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Monodromy Action on Unknotting Tunnels
in Fiber Surfaces

Jessica Banks andMatt Rathbun

Abstract. In a 2012 paper, the second author showed that a tunnel of a tunnel number one, ûbered
link in S3 can be isotoped to lie as a properly embedded arc in the ûber surface of the link. In
this paper we observe that this is true for ûbered links in any 3-manifold, we analyze how the arc
behaves under the monodromy action, and we show that the tunnel arc is nearly clean, with the
possible exception of twisting around the boundary of the ûber.

1 Introduction

_e Berge Conjecture is a long-standing conjecture that attempts to classify all knots
in S3 that admitDehn surgeries resulting in a lens space. Such a classiûcation is foun-
dational to understanding Dehn surgery on 3-manifolds and has been a motivating
topic of research in low dimensional topology for decades. _e so-called Berge knots
are conjectured to be all knots admitting such surgeries and are known to be both
tunnel number one and ûbered. Y. Ni [26] also proved that any knot admitting such
a surgery must be ûbered. In light of this, we aim to understand tunnel number one,
ûbered knots and links.

In Section 2, we will deûne three well-understood operations on ûbered links:
Stallings twisting, Hopf plumbing, and its inverse Hopf de-plumbing. All three of
these operations can be characterized by arcs that are clean, i.e., disjoint from their
images under themonodromy map (except at their endpoints).

Our goal in this paper is to understand how themonodromy acts on tunnels sitting
as arcs in the ûber. We show that such tunnels sitweakly cleanly in the ûber. We prove
the following theorem.

_eorem 1.1 Let F be a compact, connected, orientable surface with one or more
boundary components and let h∶ F → F be an orientation-preserving homeomorphism.
Let M = (F × I)/h, and denote by F the surface F × {0} in M. Let τ be an arc properly
embedded in F such that M∖N(τ) is a (genus two) handlebody,whereN(τ) is a regular
neighborhood of τ in M. _en there is an arc that is freely ambient isotopic in F to h(τ)
and is disjoint from τ.
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We then obtain the following theorem about link exteriors in 3-manifolds as a
corollary.

_eorem 1.2 Suppose K is a tunnel number one, ûbered link in a 3-manifoldM, with
ûber F,monodromy h, and a properly embedded arc τ in F that is an unknotting tunnel
for K. _en there exists a properly embedded arc β ⊂ F, freely ambient isotopic in F
to h(τ), so that τ ∩ β = ∅. In particular, up to isotopy rel ∂F, there exists a regular
neighborhood of ∂F outside of which τ and h(τ) do not intersect.

Johnson [20] investigated closed surface bundles with genus two Heegaard split-
tings. Johnson’swork gives a description of themonodromy of a ûbered, tunnel num-
ber one knot, but it does not tell us about the case of a two-component link. Kobayashi
and Johannson independently proved that for once-punctured torus bundles, an un-
knotting tunnel could be isotoped into a ûber so that the arc is disjoint from its im-
age under the monodromy of the bundle (see [31]). According to a survey article by
Sakuma [32], Kobayashi and Johannson also independently proved the same result
for arbitrary punctured surface bundles. However, both references are talks, and it
is unclear what the relevant restrictions or equivalence classes on the monodromy
map and/or the arcs aremeant to be. _is paper is meant to help clarify some of the
various technical distinctions, particularly between surface bundles and link exteri-
ors, and provide a written proof of the proper result. In Section 4 we will discuss
examples of tunnel number one, ûbered links in S3 with tunnels α that are properly
embedded in a ûber F, but are not disjoint from their images under themonodromy
unless we allow the free-isotopy mentioned in _eorem 1.2.

_is paper is organized as follows. Section 2 details deûnitions, background, and
motivation for the statement and proof of themain theorem, found in Section 3. Sec-
tion 4 discusses limitations of the theorem owing to diõculties associated with (frac-
tional) Dehn twists around the boundary of the ûber surface. And ûnally, Section 5
provides an application to bounding the cusp area for hyperbolic, ûbered knots.

2 Definitions and Background

Deûnition 2.1 A manifold M with boundary is said to have tunnel number one if
there exists an arc τ (an unknotting tunnel) properly embedded in the manifold so
that M ∖ n(τ) is a handlebody. We say that a link K is tunnel number one if the link
exterior has such an unknotting tunnel.

A tunnel number one link can therefore have at most two link components, and in
this case, the tunnel must have one endpoint on each component. Tunnel number one
knots and links have been studied in great depth (see, for example, [17,19,24,33]). Cho
and McCullough [6] have given a bijective correspondence between tunnel number
one knots (with their unknotting tunnels) and a subset of vertices of a certain tree
related to a subcomplex of non-separating disks in a genus two handlebody. _ey are
further able to parameterize all tunnel number one knots by a sequence of “cabling”
operations (see [5,7]). While the cabling operation is a very naturalway of describing
andmodifying knots, it is generally not clear how properties of the exterior change.
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Deûnition 2.2 Let K be a link in a 3-manifold M (with an orientation for each
component). A Seifert surface for K is a compact, orientable surface F,with no closed
components, embedded in M such that ∂F = K (andwith a boundary orientation that
agrees with the orientation of K).

Deûnition 2.3 If F is a compact, orientable surface (possibly with boundary), I is
the unit interval [0, 1], and h∶ F → F is an orientation-preserving homeomorphism
from F to itself, then a surface bundle is the 3-manifold obtained from the Cartesian
product of the surface and the interval, F × I, by identifying F × {0} with F × {1} via
the homeomorphism h. _at is, the surface bundle is homeomorphic to the quotient
(F×I)/ ∼,where (x , 0) ∼ (h(x), 1) for all x ∈ F. Wemay also denote this by (F×I)/h.
_e map h is called the monodromy of the bundle, and the image of each F × {t} is
called a ûber.

Note 2.4 _emonodromy h of a surface bundle iswell deûned up to free isotopy of
the homeomorphism (preserving the boundary, set-wise), and also up to conjugation
by elements of themapping class group of F.

Deûnition 2.5 A link K ⊂ M is said to be ûbered if M ∖ n(K) is a surface bundle
where each ûber is a Seifert surface for the link K.

If we drill out a neighborhood of a ûbered link from the manifold M, then there
is a natural marking on each boundary component by a meridian that encodes the
original manifoldM. Ifwe then remove a neighborhood of a Seifert surface, the result
is homeomorphic to F × I, but we still retain amarking on the boundary (∂F) × I ⊂
∂(F × I), which still encodes the original manifold M. Forgetting this marking or
losing track of it by twisting along boundary components, however, fails to encode
the manifold M. _is motivates a slightly more restrictive deûnition when we are
interested in preserving this meridian information.

Deûnition 2.6 _emonodromy of a ûbered link K in M is a choice of homeomor-
phism h∶ F → F so that h is the identity on the boundary of F, h∣∂F = Id, the exterior
of K is homeomorphic to the surface bundle determined by h,M∖n(K) ≅ (F× I)/h,
and further, ûlling each toral boundary componentwith a solid torus so that the curve
arising from the quotient of {pt} × I bounds a disk in the solid torus results in the
manifold M.

Note 2.7 If h̃ diòers from h by a product of Dehn twists about curves each parallel
to a component of ∂F, then (F × I)/h ≅ (F × I)/h̃. Now, however, Dehn ûlling the
toral boundary along the curve(s) deûned by {x} × I where x ∈ ∂F in each casemay
result in diòerent closed 3-manifolds, related to the original by ±(1/n)-surgeries. So
the requirement that the loops from “vertical” slopes give rise to meridians for the
link K in M restricts the free isotopy class of h. _e monodromy h of a ûbered link
is still only well deûned up to conjugation by an element of themapping class group
of F.
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Fibered knots and links have also been studied in great depth (see, for example,
[1,2,18,25]). Stallings [35] described a pair of operations on ûbered links that result in
new ûbered links, which are now called theMurasugi sum and Stallings twists. Harer
[18] then showed that twists and a certain type ofMurasugi sum calledHopf plumbing
(and its inverse,Hopf de-plumbing)were suõcient to transform any ûbered link in S3

into any other ûbered link in S3. (In fact, recent work of Giroux and Goodman [15]
showed that Stallings twists are not necessary.)

