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Abstract
This article considers the individual equilibrium behavior and socially optimal strategy in a fluid queue with two
types of parallel customers and incomplete fault. Assume that the working state and the incomplete fault state
appear alternately in the buffer. Different from the linear revenue and expenditure structure, an exponential utility
function can be constructed to obtain the equilibrium balking thresholds in the fully observable case. Besides, the
steady-state probability distribution and the corresponding expected social benefit are derived based on the renewal
process and the standard theory of linear ordinary differential equations. Furthermore, a reasonable entrance fee
strategy is discussed under the condition that the fluid accepts the globally optimal strategies. Finally, the effects
of the diverse system parameters on the entrance fee and the expected social benefit are explicitly illustrated by
numerical comparisons.

1. Introduction

The customer behavior analysis of queueing systems has received considerable attention due to the
widespread application of random service systems. Most references assume that the server is always
available, but perfectly reliable servers are virtually nonexistent. Economou and Kanta [3] consid-
ered the equilibrium behavior in the observable queues with breakdowns and repairs. Subsequently,
Li et al. [7] extended the research results in [3] and derived the joining strategies for customers in
unobservable cases. Wang and Zhang [10] studied an unreliable M/M/1 queue with delayed repairs in
observable cases. Inspired by Wang and Zhang [10], Yu et al. [15] explored the same settings in unob-
servable cases. Besides, Yang et al. [14] analyzed the Geo/Geo/1 queue with fault characteristics and
determined the Nash equilibrium and the social optimum. Chen and Zhou [2] incorporated the setup
times into a repairable queue and derived the mixed strategies of customers. Moreover, Li et al. [5]
obtained the equilibrium balking strategies and socially optimal behavior in an M/M/1 queue with par-
tial breakdowns and immediate repairs, where the systems can continue the service at a lower rate during
the breakdowns. Yu et al. [16] compensated the game analysis in [5] by studying the corresponding par-
tially observable cases. Xu and Xu [12] further discussed the individual Nash equilibrium in an M/M/1
queue with partial failures and delayed repairs. Considering more complex service systems, Zhang and
Xu [18] made an economic analysis in a queue with setup times and partial failures. Aghsami and Jolai
[1] studied the equilibrium balking strategies in the single-server Markovian queue with partial break-
downs and interruptible setup policy. The economic analysis of queueing systems with breakdowns has
been widely applied in the inventory management, communication networks, and supply-chain systems.
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In a complex queueing system, the interarrival time of customers is getting smaller, and the service
time is getting shorter. Discrete customers can be considered as the continuous fluid. There is an emerg-
ing tendency to study the fluid models strategically due to the limitation and the complexity of discrete
queueing systems. Economou and Manou [4] considered the fluid model with two service modes and
derived the individual equilibrium thresholds and socially optimal strategies. Subsequently, Wang and
Xu [11] studied the strategic behavior in a fluid vacation queue. Recently, Xu and Wang [13] explored
an on-off fluid queue and characterized the mixed equilibrium strategies in the unobservable cases.
Logothetis et al. [9] also analyzed a fluid on-off model and studied the equilibrium strategies of cus-
tomers under conditions of reneging and no-reneging, respectively. However, none of the above literature
considers the entrance fee problems, which can eliminate the gap between the individual equilibrium
and socially optimal strategies.

In real life, parallel customers who have the same service levels are widespread in public services,
such as volunteer clinics for specific populations, psychological counseling, and legal advice. Li et al.
[6] analyzed the service policy in an M/M/1 queue with two types of customers and different waiting
costs. Zhang and Xu [17] incorporated two types of parallel customers into a fault queueing system and
obtained the equilibrium balking strategy in the observable cases. Based on Zhang and Xu [17], Liu et al.
[8] studied a repairable fluid queue with two types of parallel customers from an economic viewpoint.
However, in many real-life situations, the server may not stop working completely in the maintenance
period due to the durability and complexity of modern operating systems and system failures provide
lower service rates. For example, a running computer system may slow down due to aging hardware or
virus attacks. Therefore, incorporating the incomplete fault schedule into the fluid queue is reasonable
and valuable, and this work compensates the equilibrium game analysis in [8] by studying the incomplete
breakdowns.

