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Abstract. In this paper we prove that if the entropy of an ergodic measure preserved
by a C2 surface diffeomorphism is positive then it is equal to the product of the
Hausdorff dimension of the quotient measure denned by the family of stable
manifolds and the positive Lyapunov exponent.

0. Introduction
In [6] Manning proved that for an Axiom A diffeomorphism / of a surface M, which
preserves an ergodic Borel probability measure fi, its entropy fcM(/) satisfies

where 6M is the Hausdorff dimension of the intersection of an interval of an unstable
manifold with the set of generic points of /x, and \% is the positive Lyapunov
exponent for ft. The number 5M could be reinterpreted as follows: Take xe support
JU, let A be the basic set supporting /A, choose e > 0 small enough and put

* = U W.(y),
yeW"(x)r^A

where Ws
c(x) (W"(x)) denotes the stable (unstable) manifold of size e through x.

Obviously /*(/?)> 0.
The family of stable manifolds {W*e(y)}ye nr;(x)nA is a partition of R, thus we can

define the transverse measure (Lx on W^(x) as the quotient measure on W"(x)n A
given by the stable manifolds, i.e. if A c W"(x)n A then

From Manning's proof of (1) it follows that
SM =inf{«(y): y<=WU(x)nA and /

where 8(Y) denotes the Hausdorff dimension of Y. So if we define the Hausdorff
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274 L. Mendoza

dimension of a Borel measure /JL on a compact metric space X as

): Y^X and /u(y)

then Manning's 5^ = 8(/Ix).
Unfortunately, the proof of (1) in [6] cannot easily be extended to the non-uniform

hyperbolic case because it relies on the invariance of the basic set A and the
continuous splitting of the tangent space. However, combining ideas of Manning
[6], Mane [5] and Young [12], in the setting of Pesin's theory"[8], [9], we are able
to extend (1) to any C2 surface diffeomorphism preserving an ergodic measure.

THEOREM 1. Let f:M-*M be a C2 diffeomorphism of a surface M preserving an
ergodic Borel probability measure /x with h^ (/) > 0. Choose I > 1 such that the Pesin
set Axj has positive measure, consider x a y^-density point of Axj and let Sl

x(x) denote
the family of stable manifolds through a neighbourhood of x. Let V be a transverse
submanifold to Sx(x) and let /Iv be the transverse measure on Vdefined on V n S'x(x)
by S'x(x). Then

where xt is tne positive Lyapunov exponent for /x.

COROLLARY 1. If/lv is absolutely continuous with respect to the Riemannian measure
on V then h^if) = xt-

Let us recall that a point x e M is said to be generic for fi if for every continuous
function ^ : M->R

- I
n ,=o

COROLLARY 2. If G^ denotes the set of generic points for /JL, then

The proof of the above corollary follows from the fact, see §11 of this paper, that
for any 0< d< 1 the family of local stable manifolds is 0-H61der continuous. This
also implies that for any submanifold V transverse to Sx{x) the dimension S(fj.v)
is constant; let us call this number 8(/J.S). Similarly define S(/u.") for the family of
local unstable manifolds U'x(x).

COROLLARY 3. S(fi) = 5(/AS) + 8(/LIU).

This corollary follows from [12].
The proof of theorem 1 relies on the definition and properties of the family of

local stable manifolds Sx{x), which we summarize in §11. Also we shall need Bowen's
definition of entropy for non-compact sets [1] and local approaches to entropy [5]
and Hausdoff dimension [12].

The results presented in this paper are basically contained in the author's Ph.D.
thesis [7] written under the supervision of Dr. Anthony Manning, whom we thank
for his guidance.
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I. Entropy and dimension
We recall from [1] Bowen's definition of a topological entropy for a possibly
non-compact subset Y of a compact metric space X and a continuous map/: X -> X.

Let .stf be a finite open cover of X and write £ < si if £ is contained in some
member of si. Write n^(E) or simply n(£) for the largest non-negative integer such
that fkE< si for 0< fc<7j(£). '

Let YcX, possihfy non-compact. If ^ = {£,, £2 , . . .} has union containing Y,
set for A > 0

ao

Srf(g, A)= £ exp(-A/i^(£i)).