_ese constructions are intimately connected to arcs in a ûber surfacewith certain
properties of disjointness from their images under monodromy maps. However, we
will take care to distinguish monodromy maps in surface bundles versus link com-
plements, so we must be cautious about the setting in which we are discussing these
arcs.

Deûnition 2.8 Wewill say that an arc α properly embedded in a ûber F of a surface
bundle with monodromy h is weakly clean if there is a representative of h, say h̃, so
that α ∩ h̃(α) = ∅.

Deûnition 2.9 An arc α properly embedded in a ûber F of a link complement in a
manifoldM with monodromy h is said to be clean if there is a representative of h, say
h̃, so that α ∩ h̃(α) = ∂α = ∂h̃(α).

In this language, _eorem 1.1 says that unknotting tunnels in the ûbers of surface
bundles areweakly clean,while_eorem 1.2 and the discussion in Section 4 show that
unknotting tunnels in the ûbers of ûbered link exteriorsmay not be clean, owing only
to boundary-twisting.

_ere is good reason to inquire about the cleanliness of arcs in the ûber of a ûbered
link. Suppose α is a clean arc in a ûber of a ûbered linkwithmonodromy h. _ere are
two distinct behaviors of h(α) near the boundary of α, each of which have implica-
tions for the topology of the ûber surface.

Deûnition 2.10 Let α be a clean arc in a ûber F of a ûbered link, and let α × [0, 1]
be a small product neighborhood of the arc α in F. We say that α is alternating if
the image of α under the monodromy must intersect both α × {0} and α × {1} in a
neighborhood of the endpoints. Otherwise, say that α is non-alternating.

Clean, alternating arcs are related to Hopf plumbings.

Deûnition 2.11 Let F be a Seifert surface for a link L. Let α be an arc properly
embedded in F. Hopf plumbing along α is a change in the surface F within a neigh-
borhood of the arc α, as shown in Figure 1. _at is, a disk is attached to F along two
sub-arcs of its boundary. _e positioning of the disk is deûned by α, and the disk
contains a full twist relative to F. _is disk is referred to as aHopf band. Given F and
α, there are twoways to perform Hopf plumbing, distinguished by the handedness of
this twisting. _e result is a new surface F′ and a new link K′ = ∂F′.

Suppose F is a Seifert surface for the link ∂F, andHopf plumbing results in a Seifert
surface F′ for the link ∂F′. _en F is a ûber surface if and only if F′ is a ûber surface,
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Figure 1: Hopf plumbing is a change in a surface F in the neighborhood of an arc α.

and, moreover, the monodromy of F′ diòers from the monodromy of F exactly by
composition with a Dehn twist along the core of theHopf band (see [11]).
De-plumbing a Hopf band corresponds exactly to cutting the ûber surface along

an arc that is clean and alternating with respect to themonodromy. _is is implicit in
work ofGabai [12], and attributed to Sakuma [30]. For a proof, see Coward–Lackenby
[8].
Clean, non-alternating arcs are related to Stallings twists.

Deûnition 2.12 Let c be a simple closed curve, embedded and essential in a ûber
surface F of a ûbered link in a manifold M so that c bounds a disk in M. Let c′

be a push-oò of c to one side of F, and let l be the linking number of c and c′. If
l ∈ {0, 2,−2}, and there exist δ1, δ2 ∈ {±1} satisfying l + δ1 = δ2, then δ2-surgery
along c is called a Stallings twist.

Figure 2: A Stallings twist (of type (0, 1)) results from a±1-Dehn surgery on an unknotted curve
in the ûber surface. (Here we show the eòect of a −1-surgery on the surface.)

In the casewhere l = 0, Stallings [35] proved that the image of a ûbered link under
such a twist is another ûbered link, with ûber surface homeomorphic to the original
ûber surface. Harer [18] then extended this to the deûnition above . Moreover, the
monodromy of the new ûbration diòers from the original exactly by compositionwith
a δ1-Dehn twist around the curve c.

Yamamoto [38] proved that the existence of a Stallings twist of a certain type (type
(0, 1), see Figure 2) corresponds exactly to the existence of an arc that is clean and
non-alternating with respect to the monodromy, and moreover that the interior of
the disk bounded by c intersects the ûber surface exactly in such an arc.
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Not only do these operations have close relationships to the behavior of arcs in a
ûber surface, but when the arcs are unknotting tunnels, these operations also respect
the nature of these tunnels. In [29], the second author showed that in a tunnel number
one, ûbered link exterior in S3, an unknotting tunnel can be isotoped to lie in a ûber
surface. In fact, the argument in [29] shows that this statement holds for ûbered links
in arbitrary 3-manifolds.

Proposition 2.13 Suppose K is an oriented ûbered link in a 3-manifold M, and τ is
an unknotting tunnel for K. _en τ may be slid and isotoped until it lies in a ûber of K.

Proof _e proof in [29] for two-component ûbered links depends in no way on the
ambient manifold being S3. For tunnel number one, ûbered knots, the proof relies
on S3 only because of the use of [34, Proposition 4.2]. However, the argument in the
ûnal paragraph of [29,_eorem 2.10] applies equally well in the casewhere K is a knot
and the ambient manifold is not S3 to show that an unknotting tunnel can be made
disjoint from aminimal genus Seifert surfacewhen the knot is ûbered. _e rest of the
argument, then, goes through in themore general case.

_us, for any tunnel number one, ûbered link, since an unknotting tunnel can be
isotoped to lie as an arc in a ûber surface, and important operations on ûber surfaces
are related to arcs properly embedded in the surface, it is a natural question to in-
vestigate what happens if we perform these operations along arcs that happen to be
unknotting tunnels.

If a Hopf plumbing is performed along an unknotting tunnel lying in the ûber
surface, then the resulting link is ûbered and is again tunnel number one. Moreover,
there is a naturally induced unknotting tunnel for the resulting link, namely the arc
that runs across theHopf band. Conversely, if de-plumbing aHopf band corresponds
to cutting along an arc that is also an unknotting tunnel lying in the ûber surface,
then the resulting link is ûbered and is again tunnel number one. Moreover, there is a
naturally induced unknotting tunnel for the resulting link, namely the arc that spans
the gap le� by the cut, which is then isotopic into the new ûber surface as the arc that
determined the position of the old Hopf band. One result of this is that we can start
with, say, the unknot in S3,which is ûberedwith ûber a disk, and progressively plumb
Hopf bands along unknotting tunnels to generate tunnel number one, ûbered links
withûber surfaces of increasing genus. Another is that if an unknotting tunnel, having
been pushed into a ûber surface for a ûbered link, is a clean, alternating arc, then the
ûber surface has a de-plumbing resulting in a new tunnel number one, ûbered link.
We might then ask whether the next unknotting tunnel, having been pushed in the
ûber surface, might also be clean and alternating, and how far this process might be
continued. If, for instance, a tunnel were always clean and alternating when pushed
into a ûber surface, then any tunnel number one, ûbered link would come equipped
with a set of instructions indicating a sequence of tunnel number one, ûbered links,
each obtained from the last by de-plumbing along an unknotting tunnel, resulting in
a ûbered link with ûber a disk.

Similarly, if a Stallings twist is performed along a curve bounding a disk that inter-
sects a ûber surface in an arc that is also an unknotting tunnel, then the resulting link
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is ûbered and again tunnel number one. In this case, the very same arc will persist as
an unknotting tunnel.

In light of these close connections between unknotting tunnels that sit as clean
arcs in a ûber surface and operations that are known to be suõcient to generate all
ûbered links in S3, it would be quite interesting, although optimistic, to suspect that
unknotting tunnels sitting as arcs in ûber surfaces would always be clean. However,
our main result shows that the obstruction to cleanliness comes only from twisting
around boundary components of the ûber. Even more surprising, in S3, the only
examples known with this obstruction appear to be 2-component links where one
component is unknotted, as we will discuss in Section 4.

3 Analyzing a Tunnel in a Fiber

_e main aim of this section is to prove _eorem 1.1, and _eorem 1.2 will follow
quickly. We restate the ûrst theorem here.

_eorem 1.1 Let F be a compact, connected, orientable surface with one or more
boundary components and let h∶ F → F be an orientation-preserving homeomorphism.
Let M = (F × I)/h, and denote by F the surface F × {0} in M. Let τ be an arc properly
embedded in F such that M∖N(τ) is a (genus two) handlebody,whereN(τ) is a regular
neighborhood of τ in M. _en there is an arc that is freely ambient isotopic in F to h(τ)
and is disjoint from τ.