The proposed model has broad applications and contributions in many fields, one of which is wire-
less communication technology. With the rapid development of telecommunication networks, wireless
resources are shared among various services, and suppliers divide the information flowing into the pro-
cessor into data, voice, and video categories to provide communication services. The unreliable router
can be interrupted when transmitting information due to hardware failures and needs a random amount
of time for recovery. During the maintenance periods, the router reduces the efficiency and can still
transmit the information fluid at a lower rate. In this scenario, the transmitted information, the router,
and the breakdown correspond to the arriving fluids, the buffer, and the incomplete fault, respectively, in
the queueing terminology. The single service and pricing standard in the queueing system cannot satisfy
the requirements of the growing variety of scenarios. Therefore, considering the equilibrium behavior
of two or even more types of customers in an unreliable fluid queue is significant and necessary.

Motivated and inspired by the above practical cases, this paper makes an economic analysis for
two types of the fluid in an unreliable server under the fully observable case. Different from [8], this
paper assumes that the service can provide relatively low service rates after failure. To the best of the
author’s knowledge, no research has been found in the literature on conducting equilibrium strategies for
fluid queues with incomplete fault and parallel customers. The individual equilibrium strategy can be
obtained based on the non-cooperative game theory, and an exponential utility function is constructed
to compute the expected social benefit. The reasonable entrance fee strategy can dynamically regulate
system parameters and optimize the expected social benefits. Besides, the sensitivity analysis between
the globally optimal thresholds and the expected social benefit is illustrated by several numerical exam-
ples. The research results provide a theoretical basis and valid suggestions for signal transmissions in
network systems, which can obtain more stable response performance in the practical production life.

This article is organized as follows. Section 2 gives a detailed description of the fluid model.
Sections 3 and 4 are devoted to the individual balking strategy and social equilibrium analysis in the
fully observable case, respectively. Furthermore, the effects of the expected social benefit on globally
optimal thresholds are illustrated by numerical examples in Section 4. Section 5 presents an entrance fee
policy and analyzes it theoretically and numerically. Finally, we briefly conclude the paper in Section 6.
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2. Model description

Assume that two types of parallel customers flow into the buffer according to the exponential distribution
with rates _1 and _2 (_1 < _2), respectively, and the arrival processes are independent of each other.
I (t) is the state of the buffer at time t, and I (t) = 0, 1 indicates that the buffer is in maintenance
period and normal working period, respectively. The buffer has an exponentially distributed lifetime
with parameter \ and the output rate of the buffer in the normal working state is `1. When the system
breaks down, the buffer immediately enters the maintenance state and provides services for the fluid at a
lower rate of `0 (`0 < `1). The maintenance time follows the exponential distribution with parameter b.
Let X (t) be the fluid level at time t, and the net input rate of the buffer can be expressed as:

dX (t)
dt

=


_1 + _2 − `1, I (t) = 1, X (t) > 0,
_1 + _2 − `0, I (t) = 0, X (t) > 0,
max{_1 + _2 − `1, 0}, I (t) = 1, X (t) = 0.

The condition _j > `0, j = 1, 2 ensures that the buffer can reach the steady-state.
Suppose that the unit of the type j(j = 1, 2) fluid receives a reward of Rj when it flows out of the buffer

and costs Cj per unit time during its sojourn time, and the inequality Rj >
Cj
`0

is satisfied hereinafter to
ensure that the fluid prefers to enter when the buffer is empty.

In this paper, the fluid level X(t) and the buffer’s state I(t) can be observed when the fluid arrives
the buffer, and the decisions are irreversible, that is, neither retrials of balking customers or reneging
of entering customers are permitted. When the fluid reaches the buffer at time t, we assume that the
observed buffer state is (X (t) , I (t)) = (x, i).