Define H^ A by

{ ao

3>si(W, A): ©={£,, £ 2 , . . .} , U A 3 ^
i = l

and exp— M^(£,) < e for each i | ,

and then

and

Its connection with the measure theoretic entropy, see [2] for definition, is made
clear by the following proposition.

PROPOSITION 1.1 [1]. Iff:X-*X is a continuous map of a compact metric space X,
preserving an ergodic Borel probability measure (j,, then

LEMMA 1.2. Let {^n}"=i be a collection of finite open covers ofM, with diam sin -> 0,
and {An}™=l a collection of sets of positive measure, then

Proof. It is easy to verify that for any finite open cover si and any set Y a M,

j U fk Y,f) = sup hMkY,f) = M YJ).
\k=0 / k

For each n > 1 let Bn =KJt=of
kAn, then by ergodicity each Bn has measure 1, and

so does B = Pir=i &•<• Then for each n > 1,

hsaSB,f)^hMn(BnJ) = ^ n ( ^ n , / ) -
Since diam ^ n -» 0, as « -» oo

and by proposition 1.1 h (f)<h(B,f) from which the lemma follows. •
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Now suppose i/»:X-»R+ is a function, for xeX and n > 0 define

B(x, *, n) = {ye X\d(fx,fx) < </,(/•*) 0 < / < n}.

PROPOSITION 1.3 [5]. Let f: M -» M fee a continuous map of a compact manifold M,
preserving an ergodic Borel probability measure /x. Let Y <=• M be of positive measure
and denote by fj,Y

 tne conditional measure on Y, then

limsup — log IJ,Y(B(X, >p, n))<ft^(/) ,
n-*oo n

for almost every xe Yand every </>: M-» (0, 1) such that log \\) is /x-integrable.

The Hausdorff dimension 8{Y) of Y<^X, a compact metric space, is denned as

follows: Let

X (diam £,)A :\J Et^Y and diam E, < e for all i \;

i=! i = l J

define

The next proposition is the dimensional analogue to proposition 1.2.

PROPOSITION 1.4 [12]. Let ^ be a Borel probability measure on U" and A c R " be
measurable and of positive measure. Suppose that for every xe A

.. log fM(B(x, p)) -
lim sup < 5,

P^O log p

then 8{A)<8.

II. Lyapunov exponents and Pesin's theory
Let / : M -» M be a C2 diffeomorphism of a surface M, preserving an ergodic Borel
probability measure fi. For xe M and ue TXM, the tangent space at x, define the
Lyapunov exponent of fat (x, v) to be the number

( ) H l

For each xe M the restriction of x to TXM takes at most two values X-(x) — X+(x)-
The exponents are/-invariant, i.e. x±(x) = x±(fx), and by the Multiplicative Ergodic
Theorem [11] for ^-almost every xeM TXM = ES

X®E"X and if t;e£s
x

(u),
limn^±x(l/n)log\\Dxf"v\\= xAx) exists. The Subadditive Ergodic Theorem [4]
allows us to study the growth rate of HD*/"!!, and for /^.-almost every x e M

l i m - l o g | |D.T | | =^ + (x ) .
n-.oo n

The proofs of the facts and theorems mentioned below are due to Pesin [8], [9],
many of them also appear in [3].

Since fi is ergodic the exponents are constant almost everywhere, so let #~ = X-(x)
and x+n = X+(x)- Let x — min {—x», X^.} > 0 a " d ' > 1; denote by A ,̂, the set of points
xe M with the following properties: there exists a decomposition TXM = ES

X@E"
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such that for every neZ+, raeZwe have
for veDfmEx:

\\Df~r"v\\ a /"' exp nX exp ( -
for veDfmE"x:

\ s / exp- nX exp (

and for the angle y(x) between the subspaces Ex and E":

y(fmx)>rl exp-x\0~3\m\.

