,...,s— 1,and that o, ,(t; y;I) = (—1)°0,,(—t;x;I). Without loss of generality
we assume that [|x|[r,,) 7 0.

If n =1, then o, ,(t) =0, t € I, and by Hélder’s inequality we have

[le(+) — 051HL = HxH]Lq(I) < 2Yamie ||xH;L,7(I)
From now on, we assume that n > 1, and denote

wi = wi(x VL) = k() =XV, i=1,..,n— 1
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First,ifs=landt € [;, 1 <i < n— 1, then it is readily seen that

(2.4) lx — < |GV,

Ifs>1landt € I;,1 <i < n— 1, then Taylor’s formula with integral remainder and
integration by parts yield

x(t) - Us,n(t) = x(t) - Ts—l(t;x§li)

- ﬁ / (x(s_l)(T) - x(s_l)(tifl)) (t — 1) *dr.

(s—1)

Hence, using monotonicity of x we conclude that

|I,-‘57H1/q

(25) HX - USﬁ””M(L) S WW,‘, 1= yor

,n—1.

Taking into account (2.4) we see that (2.5) is valid for all s > 1. It now remains to
consider that case t € I,,. For any s > 1, if t € I, then by Lemma 1 and the fact that

®(t,_1) >0,k=0,...,s—1, wehave 0 < x(t) — Osu(t) = x(t) — To—1(t5x51,) <
x(t). By Holder’s inequality we get

(2.6) | 1/q=1/p

X — Usﬁn”]Lq([n) < Hx”]Lp(In) |In|

Combining (2.5) and (2.6) we obtain

n
q _ q
e = snlly,u,) = Z 1% = Tsnlly, 1)
i=1

1+1 1—
SWZ(\IIS )+ Il 1l 0.

((

Suppose now thatt € I;, 2 < i < n, is fixed. Since by (2.3), Ts_1(-5x31;) = 0, we
have

x(t) = x(0) = Teor(t5631) + ) (Toma(03%51) = Toma (835 1-1))

j=2
and note that
s—1 (t t )k
—ti
Ts—l(t)x)lj) _ Ts—l(tyx)I]—l) = Z(X(k)(t]_l) - TS(E)I(t]—l )xyI]—l)) ki':
k=0
s—1
(t—tj—1)F
= (x(k)(tj_l) = To_j1(tjm15x7 515 1)) —]
k=0
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Lemma 1 implies (this is also not difficult to show directly) that x(¢) > T_1(¢;5x;1;)
and xO(t;_1) > To_j_1(tj—15x5%51;_1),0 < k < s — 2. Therefore,

Tor(t5x51;) — Toa(t5x515-1)

(t—tj1)"

S ()~ Ty )

=)
T (s—=1)! Wit

and, hence, forany ¢t € I;,2 < i < n,
i _
(t—tj)!

j=2

Denoting #; := (t; + t;—1)/2,for2 < j <i < mnandt € [f,t;), we have

i—1
(t— &)+ (F — tie 1)+Z(tk_tk 0> Z(tk—tk )

=j

L —tj

1< 1.
52|Ik|25(1_]+1)|1i"
k=

since || > || > -+ > |L,|.
Combining this estimate with (2.7) we obtain

‘1|51 )
X(t),mZ(l—JﬂLU wi—1, telft), 2<i<n,

which implies

n
@8) [l iy = Dl g
i=2

1 p
> s— 1p+1( _ - )
T 26mupn((s— 1)) P Z| a Z(I DT W

n—1 i
_ ‘Iz+1|s 1+1/p o
_2(25 +1/p(s — 1)1 4 Z(z—]+1) )
n—1 »
> (C|I|S 1+1/pZ(l_]+l)s 1 )

i

1 j=1
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where ¢ = 2_(*3“)(5_1“/1’)((5 -1 -

We can rewrite (2.8) in the following equivalent form

n—1 E|I,‘|571+1/p i

(2.9) Z( Z(i —j+ 1)5*1%») P

i=1 HxH]Lp(L) j=1

We are interested in estimating the sum in (2.2) from above subject to (2.9). In other
words, we want to find (estimate) the maximum value of the function

n—1
(fonr(wsa) "= (aiw)",
i=1

on the set
n—1 n—1 »
Qz_l(b;c) =RIIN {w: Z(bi Zci]wj) < 1},
=1 =l
where a; = |L|7V9, by = gL tYP ||x||1L_pl(1+) and ¢;; :== (i — j+ )i =

(max{i—j+1,0})*"1,i,j=1,...,n— 1. We now estimate Z;:ll(bic,-j)", and then
apply Lemma 3 in order to estimate this maximum value.

n—1 n—1
D i) < el fry DTG~ e

i=1 i=1

n—1

< CHXHH;IEL) Z |L'\(S_1)P+1(i — i+ 1)=Dep
i=j

n—1
<c ||x||H;l(’I+) Z(n _ i)(ﬂ—l)(SP—PH)n—ﬂ(SP—PH)(I' — i+ 1)(5—1)17
i=j

n— ]) B(sp—p+1)

< cllxlf (
We now take 8 € N to be such that

(2.10) B>psg—q+1)/(p—9q).
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Then, Lemma 3 (with n — 1 instead of n) implies

max  (fya-1(w;a))’
we ™ (bc)

n—I1
—a/p
<n'"1 max {aq( b<c~P> }
< '™ max () 2(”1)
i

_ B n—j
SC”xHENﬁnl ‘11<r]n<ar)l(71{|1j|5q qﬂ( n

) —ﬂq(sp—pﬂ)/p}
—q—p+B \B(1—q/p)—(sq—

< el ™Y ma {n = TR
<c ||x||1qu(1+) nl

Therefore, using the above as well as the observation that, if 3 satisfies (2.10), then
|I,|'~9/P = n=P0=4/P) < =% we immediately get from (2.2)