3. Individual equilibrium strategy

In the financial and insurance industry, the exponential utility function is more practical and significant
than the linear utility function. The expected net benefit per unit time for the type j fluid after its service
when the buffer is in state (x, i) can be denoted as:

Bj (x, i) = Rj − CjE
[
eUSj (x,i)

]
,

where Sj (x, i) , j = 1, 2 represents the expected sojourn time for the type j fluid. eUSj (x,i) is integrable
and U is a constant, and 0 < U < \, 0 < U < b.

The pre-condition of the fluid flowing into the buffer is that the expected net benefit Bj (x, i) is
positive, then we get the following result.

Theorem 3.1. In the fully observable case, there exists a pair of thresholds
(
x∗j (0) , x∗j (1)

)
for type

j ( j = 1, 2) customers in the fluid model with two types of parallel customers and incomplete fault,
and the equilibrium strategies x∗j (0) and x∗j (1), respectively, are the unique roots of the equations
described below.

Rj − Cj
[U(`0 − `1) − \`0] e

U−b

`0
x + b`1e

U−\
`1

x

U(`0 − `1) − \`0 + b`1
= 0,

Rj − Cj
[U(`0 − `1) + b`1] e

U−\
`1

x + \`0e
U−b

`0
x

U(`0 − `1) − \`0 + b`1
= 0.

The equilibrium strategy of the fluid is defined as “while arriving at time t, observe the system is in state
(X (t), I (t)), the type j customers enter if X (t) ≤ x∗j (I (t)) and balk otherwise.”
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Proof. Assume that Ti is the remaining sojourn time of the buffer in the state i, i = 0, 1 when the fluid
arrives, then

Sj (x, i) =
{

x
`i

, Ti ≥ x
`i

,
Ti + Sj (x − `Ti, 1 − i), Ti <

x
`i
.

(1)

Using the conditional expectation formula, we have:

E
(
eUSj (x,0)

)
= e(U−b ) x

`0 +
∫ x

`0

0
E
(
eUSj (x−`0t,1)

)
be(U−b )tdt,

E
(
eUSj (x,1)

)
= e(U−\ ) x

`1 +
∫ x

`1

0
E
(
eUSj (x−`1t,0)

)
\e(U−\ )tdt.

After manipulating, we obtain the differential equations,

b − U

`0
E
(
eUSj (x,0)

)
+ dE(eUSj (x,0) )

dx
=

b

`0
E
(
eUSj (x,1)

)
, (2)

\ − U

`1
E
(
eUSj (x,1)

)
+ dE(eUSj (x,1) )

dx
=

\

`1
E
(
eUSj (x,0)

)
, (3)

with the boundary condition E
(
eUSj (0,i) ) = 1.

From formulas (2) and (3), the exponential form of the expected sojourn time in the buffer can be
obtained as:

E(eUSj (x,0) ) = [U(`0 − `1) − \`0] e
U−b

`0
x + b`1e

U−\
`1

x

U(`0 − `1) − \`0 + b`1
, i = 0,

E(eUSj (x,1) ) = [U(`0 − `1) + b`1] e
U−\
`1

x + \`0e
U−b

`0
x

U(`0 − `1) − \`0 + b`1
, i = 1.

Obviously, E(eUSj (x,i) ), i = 0, 1 is a monotonically increasing function with respect to x, then the
unique roots x∗j (0) and x∗j (1) for type j (j = 1, 2) customers are given in Theorem 3.1. �

4. Social equilibrium analysis

This section studies the steady-state probability distribution of the fluid level and the socially optimal
strategy in a global optimization problem. The fluid considers its own interests first when encountering
a joining-balking problem, then the buffer will be over-crowded and cannot achieve the global optimum.
Assume that all customers follow the socially optimal threshold strategy

(
xej (0) , xej (1)

)
, j = 1, 2, and

the fluid flows into the buffer if X (t) < xej (i) when the system is in state (x, i), otherwise the fluid balks.
Besides, the fluid prefers to enter when the buffer is in a normal working period because the expected
sojourn time of the fluid in state 1 is always less than the expected sojourn time in state 0 with the same
fluid level. Therefore, the inequalities xe1 (0) < xe1 (1) and xe2 (0) < xe2 (1) can be obtained. Then,
we suppose that the thresholds satisfy xe1 (0) < xe2 (0) < xe1 (1) < xe2 (1) , and the others can be
calculated based on the similar calculation method.
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The overall expected social benefit in unit time is:

B (xe1 (0) , xe2 (0) , xe1 (1) , xe2 (1)) =
2∑

j=1
Bj (xej (0), xej (1)) =

2∑
j=1

(
_ejRj − CjE

(
eUXj

))
,

where Bj (xej (0), xej (1)) and _ej are the expected social benefit per unit time and the effective arrival
rate for type j customers, respectively. The effective arrival rate _ej can be calculated from the arrival
rate and the entrance probability, and Xj is a random variable that denotes the fluid level of type j
customers.

4.1. Steady-state probability distribution

The stationary probability distribution of the fluid level in state i can be defined as:

Fi (x) = lim
t→∞

Fi (t, x) = p{X (t) ≤ x, I (t) = i}, x ≥ 0, i = 0, 1.

According to the alternating renewal process, we can get the steady-state distribution of the buffer is
c0 = \

\+b , c1 =
b

\+b .

Theorem 4.1. In the fully observable fluid queue with two types of parallel customers and incomplete
fault, if all customers follow the threshold strategy

(
xej (0) , xej (1)

)
and xe1 (0) < xe2 (0) < xe1 (1) <

xe2 (1), the steady-state probability distribution of the fluid level is as follows.
Case I. _2 > `1.

F0(x) =


0, x < xe2(0),

c0
b (q_1+_2−`1 )e

−
(

\
q_1+_2−`1

− b
`0

) (
x−xe2 (0)

)
−\`0

b (q_1+_2−`1 )e
−
(

\
q_1+_2−`1

− b
`0

) (
xe2 (1)−xe2 (0)

)
−\`0

, xe2(0) ≤ x ≤ xe2(1),

c0, x ≥ xe2(1).

(4)

F1(x) =



0, x ≤ xe2(0),

c1

\`0

e
−
(

\
q_1+_2−`1

− b
`0

) (
x−xe2 (0)

)
−1


b (q_1+_2−`1 )e

−
(

\
q_1+_2−`1

− b
`0

) (
xe2 (1)−xe2 (0)

)
−\`0

, xe2(0) ≤ x ≤ xe2(1),

c1, x > xe2(1).

(5)

Case II. _1 + _2 > `1 and _2 ≤ `1.

F0(x) =


0, x < xe2(0),

c0
b (_1+_2−`1 )e

−
(

\
_1+_2−`1

− b
`0

) (
x−xe2 (0)

)
−\`0

b (_1+_2−`1 )e
−
(

\
_1+_2−`1

− b
`0

) (
xe1 (1)−xe2 (0)

)
−\`0

, xe2(0) ≤ x ≤ xe1 (1),

c0, x ≥ xe1(1).

(6)
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F1 (x) =



0, x ≤ xe2(0),

c1

\`0

e
−
(

\
_1+_2−`1

− b
`0

) (
x−xe2 (0)

)
−1


b (_1+_2−`1 )e

−
(

\
_1+_2−`1

− b
`0

) (
xe1 (1)−xe2 (0)

)
−\`0

, xe2(0) ≤ x ≤ xe1(1),

c1, x > xe1(1).

(7)

Case III. _1+_2=`1. The fluid level is stabilized at xe2 (0).
Case IV. `0 < _1 + _2 < `1.

F0(x) =



0, x ≤ 0,

c0

b (_1+_2−`1 )
1−e

−
(

b
p_1+_2−`0

+ \
_1+_2−`1

)
x


\ (p_1+_2−`0 )e
−
(

b
p_1+_2−`0

+ \
_1+_2−`1

)
xe2 (0)+b (_1+_2−`1 )

, 0 ≤ x ≤ xe2 (0),

c0, x > xe2(0).

(8)

F1(x) =


0, x < 0,

c1
b (_1+_2−`1 )+(p_1+_2−`0 ) \e

−
(

b
p_1+_2−`0

+ \
_1+_2−`1

)
x

\ (p_1+_2−`0 )e
−
(

b
p_1+_2−`0

+ \
_1+_2−`1

)
xe2 (0)+b (_1+_2−`1 )

, 0 ≤ x ≤ xe2 (0),

c1, x ≥ xe2(0).