Note 3.1 Observe that since τ is an unknotting tunnel for themanifold M, M can
have at most two (toral) boundary components. _us, the boundary components of
F must be permuted in one or two orbits.

Proof If F is either a disk or an annulus, themapping class groupof F is quite limited,
and the result is immediate. _us, we can assume that F is neither a disk nor an
annulus. Note that since the only ûbered handlebody is S1 × D2, this implies that M
is not a handlebody.
As M is not a handlebody but M ∖ n(τ) is, the arc τ must be essential in F. Set

F′ = F∖n(τ). Let τ1 be an arc in F×{1} ⊂ F×I and let τ0 be an arc in F×{0} ⊂ F×I so
that, in the quotient (F × I)/h, arcs τ0 and τ1 are both identiûed as the arc τ. Observe
that h(π(τ0)) = π(τ1), where π∶ F × I → F is projection. _en for i ∈ {0, 1}, we will
refer to (F × {i}) ∖ n(τ i), contained in (F × I) = M ∖ F, as F′i . By free isotopy of h
(which corresponds to isotopy of τ1 in F × {1}), we can assume that π(τ0) and π(τ1)
intersect minimally and transversely. Recall that F × I is irreducible and F × {0, 1} is
incompressible in F × I.

Let A be the annulus ∂n(τ) ∖ ∂M. _en A is divided into two rectangles by F. Let
A1 be the rectangle incident to F ×{1}, and let A0 be the rectangle incident to F ×{0}
in M ∖ F. By a slight abuse of notation, we can think of A1 as a neighborhood of τ1
contained in F × {1}, and similarly for A0 ⊂ F × {0}, so that F′i = (F × {i}) ∖ A i for
each i = 0, 1.
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_e proof of _eorem 1.1 works by controlling certain disks within M ∖ n(τ), in
particular how they relate to the annulus A. We now build up some language to de-
scribe these disks.

3.1 Special Arcs

Let D be a disk properly embedded in F × I such that ∂D is transverse to ∂F × {0, 1}
and to τ0 and τ1.

Lemma 3.2 No essential disk in F × I can be disjoint from F × {i} for i ∈ {0, 1}.

Proof Without loss of generality, suppose that D is an essential disk in F × I that
is disjoint from F × {1}. _en every arc in ∂D ∩ (∂F × I) is inessential in ∂F × I.
On the other hand, any simple closed curve in ∂F × I is either trivial or parallel to a
component of ∂F × {0}. We can therefore isotope ∂D into F × {0}. _is contradicts
that F × {0, 1} is incompressible in F × I. _us, no such disk exists.

Deûnition 3.3 If ∂D ∩ (∂F × {0, 1}) /= ∅, then the points of ∂D ∩ (∂F × {0, 1})
divide ∂D into a ûnite set of sub-arcs of the following six possible types.
(i) Sub-arcs in F × {0} parallel in F to τ0; call these τ0-arcs.
(ii) Sub-arcs in F × {1} parallel in F to τ1; call these τ1-arcs.
(iii) Sub-arcs in ∂F × I; call these boundary arcs.
(iv) Sub-arcs in F × {0} or F × {1} that are trivial in F; call these extra arcs.
(v) Sub-arcs in F × {i} for i ∈ {0, 1} that are essential in F, are not τ i-arcs, and can

be isotoped (ûxing endpoints) to be disjoint from τ i ; call these special arcs.
(vi) Sub-arcs in F × {i} for i ∈ {0, 1} that are essential in F, are not τ i-arcs, and

necessarily intersect τ i ; call these bad arcs.
For i ∈ {0, 1}, label each sub-arc of ∂D with i if it is contained in F × {i}.
We will show in Lemma 3.8 that the disks of interest to us do not contain bad arcs.

Deûnition 3.4 An extra arc that is outermost in F ×{i} can be isotoped oò F ×{i},
along the subdisk it cuts oò from F × {i}, joining two sub-arcs on ∂F × I into a single
boundary arc. Call this a tightening-move. Notice that this does not aòect the isotopy
type of any essential arc in F ×{0, 1}, and has the eòect of deleting an i-label from the
labeling of ∂D.

If τ is incident to two boundary components of F, the following deûnition gives
two isotopy classes of arcs in F (hence four isotopy classes in ∂(F × I)) that will be of
special interest to us. _ese arcs are boundary-parallel in F′ and have both endpoints
on the same component of ∂F. _e two isotopy classes are distinguished by which
component of ∂F contains the endpoints of the arc.

Deûnition 3.5 Call a special arc a τ2-arc if it is parallel in F to the union of the two
arcs in ∂A i ∖ ∂F and one of the two components of ∂F ∖ A i . See Figure 3. Roughly
speaking, it runs parallel to τ i , around ∂F while avoiding τ i , and then back parallel
to τ i .
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Figure 3: A τ2-arc runs parallel to τ i , around ∂F, and back parallel to τ i .

It is interesting to note that if a τ2-arc α exists in ∂D, pushing part of α across the
disk of F′ cut oò by α into the component of ∂F×I that does not contain the endpoints
of α would change the special arc α into two τ i-arcs and one boundary arc.

_e signiûcance of τ2-arcs is their appearance in following lemma.

Lemma 3.6 If ∂D contains exactly one special arc and no bad arcs, then either D is
essential in F × I or τ is incident to two boundary components of F and the special arc
is a τ2-arc.

Proof Without loss of generality, assume the special arc α is labeled 1. Perform as
many tightening-moves as possible to remove all extra arcs. _is neither creates any
new special or bad arcs, nor alters α. _en ∂D ∩ (F × {1}) consists of α together with
some number of τ1-arcs.

Suppose D is boundary parallel in F × I, and let D′ be the disk in ∂(F × I) towhich
D is parallel. Consider the two components of (F × {1}) ∖ ∂D adjacent to α, one of
which is a subsurface of D′. Call this D′′. Note that D′′ is planar, and all but one of
the components of ∂D′′ are contained in int(D′) and are therefore components of ∂F.
Any such components of ∂F must also bound disks in ∂(F × I). Since there are no
such components of ∂F, we see that D′′ is a disk. _ere can be at most two τ1-arcs in
∂D′′, and exactly one copy of α.

If ∂D′′ containedno τ1-arcs, thenD′′ wouldprovide an isotopy of α into ∂(F×{1}),
which is not possible. If ∂D′′ contained exactly one τ1-arc, then D′′ would provide an
isotopy of α onto τ1, which is also impossible. _erefore, ∂D′′ contains two τ1-arcs.
Notice that ∂D′′ ∖ α is contained in ∂F′1 . Suppose τ (and therefore τ1) is incident to a
single component of ∂(F×{1}). _en ∂F′1 has two components,with one copy of τ in
each. _erefore, no such disk D′′ could exist. Hence, τ is incident to two components
of ∂F. _e disk D′′ demonstrates that α is a τ2-arc.

3.2 Special Disks

Lemma 3.6 shows that diskswhose boundaries contain no bad arcs and only one spe-
cial arc are important. _is motivates the following deûnition.

Deûnition 3.7 Given a diskD properly embedded in F×I such that ∂D is transverse
to ∂F×{0, 1}, say thatD is special if it is essential in F×I, and there are no bad arcs and
at most one special arc in ∂D. We will call D a 0-special or 1-special disk depending
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on the label and location of the special arc if one exists. If there is no special arc, then
Lemma 3.2 says that there must be both τ1- and τ0-arcs, so for convenience we will
distinguish one τ1-arc as a special arc and say the disk is 1-special.

Lemma 3.8 _ere exist special disks in (M ∖ n(τ)) ∖ F′.

Proof As M ∖ n(τ) is a genus two handlebody, we know that ∂(M ∖ n(τ)) is com-
pressible in M ∖ n(τ). Let D′ be a compression disk such that ∂D′ ∩ A consists of
straight arcs, each essential in A and running from one component of A i ∩ ∂M to the
other, and such that ∣D′∩F′∣ isminimal among such disks. Since ∂M is incompressible
in M ∖ n(τ), we know that ∂D′ runs across A at least once.

If D′ ∩ F′ = ∅, then D′ is a disk in F × I and ∂D′ contains no special or bad arcs.
Note that D′ is essential in F × I, since it is essential in M ∖ n(τ) and F′ is not a disk.
_erefore, D′ is a special disk.