[Ee <clx|lf ;yn 0+ ||x]| @) |[n|1*‘1/P <c|x|?,,  n

L) = L, (1) L, L,(L) )

and so (2.1) is proved for all x € A}IL, satisfying (2.3).
In general, if x € A% L, then the function

x(t) == x(t) — T (£5x;0), t€l,

satisfies (2.3), and by Lemma 4 ||x”H;Lp(1) <c Hx||]LP(I), where ¢ depends only on s and p.
Therefore, it is enough to set

Oen(tsx;I) i=05,(t5%51) + T—1(t5x50), tel,

in order to complete the proof of (2.1) for all x € A%L,.

Denote by X3, := ¥,(I), where 3 satisfies (2.10), the space of piecewise poly-
nomials 0: I — IR, of order s (of degree < s — 1), with knots at #;, i = £1,...,
+(n — 1). Then, for x € A’B,, clearly 0,,(-;x;I) € ¥3;,. Also, by our con-
struction, the mapping A: span(A3$B,) — 33, defined by (2.2) is linear. Since
dim(Xg;,) = s(2n — 1), it follows by (1.1) that

s d s 0. s in —s
du(A5 BN < dy(ALB)[ < dy(ASBy)" <en™, n>s, 0<q<p<l,
where ¢ = ¢(s, p, q). This proves the upper bound in (1.2).
3 Lower Bounds

3.1 Auxiliary Results

The following lemma can be proved in exactly the same way as [10, Lemma 2.2,
p- 489] (also see [12, Claim 1]).
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Lemma 1 Letm € Nand V" := {(v1,...,vy) : v; = £1,i = 1,...,m}. Then
there exists a subset V"™ C V'™ of cardinality > 2"/'° such that for any v,u € V",
v # u, the distance [[v — u||p» > m/2.

The following property of the pseudo-dimension is well known (see [17], [6]) and
immediately follows from the definition.

Lemma 2 Let T # @ and M := M(T) be a family of functions x: T — R. Fix any
function y: T — R,

dimp{z:z =y +x,x € M} = dim,,(M).
Lemma 3 ([3,Lemmal]) LetI:= (0,1), andleta > 0, > 0, and m € N, such

that m > 16(8 +log,(a/e)), be given. Suppose that a set @™ of functions ¢ € Lo (I)
is such that

card(fl)(m)) > 2m/16,
Il <a, ¢ ed™,

and for some 0 < q < 1,

61 — ol =&, &1 # b2y 1,02 € B

1
Then for any n € N such that n < (16(8 +log,(a/e)) ) m we have

dn(@(’”)){:?n > 272144 — 1)V,

3.2 Proof of the Lower Bounds in Theorem 1
Let ¢ € C*(R) be nonnegative with suppy = I, = [0,1], ||¢|lL o = 1, and
)

o(t) = 1ift € [1/4,3/4]. Denote ¥, := || [y

Fors € N, let
@s(t) == Vsp(t), tER,

and for m € N to be prescribed, take t; := ¢, ; :=i/m,0 <i <m,and [ := I, ; ==
[t¥ ,,t],1 <i < m. Denote

K= (sp+1)1/P27Vpg),
and, foreach 1 <i < m, set
Gemi(t) = km ¢ (m(t —t]_))), teR

Then, supp Gem; = 15 |00 lim = £ 0 < emi(t) < wm™, t € I, and
Gsmi(t) = KOm ™, ¢ € [t} +1/(4m),t} — 1/(4m)].
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Write .
) :{¢:¢:Zvi¢s,m,iv(vl"uavm)Ev(m)}a
i=1

where V" is the class of sign-vectors defined in Lemma 1. Then, for all ¢ € ®{™
19l < w0m™ and {16 o) < 5.

Set
(1) = 5 i, tel

It is easy to check that |||, (1) = 2’1/1’, and PO(t) = Kk, t € I4.
Clearly, for all ¢ € &, ) (t) + ¢ (t) > 0 a.e. on I, and

s+ DI 1y < NlIE oy + N01 ) < 1/2+ 6m™.

Thus, for m > (2/{)1/5195/5 we have ), + @™ C A$B,, and so applying Lemma 2 we

have
B A ABYY) = dul+ DI = d (@I, n L
For any two different vectors v := (vy,...,v,) and u:= (uy, ..., u,) in Vi et

¢1 = Zvi¢s.m,i and ¢2 = Z ui¢s,m,i

i=1 i=1

be the two corresponding functions in ®". Since ||v — u||;» > m/2, then there exist
[m/4] indices iy, ..., i[u/4) such that v, = —u;, k=1,...,[m/4]. Hence,

||¢1—¢2||ﬁq(1)=/\2(v1 )i 0)| 't = Z =l (Bum0) "

[m/4]

> k19Tm Z v, — u;, | /

[m/4]
= k19Im1(2m) ! Z 24

—1+-L

> k129739 Im ™ =: g1,

If we set a := widgn~, and given n € N, we take m = [80(xk2%/9~" + 1)]n, then
applying Lemma 3, we conclude that

dy( @), = en™, n>1,
where ¢ = ¢(s, p, q). By virtue of (1.1) and (3.1) this implies
S B lin s B kol s psd —s
d. (A% p) > d, (AL p) > dn(AJer)]Lq >, n>s,

where ¢ = ¢(s, p, q). This completes the proof of the lower bound and so of Theo-
rem 1. |
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