Write A^ =U;>i A*,/ an(* ̂  ^(x) ' s a positive measurable function on A* write

Bs(u)(S(x)) = {veEs(u): ||u||<S(x)},

) = Bs(8(x))xBu(8(x)),
and

U(x,8(x)) = expxB(8(x)).

STABLE MANIFOLD THEOREM (S.M.T.) [8]. There exist measurable functions 8(x)
and K(x), xeAx, and a family of maps <f>(x): Bs(8(x))^ B"(8(x)) of class C1

depending measurably on xe Ax satisfying the following conditions:
(1) The set W(*) = {expx (v, 4>(x)v): veBs(8(x))} is a C1 submanifold.
(2) xe Ws(x) and TxW

s(x) = Ex.
(3) For y e Ws(x), neZ+ and 0 < x' < X we have

d(fnx,f"y) < K(x) exp -X'nd(x, y).

The submanifold Ws(x) is called the local stable manifold through x. If we apply
the theorem to f~x we get W(x) the local unstable manifold through x.

PROPOSITION 2.1. (1) The sets Axj are closed.
(2) The subspaces Ex, E" depend on x continuously on Axj.

(4) K, = supxeAx,K(x)<co.
(5) «,./ = infJCGAj

Forxe Ax, the collection of local stable manifolds passing through U(x, 8xj/8) n A^,
is called the family of local stable manifolds 5^.(x). Choose q, 0< q< 8X ,/8 and put

A^,,(x)= U Ws(y)nU(x,q)

Let V1 and V2 be two C1 submanifolds transversal to the family S'x(x). There exist
open sets V1 <= V1 and V2 c V2 for which the Poincare map

p: AxJ(x) n V1 -* A^,,(x) n V2,

denned by p(^)= V2n Ws{w), for we ( / (x .^nA, , , and {y}= V1 nWs{w), is a
homeomorphism. We say that the family of local stable manifolds S'x(x) is 6-Holder
continuous, for O < 0 < 1 , if each Poincare map between any two C1 transverse
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submanifolds is 0- Holder continuous with constant depending continuously on the
C1 distance between the two submanifolds.

THEOREM 2.2 [8]. For any 0< 6< 1 the family of local stable manifolds is 6-Holder
continuous.

For the proof of the above theorem we refer to Pesin's proof of the absolute continuity
of the family of local stable manifolds.

III. Proof of theorem 1.
Since htl{f) = h^if*) by Ruelle's inequality [10] h ^ / ) < min {-*>, *£}, therefore
by hypothesis x > 0-

Choose /> 1 such that A^, has positive n measure, let x e M be a fi- density point
of \xj and consider the family of local stable manifolds S^(x). Let V= Wu(x) be
the C1 submanifold transversal to S'x(x).

From Pesin [9] there exists h = h(l) > 0 such that for all y e AxJ(x), D(z(y), h) <=
Ws(y), where {z{y)}= Ws(y)i^ V and D(z(y), h) is a 1-disk of radius h centred at
z(y). For 0 < q < h put

Rq= U D(z(y),q).

Since x is a density point of Axj, /j,(Rq)>0 and

Let GM denote the of generic points of /x and for e > 0, r > 0 and n > 0 set

G^n = \yeM - Y log {\\DfJ\\ + r)-\ log (||DZ/|| + r)

for every m =i > n \.

Let V^n = {z(y) e G^Jy e AxJ(x)} and VM = U n VM,n. If °iln = {t/} is a cover of VM>n

by sets t/ contained in VMn, write <%*n = {t/*} where

U*= U D(z(y),9).
z(y)el/

ye Av./(x)

Now let ̂  be a finite open cover of M and let L be a Lebesgue number for s&\
furthermore choose si such that \\Dzf\\ does not change more than r>0 in each
element of si. Choose q such that 8K,q< L.