If D′ ∩ F′ /= ∅, then notice that D′ ∩ F′ consists only of arcs, since circles of inter-
section innermost in D′ and essential in F would give rise to compressions for F, and
inessential ones could be removed to reduce ∣D′∩F′∣. Moreover, as τ is essential in F,
theminimality of ∣D′ ∩ F′∣ implies that every arc of D′ ∩ F′ is essential in F. Knowing
this, theminimality of ∣D′ ∩ F′∣ further implies that no arc of D′ ∩ F′ is isotopic to τ
in F.
Consider an arc α of D′ ∩ F′ that is outermost in D′, cutting oò a subdisk D from

D′. Now view D as a disk in F × I. Without loss of generality, assume α is labeled 1.
Note also that α is a special arc. Because ∂D contains exactly one special arc and no
bad arcs, by Lemma 3.6 either the disk D is essential in F × I as required, or α is a
τ2-arc. In this case, α would cut oò a disk from F′. _is disk might contain other arcs
of D′ ∩ F′. Boundary compressing D′ along this disk would reduce ∣D′ ∩ F′∣, creating
at least two disks, at least one of which would contradict theminimality condition in
the choice of D′. _erefore, D is essential, and so is a special disk.

Lemma 3.9 If D is an i-special disk in F × I for some i ∈ {0, 1}, then ∂D contains at
least one τ1−i-arc.

Proof Without loss of generality, assume that D is 1-special. Perform as many tight-
ening-moves on D as possible. _is does not change that D is 1-special and does not
alter any τ0-arcs in ∂D. Having done this, we see that ∂D∩ (F ×{0}) consists only of
τ0-arcs. As D is essential in F × I, Lemma 3.2 implies that theremust be at least one
arc of ∂D ∩ (F × {0}) remaining, which is therefore a τ0-arc.

Now, consider the vertical product disks E0 = τ0× I, and E1 = τ1× I. Wewould like
to ûnd an i-special disk D, for some i ∈ {0, 1}, such that ∂D and ∂E i do not intersect
on F × {1 − i}. Since π(E i) = π(∂E i ∩ (F × {1 − i})) = π(τ i), and a τ1−i-arc in ∂D
projects under π to π(τ1−i), this would show that π(τ0) and π(τ1) are disjoint.

Recall that h(π(τ0)) = π(τ1), and that we have assumed that themonodromy has
been isotoped (including along the boundary) so as to minimize ∣π(τ0) ∩ π(τ1)∣.
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Deûnition 3.10 _e size of a special disk D is the triple (∣∂D∩(F×{0, 1})∣, ∣D∩E j ∣,
∣∂D ∩ ∂E j ∩ (F × {0, 1})∣), where D is a j-special disk. We will compare the size of
two special disks using the lexicographical order.

_at is, we order disks ûrst by the total number of τ0-, τ1-, extra, and special arcs,
second by the number of arcs and simple closed curves of intersection with the prod-
uct disk E j , and ûnally by the number of endpoints of these intersection arcs that lie
on F.

It isworth noting that this situation looks similar to that found in [16, Lemma 2.3].
It appears that one could conclude immediately that a special diskwas boundary com-
pressible towards F ×{1}, and repeat such compressions until one arrived at a product
disk. _is is the idea of our proof, but we need to show some additional care as we
want the arcs of ∂D∩ (F ×{0, 1}) to stay parallel to τ0 and τ1 so thatwe can conclude
something about the tunnel arc.

Since we know that special disks exist, we take a special disk with minimal size
and call it D. Recall that if ∂D contains no special arc, then we have agreed to pick a
τ1-arc and call it special so that D is 1-special. On the other hand, if it does contain a
special arc, then we can assume without loss of generality (by �ipping [0, 1]) that D is
1-special. In either case, call the special arc α.

Lemma 3.11 _ere are no extra arcs in ∂D.

Proof If there is an extra arc in ∂D, we can perform a tightening-move. _is will
reduce the number of extra arcs without changing the number of τ0-, τ1-, or special
arcs. _is, therefore, reduces the size of D, a contradiction.

Lemma 3.11 implies that ∂D ∩ (F × {0}) consists only of τ0-arcs. Let E′ = E1.
Although it is not necessary, for notational convenience we will continue to assume
that, for i ∈ {0, 1}, all τ i-arcs are contained within the rectangle A i and run straight
from one component of A i ∩ ∂F to the other.

Lemma 3.12 Every arc of ∂D on F × {1} is disjoint from ∂E′.

Proof Choose ε > 0 such that (∂F × [1 − ε, 1)) ∩ (∂D ∪ ∂E′) consists of disjoint
embedded arcs that are essential in the half-open annulus ∂F × [1 − ε, 1). Let F+ =
(F × {1})∪ (∂F × [1− ε, 1)). Since ∂D ∩ (F × {1}) contains only τ1- and special arcs,
there is an isotopy of ∂D ∩ F+, ûxed on ∂F+, that makes ∂D disjoint from ∂E′ on
F × {1}. See Figure 4. Because ∂E′ ∩ F+ is a single arc, this isotopy can be chosen so
that it does not increase ∣∂D ∩ ∂E′ ∩ F+∣ at any point. Note that such an isotopy does
not change the type of any arc of ∂D∩(F×{1}). _erefore, thismeans that the isotopy
can be extended to an isotopy of D that does not increase ∣D ∩ E′∣. If ∂D ∩ ∂E′ ∩ (F ×
{1}) /= ∅ before the isotopy then the isotopy strictly reduces the size of D, which is a
contradiction. _us, no such isotopy is required and ∂D ∩ ∂E′ ∩ (F × {1}) = ∅.

Lemma 3.13 We can assume that the endpoints of the arc ∂E′∩(F×{0}) are disjoint
from A0, and that every arc of ∂E′∩A0 connects opposite sides of A0 and intersects each
τ0-arc of ∂D exactly once.
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Figure 4: Arcs of ∂D ∩ (F × {1}) can bemade disjoint from the arc of ∂E′ ∩ (F × {1}) without
increasing ∣D ∩ E′∣.

Proof By Lemma 3.11, ∂D ∩ (F × {0}) consists only of τ0-arcs. We have assumed
that each of these lies in A0, connecting the two components of A0 ∩ ∂(F × {0}). By
isotoping A0 ∩ F′0 in (F × {0}) ∖ ∂D, we can assume that ∂E′ is transverse to ∂A0.
Consider the arcs of ∂E′∩A0. Each of the two sides of A0 on ∂(F×{0}) contains at

most one endpoint of these arcs. All other endpoints must lie on the two components
of A0∩F′0. Choose ε > 0 such that ((A0∩∂F)×(0, ε])∩(∂D∪∂E′) consists of disjoint
embedded arcs each having one endpoint on (A0 ∩ ∂F) × {0} and one endpoint on
(A0 ∩ ∂F)× {ε}. Let A+0 = A0 ∪ ((A0 ∩ ∂F)× (0, ε]). As in the proof of Lemma 3.12,
there is an isotopy of ∂D within A+0 , ûxed on ∂A+0 , to minimize ∣∂D ∩ ∂E′ ∩ A0∣,
and, moreover, this isotopy can be chosen so that it extends to an isotopy of D that
does not increase the size of D (see Figure 5). Again, if this isotopy strictly reduced
∣∂D ∩ ∂E′ ∩ A0∣, then it would strictly reduce the size of D, contradicting that D was
chosen to have minimal size. _erefore, no such isotopy is needed, and the arcs of
∂E′ ∩ A+0 haveminimal intersection in A0 with the arcs of ∂D ∩ A+0 .

Let γ be an arc of ∂E′ ∩ A+0 . If the endpoints of γ lie on distinct components of
A0 ∩ F′0, then we see that γ intersects each arc of ∂D ∩ A0 exactly once, and because
∣∂D∩(F×{0})∣ has not increased,we know that this intersection occurswithin A0. If
the endpoints of γ lie on the same component of A0∩F′0, thenwe ûnd that γ is disjoint
from ∂D. In this case we may isotope A0 ∩ F′0 to remove γ from ∂E′ ∩ A0 without
aòecting ∂D ∩ A0 (again, see Figure 5). If γ has one endpoint on A0 ∩ ∂(F × {0})
and the other on A0 ∩ F′0, then γ ∩ A0 is disjoint from ∂D ∩ A0, and again we can
isotope ∂A0 to remove γ from ∂E′ ∩ A0. Finally, suppose that γ has both endpoints
on components of A0 ∩ ∂(F × {0}). _en γ is a τ1-arc. Since π(γ) = π(τ0) this
shows that τ and h(τ) are isotopic in F, and in this case the proof of _eorem 1.1 is
complete.