(9)

Proof. By comparing the arrival rate and the outflow rate, the steady-state probability distribution of
the fluid level can be discussed in the following four cases.

Case I. _2 > `1.
When the buffer is in state 1, the fluid in the buffer increases at the rate of _1 +_2 − `1 until the fluid

level reaches the threshold xe1(1). When the fluid level exceeds the optimal threshold xe1(1), only type
2 customers flow in and the fluid level increases to the threshold xe2(1) at the rate of _2 − `1. If the
buffer is still in state 1, the fluid will enter the system with probability `1

_2
to ensure that the fluid level

is stabilized at xe2(1). When the buffer is in state 0, the fluid decreases at the rate of `0. The system
repeats in this way, and the fluid level fluctuates within [xe2(0), xe2(1)].

Considering the fluid level in a tiny time interval, we have

F0(t + Δt, x) = F0(t, x + `0Δt)ebΔt + F1(t, x − (q_1 + _2 − `1) Δt) (1 − e\Δt),
F1(t + Δt, x) = F1(t, x − (q_1 + _2 − `1) Δt)e\Δt + F0(t, x + `0Δt) (1 − ebΔt),

Substituting the exponential form of the Taylor formulas with Peano terms, we obtain:

F0(t + Δt, x) = F0(t, x + `0Δt) (1 − bΔt) + F1 (t, x − (q_1 + _2 − `1) Δt)\Δt + o(Δt),
F1(t + Δt, x) = F1(t, x − (q_1 + _2 − `1) Δt) (1 − \Δt) + F0(t, x + `0Δt)bΔt + o(Δt),

Dividing both sides by Δt and making Δt → 0, then we can get:
mF0(t, x)

mt
− `0

mF0(t, x)
mx

= −bF0(t, x) + \F1(t, x),
mF1(t, x)

mt
+ (q_1 + _2 − `1)

mF1(t, x)
mx

= −\F1(t, x) + bF0(t, x),
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When the system is stable, there exists lim
t→∞

mFi (t,x)
mt = 0, i = 0, 1.

The ordinary differential equations can be constructed as:
− `0

dF0 (x)
dx

= −bF0(x) + \F1(x),

(q_1 + _2 − `1)
dF1(x)

dx
= bF0(x) − \F1(x),

(10)

with boundary conditions

F0(xe2(1)) = c0, F1(xe2(0)) = 0,

where q =
xe1 (1)−xe2 (0)
xe2 (1)−xe2 (0) , 0 ≤ q ≤ 1 is the probability that the fluid level in the system is less than the

threshold xe1(1) in state 1.
The formulas (4) and (5) can be obtained by solving the differential equation (10). The point masses

and the probability density functions in states 0 and 1, respectively, are:

P0(xe2(0)) = F0(xe2(0)), P1(xe2(1)) = c1 − F1(xe2(1)),

f0(x) =
c0b (q_1 + _2 − `1)

(
b

`0
− \

q_1+_2−`1

)
e−

(
\

q_1+_2−`1
− b

`0

)
(x−xe2 (0) )

b (q_1 + _2 − `1)e
−
(

\
q_1+_2−`1

− b

`0

)
(xe2 (1)−xe2 (0) ) − \`0

,

f1(x) =
c1\`0

(
b

`0
− \

q_1+_2−`1

)
e−

(
\

q_1+_2−`1
− b

`0

)
(x−xe2 (0) )

b (q_1 + _2 − `1) e−
(

\
q_1+_2−`1

− b

`0

)
(xe2 (1)−xe2 (0) ) − \`0

.

Case II. _1 + _2 > `1 and _2 ≤ `1.
When the buffer is in state 1, the fluid in the buffer increases at the rate of _1 +_2 − `1 until the fluid

level reaches the threshold xe1(1), then the fluid level remains unaltered. When the buffer is in state 0,
the fluid decreases at the rate of `0. The system repeats in this way, and the fluid level fluctuates within
[xe2(0), xe1(1)].