Suppose yu _y2e °U*, then by the Mean Value Theorem, the S.M.T. and proposi-
tion 2.1 there exists K,>0 such that for k>0

d{fkyuf
ky2)^2K,q exp -kX + d{z(yi), z(y2)) "u (\\D^Mf\\ + r),

j = 0

ifd(fk->z(yx),f
k-]z(y2))<L/2.
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It is clear that if 'W'(y) exists and y is generic then so is any z e Ws{y); therefore
since 2K,q < L/4 and for U* e <%*„ diam/""1 U* < L/2, we have

diam/fct/*<diam t/exp( log (||Dz/|| + rd/u, + 2e Jfc + L/4,

so if ^*n is fine enough

I ( / ) V + - diam
and therefore

Since .stf, r, e and n were arbitrarily chosen then by lemma 1.2

log \\DJ\\dn.

Applying the above procedure to / " it follows that

log HA/14",

and by the Subadditive Ergodic Theorem [4] we obtain that

M/)ss(vM)*;. (2)
Note that we could have replaced Rq by any set of stable manifolds contained in
S[(x) of positive measure.

In the rest of the proof of theorem 1 we shall follow very closely Mane's proof
of Pesin's formula [5]. _

Fix & > 0 so small that n(Axl) > 2-Ja. By Egorov's theorem there exists a compact
set A'<= AX, with n(A')> 1 -a, such that TXM = ES

X®E" varies continuously on A1

and for some TV > 0, if g =fN, the inequalities

hold for all x e A1, n > 0 and v e £". Observe that the Ergodic Theorem implies that

:1-Va.

Then, applying Egorov's theorem once more, there exists a compact set A2<=A'
with n(A2) > 1 -lla and No>0 such that

# {0<y < nlg^x) £ A1} > 2nJa,

for all xeA2. Now let A3 = A2 n A ,̂,; clearly /i(A3)>/u,(A^,/)-2v/a>0.
Let us choose x e M such that x is a /i-density point for A3. We define a measure

vx on W"oc(x) as follows: if A c W"oc(x)n U(x, h/2), then

where z(y)e Wfoc(y)nW^x) and ye U(x, h/2)nAxJ.
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Let us denote by v the /^.-conditional measure on U(x, h/2) n A3 and let

B(y, *, n) = {we M\d(g'{w), g'(y)) < t'(g(y)) for 0s is „},

where > : M ->(0, 1) is a function. Then since / is ergodic it follows that for almost
every y e U{x, h/2) n A3,

lim sup log v(B(y, <p,n))< h^g),
n-»oc n

provided that log tp is //,-integrable. Now we are going to define the i/» to be used
in this proof. For this we need some lemmas from [5].

If £ = £,©£2 is a normed space, we say that G c £ is an (Eu E2)-graph
if there exists an open subset L/c£2 and a C1 map 4>:U-* Ex satisfying
G = {(4>(v), v): ve U}. The number

|«1-«2|||w1, v2e U}

is called the dispersion of G.

LEMMA 3.1 [5]. For all c>0 there exists £>0 such that if ye A1 and for m>0,
gm(y) e A1, then if W is a Ci submanifold of M such that exp"1 W is an (Es

y, £")-
graph with dispersion <c and W<=:B(x, £m), then expg^(y)g

mW is a
(Dyg

mESY, Dyg
mE"y)-graph with dispersion <c.

Remark 3.2. For each yeAxh W"oc(y) can be lifted through the exponential map
. as an (Ey, £")-graph. Furthermore, as in remark 2.3.1 of [9], for any small c>0
we can find 8 > 0 such that if z e B{y, 8) n A^,, then W"oc(z) n B(y, 8) can be lifted
through the exponential map as an (£*, £")-graph with dispersion <c.

L E M M A 3.3 [5], [8]. For a > 0 there exist a>0 and c > 0 such that if ye A1, zeM

and d(z, y) < a, then for any C 1 submanifold of M such that ze W and exp~' W is

an {Es
y, E")-graph with dispersion < c we have

|log||Dzg|7;Hi-log||D,g|£;:|||<a.

Choose c, a, f and 8 by the above lemmas and remark 3.2. Let

r( ) = f° l(yiAl

Ithe smallest integer k > 0 such that gk(y) e A, if y e A,,

define i/»:M^(0, 1) by

{a, 8, t y \ exp

Since J r(y) d/i < 1, then log </» is /i-integrable. For small p > 0 define n(p) to be
the smallest positive integer satisfying

p exp {n(p)[N(xl -a)-a -4NCs/^]} > 1,

where C =jnax {supyeM log ||£>y/||, supyeM log \\Dyf~' ||}. It is obvious that for small
p, 2n(p)Ja>N0.
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The proof of the following lemma is essentially borrowed from [5] and [12].