Lemma 3.14 Let γ be an arc of ∂E′ ∩ F′0. If γ has both endpoints on A0 ∩ F′0, then γ
does not co-bound a disk in F′0 with A0 ∩ F′0. If γ has one endpoint on A0 ∩ F′0 and one
on ∂(F × {0}) ∖ A0, then γ does not cut oò from F′0 a disk whose boundary consists of
γ, a single sub-arc of A0 ∩ F′0 and a single sub-arc of ∂(F × {0}) ∖ A0.

Proof Given Lemma 3.13, this follows immediately from the minimality of
∣π(τ0) ∩ π(τ1)∣ (see Figure 6).
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Figure 5: ∣∂D ∩ ∂E′ ∩ A0 ∣ and ∣A0 ∩ F′ ∩ ∂E′∣ can beminimized without increasing ∣D ∩ E′∣.

Figure 6: Arcs of ∂E′ ∩ F′ do not cut oò certain types of disk.

Now consider D ∩ E′. By innermost disk arguments, any simple closed curves of
intersection could be removed, since F × I is irreducible. _us, since D has minimal
size, the intersection consists of arcs. From Lemma 3.12 we know that none of these
intersection arcs have endpoints on F × {1}. We will show that there are also no arcs
of intersection with an endpoint on F × {0}. _ere are three types of arcs that we will
be concerned with: type 0 will be arcs with both endpoints on the same component
of ∂E′ ∩ (∂F × I); type I will be those with one endpoint on F × {0}, and the other
on ∂F × I; type II will be arcs with both endpoints incident to F × {0} (see Figure 7).
Showing that none of these arcs exist, and hence ∂D ∩ ∂E′ ∩ (F × {0}) = ∅, will
complete the proof of _eorem 1.1. (Note that there may be arcs of intersection of
D ∩ E′ which have endpoints on diòerent components of ∂E′ ∩ (∂F × I), but these
have no impact on the removal of arcs with an endpoint on F × {0}.)
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Figure 7: Arcs of D ∩ E′ of type 0, type I, and type II in E′.

3.3 Arcs of Type 0

Suppose there is an arc of D ∩ E′ with both endpoints on the same component of
E′ ∩ (∂F × I). Choose such an arc that is outermost in E′, and let E be the subdisk
of E′ it cuts oò. Compress D along E, reducing ∣D ∩ E′∣ without altering the arcs of
∂D∩(F×{0, 1}). _is gives two disks, D∗ and D∗∗. Take D∗ to be the one containing
α in its boundary. At least one of D∗ and D∗∗ is essential, and neither has more than
one special arc or any bad arcs in its boundary. In addition,

∣D∗ ∩ (F × {0, 1})∣ ≤ ∣D ∩ (F × {0, 1})∣ and ∣D∗ ∩ E′∣ < ∣D ∩ E′∣,
while ∣D∗∗∩(F ×{0, 1})∣ < ∣D∩(F ×{0, 1})∣. _erefore, at least one of D∗ and D∗∗ is
special and has smaller size than D,which is a contradiction. Hence, no arcs of type 0
exist.

3.4 Arcs of Type II

If there is an arc of type II, then there is an arc of type II that is outermost in E′. Call
this arc δ, and call the subdisk of E′ that it cuts oò E. Let γ = ∂E ∖ δ. Boundary
compressing D along E reduces ∣D∩E′∣ and gives two disks, D∗ and D∗∗, at least one
of which is essential. Take D∗ to be the resulting disk containing α in its boundary.
_e endpoints of γ must both be on τ0-arcs.
First suppose that γ ⊂ A0. _en by Lemma 3.13 we know that the endpoints of γ

lie on distinct τ0-arcs of ∂D. Let β∗ and β∗∗ be the sub-arcs of ∂D∗ ∩ (F × {0}) and
∂D∗∗ ∩ (F × {0}), respectively, that contain copies of γ. _en β∗ and β∗∗ are both
extra arcs (see Figure 8), so neither D∗ nor D∗∗ has any bad arcs or more than one
special arc in its boundary. Moreover, it is again the case that ∣D∗ ∩ (F × {0, 1})∣ ≤
∣D∩(F×{0, 1})∣ and ∣D∗∩E′∣ < ∣D∩E′∣,while ∣D∗∗∩(F×{0, 1})∣ < ∣D∩(F×{0, 1})∣.
_is tells us that at least one of D∗ and D∗∗ is special and has smaller size than D, a
contradiction.

Now assume instead that γ ⊄ A0. _en it runs between two τ0-arcs that are out-
ermost in A0. _at is, γ runs from a sub-arc of ∂D, across one of the sides of ∂A0
incident to F′0, through F′0, then across a side of ∂A0 and to another sub-arc of ∂D.
_ere are, then, two possibilities. Either γ returns to the same side of ∂A0 (see Figure
9), or it returns to the other side of ∂A0 (see Figure 10).

If γ returns to the same side of ∂A0, then both endpoints must be incident to the
same component of ∂D ∩ A0 (see Figure 9), and ∂D∗∗ is a simple closed curve in
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Figure 8: If γ ⊂ A0 , then β∗ and β∗∗ are extra arcs.

F × {0}. Lemma 3.14 shows that ∂D∗∗ does not bound a disk in F, so this means that
D∗∗ is a compression disk for F, contradicting that F ×{0} is incompressible in F × I.

Figure 9: If γ ⊄ A0 , and returns to A0 on the same side, then D∗∗ is a compression disk for F.

If γ returns to the other side of ∂A0, then the orientation on D implies that there
are at least two τ0-arcs in ∂D. Let β∗ and β∗∗ be the sub-arcs of ∂D∗ and ∂D∗∗,
respectively, that contain copies of γ (see Figure 10).

Figure 10: If γ ⊄ A0 , then ∣D∗ ∩ (F × {0, 1})∣ + ∣D∗∗ ∩ (F × {0, 1})∣ = ∣D ∩ (F × {0, 1})∣.
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_ere are no bad arcs in either ∂D∗ or ∂D∗∗, and there is at most one special arc
in ∂D∗∗. As before, ∣D∗ ∩ (F × {0, 1})∣ ≤ ∣D ∩ (F × {0, 1})∣ and ∣D∗ ∩ E′∣ < ∣D ∩ E′∣,
while ∣D∗∗ ∩ (F × {0, 1})∣ < ∣D ∩ (F × {0, 1})∣.

If D∗∗ is essential, then it is a special disk with smaller size than D, which is a
contradiction. Suppose otherwise. _en D∗ is essential. Additionally, by Lemma 3.6,
β∗∗ is either an extra arc, a τ0-arc, or a τ2-arc.

If β∗∗ is a τ0-arc, then τ is incident to only one boundary component of F, since the
endpoints of β∗∗ lie on the same component of ∂F. However, there is an arc parallel
to τ0 in A0 that is disjoint from β∗∗ and whose endpoints interleave on ∂(F × {0})
with those of β∗∗. It is therefore impossible that these two arcs together bound a disk
in F × {0}. _is shows that β∗∗ is not a τ0-arc.

If β∗∗ is a τ2-arc, then τ is incident to two boundary components of F and β∗ is an
extra arc. _us, D∗ is a special disk with smaller size than D, a contradiction.

If β∗∗ is an extra arc, then τ is incident to two boundary components of F and β∗

is a τ2-arc. Let F∗ be the subdisk of F′0 that β∗ cuts oò. Now, (∂E′ ∩ (F × {0})) ∖ γ
consists of two arcs; call these γ′ and γ′′. From their endpoints that meet γ, both γ′

and γ′′ run to the opposite side of A0, by Lemma 3.13. At this point, therefore, one
of γ′ and γ′′ lies closer than the other in A0 to the component of A0 ∩ ∂(F × {0})
containing the endpoints of β∗. Take this to be γ′. See Figure 11.
Consider the path of γ′′ from the endpoint that meets γ. When it ûrst leaves A0,

γ′′ enters the disk F∗. As we continue to follow its path, it can either end on the
component of ∂F × {0} that contains the endpoints of β∗∗ or else return to A0 ∩
F′0 (necessarily on the other side, by Lemma 3.14). We see, therefore, that γ′′ spirals
around one boundary component of F × {0} some number of times before ending
on this component of ∂(F × {0}). Consider the ûnal section of γ′′, from where it last
leaves A0 to where it reaches ∂(F × {0}). _is cuts oò a disk from F′0, the remainder
of whose boundary consists of a single sub-arc of A0 ∩ F′0 and a single sub-arc of
∂(F × {0})∖ A0. _is contradicts Lemma 3.14. It is therefore not possible that β∗∗ is
an extra arc.