Considering the fluid level in a tiny time interval, we have:

F0(t + Δt, x) = F0(t, x + `0Δt)ebΔt + F1(t, x − (_1 + _2 − `1) Δt) (1 − e\Δt),
F1(t + Δt, x) = F1(t, x − (_1 + _2 − `1) Δt)e\Δt + F0(t, x + `0Δt) (1 − ebΔt),

Substituting the exponential form of the Taylor formulas with Peano terms, we obtain:

F0(t + Δt, x) = F0(t, x + `0Δt) (1 − bΔt) + F1(t, x − (_1 + _2 − `1) Δt)\Δt + o(Δt),
F1(t + Δt, x) = F1(t, x − (_1 + _2 − `1) Δt) (1 − \Δt) + F0(t, x + `0Δt)bΔt + o(Δt),

Dividing both sides by Δt and making Δt → 0, then we can get:
mF0(t, x)

mt
− `0

mF0(t, x)
mx

= −bF0(t, x) + \F1(t, x),
mF1(t, x)

mt
+ (_1 + _2 − `1)

mF1(t, x)
mx

= −\F1(t, x) + bF0(t, x),

When the system is stable, there exists lim
t→∞

mFi (t,x)
mt = 0, i = 0, 1.
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The ordinary differential equations can be constructed as:


− `0

dF0(x)
dx

= −bF0(x) + \F1 (x),

(_1 + _2 − `1)
dF1(x)

dx
= bF0(x) − \F1(x),

(11)

with boundary conditions F0(xe1(1)) = c0 and F1(xe2(0)) = 0.
The formulas (6) and (7) can be obtained by solving the differential equation (11). The point masses

and the probability density functions in two states, respectively, are:

P0(xe2(0)) = F0(xe2(0)), P1(xe1(1)) = c1 − F1(xe1(1)),

f0(x) =
c0b (_1 + _2 − `1)

(
b

`0
− \

_1+_2−`1

)
e−

(
\

_1+_2−`1
− b

`0

)
(x−xe2 (0) )

b (_1 + _2 − `1)e
−
(

\
_1+_2−`1

− b

`0

)
(xe1 (1)−xe2 (0) ) − \`0

,

f1 (x) =
c1\`0

(
b

`0
− \

_1+_2−`1

)
e−

(
\

_1+_2−`1
− b

`0

)
(x−xe2 (0) )

b (_1 + _2 − `1) e−
(

\
_1+_2−`1

− b

`0

)
(xe1 (1)−xe2 (0) ) − \`0

.

Case III. _1+_2=`1.
When the buffer is in state 0, the net input rate of the fluid is _1+_2 − `0 or _2 − `0 and the fluid

level increases to xe2 (0), then the fluid level remains unaltered. When the buffer is in state 1, the fluid
level remains constant. The fluid level eventually stabilizes at xe2 (0) with the alternation of the server
status.

Case IV. `0 < _1 + _2 < `1.
When the buffer is in state 0, the fluid in the system increases at the rate of _1 + _2 − `0 until the

fluid level reaches the threshold xe1(0). When the fluid level exceeds the optimal threshold xe1(0), only
type 2 customers flow in and the fluid level increases to xe2(0) at the rate of _2 − `0. If the buffer is still
in state 0, the fluid will enter the system with probability `0

_2
to ensure that the fluid level is stabilized at

xe2 (0). When the buffer is in state 1, the fluid decreases at the rate of _1 + _2 − `1. The system repeats
in this way, and the fluid level fluctuates within [0, xe2(0)].