LEMMA 3.4. For sufficiently small p > 0 and any y, weA3nU(x,h) such that
we B(y, ft, n(p)), then

W?oc(w) n B(y, ft, n(p)) c B(z{w), p) n W^(z(w)),

where z(w) e W?oc(w) n Ws
loc(y).

Proof. For any ye A3n U{x, h) let {n0, «,,...} = {n>0: g"(y)eA1}, assume that
« 0 <n ,< - • •<n f c <n(p)<n k + i<- • •. Let us write Wu(w, i/», n(p)) for W"oc(w)n
B(y, ft, n(p)), for any_weB(y, ft, n(p))n A3n t/(x, /i/2). So for small p > 0 then
nk > No, since 2n{p)sla > No and y e A2. Denote {0< n, < «} by Sn. Thus if M, e Snk,
by lemma 3.1, g"'( W"(w, ij/, n(p)) can be lifted as an (Es

g",(y), E
u
t-,(y))-graph with

dispersion £c (since from the definition of <p, g"'~jW", (w, i/>, n(p))<=
B(g"'-'(y), £"'"'->) for all 0 < j < i). And by lemma 3.3 if nt e Snk

for any z'e W(w, ft, n(p)), also by the definition of 4>- Therefore, since W"(w, n(p))
is one-dimensional

log\\Dz.g
n-\Tz.W

u(w,^,n(p))\\

= I log\\Dg.(2lg\Tg.(z)g'Wu(w,ft,n(p))\\
i = 0

> I \og\\Dg^)g\Tg^.)g
lW"{w,ft,n(p))\\-(nk-#Snk)NC

> £ log\\Ds>ly)g\E}ly)\\-ank-2{nk-#Snk)NC

= log ||Dyg"k\E"|| ~ank—4nkNC\/a

Thus

for any z'e W"(w, i/», n(
Now let d'j(-,-) denote the restriction of the Riemannian metric to

g(W(w,ilt,n(p)). Since g""W"(w,ft, n(p)) can be lifted as an (E*g»Hy), Eg"Hy))-
g r a p h w i t h d i s p e r s i o n < c , a n d c is s m a l l , it f o l l o w s t h a t d'nk{-, • ) — v 2 d{-, • ) .
O b v i o u s l y d(-,-)< d'0(-,-).

By the Mean Value Theorem if w'e W(w, ip, w(p)), then

d'Kk{gn*(w'), g"*(z(w)))=\\DI.g"*\T,W"(w, ft, n(p))\\d'0(w', z(w)),

for some z'e W(w, ft, n(p)). Therefore, by (*) and the definition of n(p),

d'nk{gnk(«> g"k(z(">)) a exp n t (N(^ ; - a) - a -4NCVa)do(W' , z( w))

> exp (-H(p) + nk)(N(x+ - a) - a -
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Now since r(g"k(y)) = nfc_, - nk and

it follows that d(w', z(w))sp and the lemma is proved. •

Continuing with the main argument, let us note that the last lemma implies that

W"(w, 4>, n{p)\

B(y, </>, n(p))

The ^-Holder property of Sxl(x) implies that the projection along Sxj(x) of
UweB(^,n(P),oA''B(z(w),p)n W?oc(w) is contained in B(z(y), Kpe)n W?oc(x),
when z(y)e W"oc(x)n Ws

loc(y). Thus, by the definition of vx

i>(B(y,if,,n(p))<Zx(B(z(y),Kpe).

Therefore

llogp
and by propositions 1.3 and 1.4 it follows that

Now observe that A3 = A3(a) and vx= vx(a), and as a-*0 we have p.(A3(a))-
^,) and 8(?x(a))-» S(/2X), whence it follows, since 0< 0< 1 is arbitrary, that
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