Figure 11: If β∗∗ is an extra arc, then ∣∂F∣ = 2 and γ′′ spirals around one component of ∂F.
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_us, we conclude that there are no arcs of type II in D ∩ E′.
3.5 Arcs of Type I

Sincewe now know there are no arcs of types 0 or II, if there are arcs of type I, then one
of them is outermost in E′. Again, call one of these arcs δ, and call the subdisk of E′

that it cuts oò E. Let γ = ∂E∖δ. _en γ consists of two sub-arcs. Let γ0 = γ∩(F×{0})
and γ∂ = γ ∩ (∂F × I). Observe that γ0 has one endpoint on a τ0-arc of ∂D and the
other end on ∂F ∖A0, given Lemma 3.13. Note that, since γ0 is disjoint on its interior
from ∂D, Lemma 3.13 also tells us that γ0 ∩ A0 is a single sub-arc of γ0.
As before, boundary compressing D along E results in two disks, D∗ and D∗∗, at

least one ofwhich is essential. Again let D∗ be the one that contains α in its boundary.
Let β∗ and β∗∗ be the sub-arcs of ∂D∗ and ∂D∗∗, respectively, that contain copies of
γ0. As before, ∣D∗ ∩ E′∣ < ∣D ∩ E′∣, neither ∂D∗ nor ∂D∗∗ contains any bad arcs, and
∂D∗∗ contains at most one special arc. Now

∣∂D∗ ∩ (F × {0, 1})∣ + ∣∂D∗∗ ∩ (F × {0, 1})∣ = ∣∂D ∩ (F × {0, 1})∣ + 1.

In addition, ∣∂D∗ ∩ (F × {0, 1})∣ ≥ 2, while ∣∂D∗∗ ∩ (F × {0, 1})∣ ≥ 1. _erefore,
∣∂D∗∩(F×{0, 1})∣ ≤ ∣∂D∩(F×{0, 1})∣ and ∣∂D∗∗∩(F×{0, 1})∣ < ∣∂D∩(F×{0, 1})∣.
From Lemma 3.14, we know that neither β∗ nor β∗∗ is an extra arc. If D∗∗ is

essential, then it is a special disk with smaller size than D, which is a contradiction.
Suppose otherwise. _en D∗ is essential. Additionally, by Lemma 3.6, β∗∗ is either a
τ0-arc or a τ2-arc.

If β∗∗ is a τ2-arc, then β∗ is a τ0-arc. _us, D∗ is a special disk that is smaller than
D, a contradiction.

If β∗∗ is a τ0-arc, then, as β∗∗ is disjoint from a copy of τ0 in A0, together these arcs
bound a disk in F. If τ is incident to a single boundary component of F, the presence
of this disk tells us that the endpoints of β∗∗ do not interleave on ∂F with those of τ0.
_erefore the disk contains β∗ and β∗ is an extra arc, a contradiction.

It remains only to consider the case where τ has its endpoints on distinct compo-
nents of ∂F, as does β∗∗. Again, if the disk between β∗∗ and τ0 contains β∗, then β∗

is an extra arc, a contradiction. Accordingly, the disk does not contain β∗, and β∗ is
a τ2-arc, cutting oò from F′0 a disk F∗. Let γ′0 = (∂E′ ∩ (F × {0})) ∖ γ0. _is is an
arc with one endpoint on a τ0-arc of ∂D, where it meets γ0, and the other endpoint
on ∂(F × {0}) ∖ A0. Given the deûnition of E′, this endpoint lies on the opposite
component of ∂(F × {0}) to the other endpoint of γ0. _at is, γ′0 does not meet the
same component of ∂(F × {0}) as β∗ does. See Figure 12. Consider the path of γ′0
from where it meets γ0. It ûrst runs through A0, and passes through A0 ∩ F′0 into the
disk F∗. As we continue to follow its path, it can either end on ∂(F × {0}) or else
return to A0 ∩ F′0 (necessarily on the other side, by Lemma 3.14). We see that, like the
arc γ′′ above, γ′0 spirals around one boundary component of F ×{0} some number of
times before ending on the same component of ∂(F×{0}). Consider the ûnal section
of γ′0, from where it last leaves A0 to where it reaches ∂(F × {0}). _is cuts oò a disk
from F′0, the remainder ofwhose boundary consists of a single sub-arc of A0 ∩F′0 and
a single sub-arc of ∂(F × {0}) ∖ A0. _is contradicts Lemma 3.14.

_us, there are no arcs of type I. _is completes the proof of_eorem 1.1.
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Figure 12: If β∗∗ is a τ0-arc and ∣∂F∣ = 2, then γ′0 spirals around one component of ∂F.

By Proposition 2.13, we know that an unknotting tunnel τ for a ûbered, tunnel
number one link K in a manifold M can be isotoped to lie in a ûber F. We can now
prove the following theorem.

_eorem 1.2 Suppose K is a tunnel number one, ûbered link in a 3-manifoldM, with
ûber F,monodromy h, and a properly embedded arc τ in F that is an unknotting tunnel
for K. _en there exists a properly embedded arc β ⊂ F, freely ambient isotopic in F
to h(τ), so that τ ∩ β = ∅. In particular, up to isotopy rel ∂F, there exists a regular
neighborhood of ∂F outside of which τ and h(τ) do not intersect.

Proof Recall that (M∖n(K)) is a surface bundle, that h is a particular monodromy
for the bundle, and that by deûnition of unknotting tunnel, (M ∖ n(K)) ∖ n(τ) is
a genus two handlebody. So, the hypotheses of_eorem 1.1 apply, and the statement
follows.

4 Boundary Twisting and Fractional Dehn Twists

In this section, we will discuss why the free isotopymentioned in _eorem 1.2 is nec-
essary, why a stronger claim about unknotting tunnels being clean cannot bemade in
general, and some remaining open questions.

4.1 Full Twisting

We ûrst consider full twists around boundary components of the ûber surface.

Example 4.1 First, consider a surface bundleM = (F × I)/h as in _eorem 1.1, and
suppose M is tunnel number one (i.e., that there is an arc τ ⊂ F such that M ∖ n(τ)
is a genus two handlebody). Let T∂ be a Dehn twist along a curve in F that is parallel
to a component of ∂F. _en for all n ∈ Z, the maps h and Tn

∂ ○ h are freely isotopic,
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so that (F × I)/h ≅ (F × I)/(Tn
∂ ○ h). In fact, τ ⊂ F is still an unknotting tunnel

for (F × I)/(Tn
∂ ○ h). However, even if τ is clean with respect to h, there will be

intersections between τ and (Tn
∂ ○ h)(τ) in a neighborhood of ∂F for all suõciently

high values of ∣n∣. _ese intersections can be removed by freely isotoping (Tn
∂ ○h)(τ)

independently of τ, but then the arc does not correspond to the image of τ under the
map (Tn

∂ ○ h). If we consider the surface bundle as the exterior of a link in some
3-manifold, then these twists can be thought to aòect themeridian(s) of the link, and
can be viewed as changing the ambient 3-manifold in which the ûbered link sits. So
generically, weak cleanliness of unknotting tunnels is the best that can be hoped for.

Onemight hope that this type of indeterminacy would improve if we restrict our
attention to knots and links in S3, as thiswould specify the representativemonodromy
map by determining themeridian(s). We next, therefore, consider an example in S3,
suggested to the authors by Ken Baker.