Considering the fluid level in a tiny time interval, we have:

F0(t + Δt, x) = F0(t, x − (p_1 + _2 − `0) Δt)ebΔt + F1(t, x − (_1 + _2 − `1) Δt) (1 − e\Δt),
F1(t + Δt, x) = F1(t, x − (_1 + _2 − `1) Δt)e\Δt + F0(t, x − (p_1 + _2 − `0) Δt) (1 − ebΔt),

Substituting the exponential form of the Taylor formulas with Peano terms, we obtain:

F0(t + Δt, x) =F0(t, x − (p_1 + _2 − `0) Δt) (1 − bΔt)
+ F1(t, x − (_1 + _2 − `1) Δt)\Δt + o(Δt),

F1(t + Δt, x) =F1(t, x − (_1 + _2 − `1) Δt) (1 − \Δt)
+ F0(t, x − (p_1 + _2 − `0) Δt)bΔt + o(Δt),
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Dividing both sides by Δt and making Δt → 0, then we can get:


mF0(t, x)

mt
+ (p_1 + _2 − `0)

mF0(t, x)
mx

= −bF0(t, x) + \F1(t, x),
mF1(t, x)

mt
+ (_1 + _2 − `1)

mF1(t, x)
mx

= −\F1(t, x) + bF0(t, x),

When the system is stable, there exists lim
t→∞

mFi (t,x)
mt = 0, i = 0, 1.

The ordinary differential equations can be constructed as:


(p_1 + _2 − `0)

dF0(x)
dx

= \F1(x) − bF0(x),

(_1 + _2 − `1)
dF1(x)

dx
= bF0(x) − \F1(x),

(12)

with boundary conditions F0(0) = 0 and F1(xe2(0)) = c1, where p =
xe1 (0)
xe2 (0) , 0 ≤ p ≤ 1 is the probability

that the fluid level in the system is less than the threshold xe1(0) in state 0.
The formulas (8) and (9) can be obtained by calculating equation (12). The point masses and the

probability density functions in two states, respectively, are:

P0(xe2(0)) = c0 − F0 (xe2(0)), P1(0) = F1(0),

f0(x) =
c0b (`1 − _1 − _2)

(
\

`1−_1−_2
− b

p_1+_2−`0

)
e−

(
b

p_1+_2−`0
+ \
_1+_2−`1

)
x

\ (p_1 + _2 − `0) e−
(

b

p_1+_2−`0
+ \
_1+_2−`1

)
xe2 (0) + b (_1 + _2 − `1)

,

f1(x) =
c1(p_1 + _2 − `0)

(
\

`1−_1−_2
− b

p_1+_2−`0

)
\e−

(
b

p_1+_2−`0
+ \
_1+_2−`1

)
x

\ (p_1 + _2 − `0)e
−
(

b

p_1+_2−`0
+ \
_1+_2−`1

)
xe2 (0) + b (_1 + _2 − `1)

.

�

4.2. Analysis of the expected social benefit

Based on Theorem 4.1, when all customers follow the optimal balking strategies
(xe1(0), xe2(0), xe1(1), xe2(1)), the utility functions of the expected social benefit per unit time
are as follows.

Case I. _2 > `1.
In this case, the fluid level fluctuates within [xe2(0), xe2(1)]. The type 1 customers refuse to flow in

when the fluid level reaches the socially optimal thresholds xe1(i), i = 0, 1. The entrance probabilities
of type 2 customers are `0

_2
and `1

_2
when the fluid levels satisfy x = xe2(0) and x = xe2(1), respec-

tively. Based on Theorem 4.1, the stationary probability distribution F1(x) is continuous when the fluid
level reaches the thresholds xe2(0) and xe1(1), then the transient probabilities are P1(xe2(0)) = 0 and
P1(xe1(1)) = 0.

The expected social benefit per unit time can be expressed as:

B (xe1(0), xe2(0), xe1(1), xe2(1)) = _e1R1 + _e2R2 −
[
C1E

(
eUX1

)
+ C2E

(
eUX2

)]
,
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where the effective arrival rate and the exponential expected fluid level, respectively, are:

_e1 = _1

∫ xe1 (1)

xe2 (0)
f1(x)dx = _1

c1`0\e−A1 (xe1 (1)−2xe2 (0) )

b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0
,

_e2 = _2

[
P0(xe2 (0))

`0

_2
+ P1(xe2(1))