Example 4.2 Suppose τ is the upper (or lower) tunnel for a ûbered 2-bridge knot
K in S3 (see [23]), sitting in a ûber surface F as a clean arc such that h(τ) /= τ. Now,
perform a Hopf plumbing along an arc that is parallel into ∂F, but has endpoints in-
terleaved on K with those of τ. _e result is K#L ⊂ S3, where L is aHopf link and has
a monodromy map h′ that is a composition of h with a Dehn twist around the core
curve of the Hopf band. _e choice of sign for the Hopf band determines the orien-
tation on the link as well as the sign of the Dehn twist. Either way, τ is an unknotting
tunnel of K#L, since τ together with the unknotted component of the link is actually
equivalent to one of the dual upper (or lower) tunnels for K (see [23]). Although one
choice results in amonodromy underwhich τ is still clean, the other results in amon-
odromy under which it is not, since the extra twist forces an intersection between τ
and h′(τ) in a neighborhood of the boundary of the ûber. See Figure 13.

Figure 13: One choice ofHopf plumbing gives a clean tunnel while the other does not.
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In fact, it is not only in the case of a connected sum with a Hopf link that this
complication with boundary twisting arises. Kai Ishihara pointed out to the authors
that if L is a tunnel number one, ûbered, two-component link in S3 with one trivial
component, K, and linking number ±2 or 0, then modifying the monodromy by n
Dehn twists (n = ∓1 or n arbitrary, respectively) along a curve in the ûber parallel
to K corresponds to performing Stallings twists, and produces tunnel number one,
ûbered links in S3. Each of these links has an unknotting tunnel that intersects its
image (several times) in a neighborhood of the boundary of the ûber, precisely be-
cause the twistingwas performed around a curve parallel (in the ûber) to a boundary
component of the ûber.

Example 4.3 One such example is theWhitehead link, which has linking number
zero and is also hyperbolic. Figure 14 (le�) shows the link resulting from twisting
n = 3 times around one of the components of the Whitehead link, along with an
unknotting tunnel, τ, for this link. One can check that the surface illustrated is a ûber
(since it is genus one, i.e.,minimal genus), and that τ is an unknotting tunnel for the
link. _e arc τ is not clean, as the image of τ under the monodromy is indicated.
Alternatively, one can see that τ cannot be clean, because cutting the ûber surface
along the tunnel arc produces a surfacewhose boundary is the 52 knot. If τ were clean
and alternating, then it would correspond to a plumbedHopf band, the de-plumbing
of which would result in a genus one ûber surface with a connected boundary, so the
boundary would be a trefoil or ûgure-eight knot. On the other hand, if τ were clean
andnon-alternating, then cutting along τwould result in a pre-ûber surface (see [22]),
which itselfwould be a (genus one) compressible surface, implying that the boundary
was the unknot.

Twisting the same component of theWhitehead link an arbitrary n times also re-
sults in a new tunnel number one, ûbered link. In Figure 14 (right), the light gray arc
still indicates an unknotting tunnel, and the black train trackwithweights determines
the arc that is the image of this tunnel under themonodromy for this surface.

Figure 14: A hyperbolic, tunnel number one, ûbered link in S3 with an unclean tunnel obtained
by twisting theWhitehead link around an unknotted component n = 3 (le�) or n ≥ 1 (right)
times.
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In spite of the examples discussed above, it remains possible that the following
question has an aõrmative answer.

Question 1 If a tunnel number one, ûbered link of two components in S3 has an
unclean unknotting tunnel, then must one of the components be unknotted?

We will see that this kind of full twisting around the boundary cannot occur for
(nontrivial) tunnel number one, ûbered knots in S3. However, fractional twisting
remains possible.

4.2 Fractional Dehn Twists

We next consider partial twisting around boundary components of the ûber surface.
_urston classiûed automorphisms of a (hyperbolic) surface. Every automorphism

f ∶ F → F is freely isotopic to one, f̃ , that is either (1) reducible, (2) periodic, or (3)
pseudo-Anosov (see [4, 37]). In all cases, f̃ is called the _urston representative of f .
(We follow the convention of referring to amap as reducible only if it is not periodic.)
By _urston’s Hyperbolization _eorem a surface bundle over S1 is hyperbolic if

and only if the (_urston representative of the) monodromy map is pseudo-Anosov
(see [27,28,36]). Since theWhitehead link is hyperbolic, the_urston representative
of its monodromy is correspondingly pseudo-Anosov. Observe that this means the
family of examples given in Figure 14 are all hyperbolic, since all of their respective
monodromies are freely isotopic to themonodromy of theWhitehead link.

_e fractional Dehn twist coeõcient of a surface automorphism h at a boundary
component of the surface measures the amount of twisting around that boundary
component necessary to freely isotope h to its _urston representative. While the
details diòer slightly between the cases of the diòerent _urston types, the fractional
Dehn twist coeõcient is a rational number p/q, (with p and q relatively prime),which
corresponds to a 2pπ/q rotation around a boundary component of the surface.

_e relevance of fractional Dehn twist coeõcients for the question of clean arcs
in ûbers of ûbered links is as follows. Suppose h is the monodromy of a ûbered link
complement with ûber F, α is an arc properly embedded in a ûber surface with both
endpoints on the same component of ∂F, and h̃ is the _urston representative of h
(with respect to a ûxed hyperbolic structure on the ûber). Take α to be the geodesic arc
freely isotopic to α, and h(α) to be the geodesic arc freely isotopic to h(α),whichwill
also be freely isotopic to h̃(α). As these are geodesic arcs, they intersect minimally
among their free isotopy representatives. Let A be a small annular neighborhood of
the boundary component to which α is incident. Since h has the property that h∣∂F =
Id, the arc h(α) can be realized by replacing h(α) ∩ A with arcs that monotonically
spiral around A with rotation 2pπ/q, where h has fractional Dehn twist coeõcient
of p/q at the relevant boundary component. _is spiralling may necessarily result in
intersections between α and h(α) in their interiors, as indicated in the statement of
_eorem 1.2.

When the surface bundle is a knot complement in S3, works of Gabai [13] and
Kazez and Roberts [21] have shown that the fractionalDehn twist coeõcient is either
0 or 1/n for some integer n, ∣n∣ ≥ 2. In particular, this means that if we orient an arc
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α in a ûber surface for a knot in S3, then an initial sub-arc of α and an initial sub-
arc of h(α) will not have any intersections in a neighborhood of the boundary of the
ûber owing to fractional Dehn twisting. _us, the only intersections that could be
introduced by fractional Dehn twisting will be between an initial sub-arc of α and a
terminal sub-arc of h(α), or vice versa. In fact, if the fractionalDehn twist coeõcient
is 1/n with ∣n∣ > 2, then only one of these two can occur. For an unknotting tunnel
sitting as an arc in the ûber, these are the only intersections that occur at all, sowe get
the following slight reûnement of_eorem 1.2.

_eorem 4.4 Suppose K is a tunnel number one, ûbered knot in S3, with ûber F,
monodromy h, and a properly embedded arc τ in F that is an unknotting tunnel for K.
_en τ and h(τ) can be ambient isotoped in F rel ∂F so that ∣ int(τ) ∩ int(h(τ))∣ ≤ 2,
and any such intersections occur in a regular neighborhood of ∂F; moreover, if ∣ int(τ)∩
int(h(τ))∣ = 2, then h has a fractional Dehn twist coeõcient of ±1/2.

We ask the following optimistic question.

Question 2 Is the unknotting tunnel of a tunnel number one, ûbered knot in S3

always clean?

While _eorem 4.4 does not rule out a negative answer, the authors know of no
examples demonstrating one.

Should the answers to both Questions 1 and 2 turn out to be yes, might all tunnel
number one, ûbered links in S3 be obtainable by a sequence of operations like twisting
around unknotted boundary components, plus Hopf plumbing, de-plumbing, and
Stallings twisting restricted to locations determined by unknotting tunnels?

5 An Application to Hyperbolic Cusps

In [10], Futer and Schleimer study the hyperbolic structure on a hyperbolic surface
bundle M. Each boundary component of M is a cusp in the hyperbolic structure. If
we pick one boundary component, expanding a regular neighborhood of the corre-
sponding cusp until it “bumps into itself ” gives a well-deûned “maximal cusp”. _e
geometric properties of the bounding torus of this neighborhood are invariants of the
manifold M. Futer and Schleimer relate this geometry to the action of the (pseudo-
Anosov) monodromy on the arc complex of the ûber surface.

Given a compact, connected surface F with boundary, the arc complex A(F) is a
simplicial complex. _e vertices of the complex are free isotopy classes of essential
arcs properly embedded in F. Distinct vertices span a simplex exactly when the free
isotopy classes of arcs can be simultaneously realized disjointly in F. (Note that some-
timesA(F) is also used to denote the complex whose vertices are essential arcs up to
isotopy rel ∂, though this is not the usage here.) A homeomorphism h of F induces a
homeomorphism h∗ ofA(F). _e translation distance dA(h) of h is

dA(h) = min
v∈A(0)(F)

d(v , h∗(v)).
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Here the distance d is measured in the 1-skeleton A(1)(F), where each edge has
length 1. _e stable translation distance dA(h) is given by

dA(h) = lim
n→∞

d(v , hn
∗(v))
n

,

where v is any vertex ofA(F). _e triangle inequality implies that dA(h) ≤ dA(h).
We claim that a pseudo-Anosov homeomorphism cannot ûx an essential arc in

the surface. Assume that F is not a disk or an annulus, as there are no pseudo-Anosov
homeomorphisms on disks or annuli. Also, assume that F is not a pair of pants, as a
homeomorphism ûxing an essential arc in a pair of pants must be isotopic either to
the identity or a rotation of order 2, neither ofwhich are pseudo-Anosov homeomor-
phisms. Let γ be an essential arc in F. Suppose that h′∶ F → F is a map isotopic to h
with h′(γ) = γ.
First, suppose that γ has its endpoints on the same component of ∂F. _e end-

points of γ divide the boundary component of F into two arcs. Let γ1 , γ2 be the simple
closed curves given by combining each of these two arcswith a copy of γ. At least one
of γ1 or γ2 must be an essential curve in F, for otherwise they are both isotopic to
boundary components of F, and F would be a pair of pants. _en, since at least one
of γ1 or γ2 is essential, either h′ ûxes γ1 and γ2, and we have an essential curve ûxed
by h′, or h′ exchanges them, in which case γ1 ∪ γ2 is an essential multi-curve ûxed by
h′.

On the other hand, suppose γ has its endpoints on distinct components of ∂F. Let
γ′ be a simple closed curve that runs parallel to γ, around one boundary component
of ∂F on which γ has an endpoint, back parallel to γ and around the other boundary
component. _en, up to isotopy, h′(γ′) = γ′. _e curve γ′ must be essential, else F
would be a pair of pants, and h′, again, ûxes an essential curve.

_us, since apseudo-Anosovhomeomorphism cannotûx an essentialmulti-curve,
it cannot ûx an essential arc.

Written in this language,_eorem 1.1 says the following.

Corollary 5.1 If the surface bundle (F×I)/h has tunnel number one, then dA(h) ≤ 1.
If h is pseudo-Anosov, then dA(h) = 1.

Given this, [10,_eorem 1.5] yields the following result.

_eorem 5.2 If the surface bundle (F × I)/h has tunnel number one, ∣∂F∣ = 1, and h
is pseudo-Anosov, then the area of themaximal cusp is bounded above by 9χ(F)2, and
the height of the cusp is strictly less than −3χ(F).

Here the height of the cusp torus is its area divided by the length of the longitude.
We remark that [10, _eorem 1.5] also gives lower bounds on these quantities in

terms of dA(h). In [14], Gadre and Tsai studied the analogous distance in the curve
complex, giving an explicit lower bound. It seems plausible that such a bound could
likewise be obtained for the arc complex.
David Futer pointed out the following corollary of Corollary 5.1 to the authors.
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Corollary 5.3 _ere exists a family of ûbered knots Kn , each having monodromy with
translation distance 1, such that the cusp area grows linearly with the knot genus.

Proof For n ≥ 1, let Kn be the (6n+ 1)-crossing knotwith diagram Dn formed from
the blocks in Figure 15, taking one of each of the outer two blocks and n of the inner
one. In addition, let Rn be the Seifert surface for Kn constructed by combining the

Figure 15: We build the knot Kn by combining n copies of the middle block with one copy of
each of the outer blocks.

pieces of surface shown in Figure 15. As Dn is alternating, this surface has minimal
genus. Note that χ(Rn) = 1 − 4n, so Kn has genus 2n.
For m ∈ N, let fm denote the m-th term of the Fibonacci sequence (so f1 = f2 = 1,

f3 = 2, f4 = 3, f5 = 5, etc.). _en Kn is the rational knot corresponding to the fraction
f6n+1/ f6n+2. A rational knotwith fraction 1/q for some q is a torus knot, and all other
rational knots are hyperbolic (see, for example, [3]). Two fractions p1/q1 and p2/q2
(with p i coprime to q i) correspond to the same rational knot if and only if p1 = p2
and either q1 ≅ q2 mod p1 or q1q2 ≅ 1 mod p1. Since f6n+1 /= 1 for n ≥ 1, this shows
that Kn is hyperbolic for each n.

_at Rn is a ûber surface can be checked directly by product disk decompositions
(see [12])— 2n product disk decompositions can be used to remove the “trefoil pat-
tern” in the center of each of the n middle blocks, leaving a checkerboard surface;
further product decompositions can be used to reduce the surface to a disk (by re-
moving the white bigons in the remaining diagram).
Being rational knots, each Kn has tunnel number one, with a tunnel given by the

dotted arc in Figure 15. _erefore, Corollary 5.1 applies, and the monodromy of Kn
has translation distance 1.

In a link diagram, a twist region is amaximal collection of crossings connected in
a line by bigons. Each diagram Dn is twist-reduced and has 6n− 1 twist regions. _us,
[9,_eorem 4.8] gives that, for the knot Kn , the area an of themaximal cusp satisûes

1
12

(6n − 2) ≤ an < 40
3
(6n − 2).

Corollary 5.3 shows that the dependence on the Euler characteristic in the area
bound in [10,_eorem 1.5] and in _eorem 5.2 is necessary.
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[32] ,_e topology, geometry and algebra of unknotting tunnels. Chaos, Solitons and Fractals
9(1998), no. 4–5, 739–748. http://dx.doi.org/10.1016/S0960-0779(97)00101-X

[33] M. Scharlemann, Tunnel number one knots satisfy the Poenaru conjecture. Topology Appl.
18(1984), no. 2–3, 235–258. http://dx.doi.org/10.1016/0166-8641(84)90013-0

[34] M. Scharlemann and A. _ompson, Unknotting tunnels and Seifert surfaces. Proc. London Math.
Soc. (3) 87(2003), no. 2, 523–544. http://dx.doi.org/10.1112/S0024611503014242

[35] J. R. Stallings, Constructions of ûbred knots and links. In: Algebraic and geometric topology
(Proc. Sympos. PureMath., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure
Math., 32, American Mathematical Society, Providence, RI, 1978, pp. 55–60.

[36] D. Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de
dimension 3 ûbrées sur S1 . In: Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., 842,
Springer, Berlin-New York, 1981, pp. 196–214.

[37] W. P. _urston, On the geometry and dynamics of diòeomorphisms of surfaces. Bull. Amer. Math.
Soc. (N.S.) 19(1988), no. 2, 417–431. http://dx.doi.org/10.1090/S0273-0979-1988-15685-6

[38] R. Yamamoto, Stallings twists which can be realized by plumbing and deplumbing Hopf bands. J.
Knot _eory Ramiûcations 12(2003), no. 6, 867–876.
http://dx.doi.org/10.1142/S0218216503002779

University of Hull, Hull, UK, HU6 7RX
e-mail: jessica.banks@lmh.oxon.org j.banks@hull.ac.uk

California State University, Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831
e-mail: mrathbun@fullerton.edu

https://doi.org/10.4153/CJM-2016-002-1 Published online by Cambridge University Press

http://dx.doi.org/10.2969/jmsj/04840667
http://dx.doi.org/10.1142/S0218216502001652
http://dx.doi.org/10.1007/s00222-007-0075-9
http://dx.doi.org/10.2140/pjm.2012.259.473
http://dx.doi.org/10.1016/S0960-0779(97)00101-X
http://dx.doi.org/10.1016/0166-8641(84)90013-0
http://dx.doi.org/10.1112/S0024611503014242
http://dx.doi.org/10.1090/S0273-0979-1988-15685-6
http://dx.doi.org/10.1142/S0218216503002779
mailto:jessica.banks@lmh.oxon.org
mailto:j.banks@hull.ac.uk
mailto:mrathbun@fullerton.edu
https://doi.org/10.4153/CJM-2016-002-1