`1

_2
+
∫ xe2 (1)

xe2 (0)
f1 (x)dx

]
= _2

c1`0\e−A1 (xe2 (1)−2xe2 (0) ) + c0B1
`0
_2

+ c1B1e−A1 (xe2 (1)−xe2 (0) ) `1
_2

b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0
,

E(eUX1) =
∫ xe1 (1)

xe2 (0)
f1(x)eU

_1
_1+_2

xdx+
∫ xe2 (1)

xe2 (0)
f0(x)eU

_1
_1+_2

xdx

=
c1\ (q_1 + _2 − `1 + `0)A1

[
e−A1 (xe1 (1)−2xe2 (0) ) + e−A1 (xe2 (1)−2xe2 (0) )

][
b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0

]
(A1 − E1)

,

E
(
eUX2

)
=

∫ xe1 (1)

xe2 (0)
f1(x)eD1xdx +

∫ xe2 (1)

xe1 (1)
f1(x)eUxdx + P1(xe2(1))e

U

[
xe2 (1)−

_1
_1+_2

xe1 (1)
]

+
∫ xe2 (1)

xe2 (0)
f0 (x)eU

_2
_1+_2

xdx + P0(xe2(0))eUxe2 (0)

=

c1\`0A1eA1xe2 (0)
(

e
(
D1−A1

) (
xe1 (1)−xe2 (0)

)
A1−D1

+ e
(
U−A1

) (
xe2 (1)−xe1 (1)

)
A1−U

)
b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0

+
c0B1eUxe2 (0) + c0b (q_1 + _2 − `1)A1

e
(
D1−A1

) (
xe2 (1)−xe2 (0)

)
+A1xe2 (0)

A1−D1

b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0

+ c1B1e[ (U−A1 )xe2 (1)−E1xe1 (1) ]eA1xe2 (0)

b (q_1 + _2 − `1) e−A1 (xe2 (1)−xe2 (0) ) − \`0
,

where A1 = \
q_1+_2−`1

− b

`0
, B1 = b (q_1 + _2 − `1) − \`0, D1 = U

_2
_1+_2

, E1 = U
_1

_1+_2
.

Case II. _1 + _2 > `1 and _2 ≤ `1.
In this case, the fluid level fluctuates within [xe2(0), xe1(1)]. The type 1 customers refuse to flow in

when the fluid level reaches the socially optimal thresholds xe1(0) in state 0. The entrance probability of
type 1 customers is `1

_1+_2
when the fluid levels satisfy x = xe1(1). The entrance probabilities of type 2

customers are `0
_2

and `1
_1+_2

when the fluid levels satisfy x = xe2 (0) and x = xe1(1), respectively. Based
on Theorem 4.1, the stationary probability distribution F1(x) is continuous when the fluid level reaches
the threshold xe2(0), then the transient probability is P1(xe2(0)) = 0.

The expected social benefit per unit time can be expressed as:

B (xe1(0), xe2(0), xe1(1), xe2(1)) = _e1R1 + _e2R2 −
[
C1E

(
eUX1

)
+ C2E

(
eUX2

)]
,
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where the effective arrival rates for two types of customers and the exponential expected fluid levels in
the system, respectively, are:

_e1 = _1

[∫ xe1 (1)

xe2 (0)
f1(x)dx + `1

_1 + _2
P1(xe1(1))

]
= _1

c1\`0e−A2 (xe1 (1)−2xe2 (0) ) + c1F2
`1

_1+_2
e−A2 (xe1 (1)−xe2 (0) )

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0
,

_e2 = _2

[
P0(xe2(0))

`0

_2
+
∫ xe1 (1)

xe2 (0)
f1(x)dx + P1(xe1(1))

`1

_1 + _2

]
= _2

c0D2
`0
_2

+ c1\`0e−A2 (xe1 (1)−2xe2 (0) ) + c1F2
`1

_1+_2
e−A2 (xe1 (1)−xe2 (0) )

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0
,

E(eUX1) =
∫ xe1 (1)

xe2 (0)
(f0(x) + f1(x))eU

_1
_1+_2

xdx + P1(xe1(1))eU
_1

_1+_2
xe1 (1)

=
c0b (_1 + _2 + `0 − `1)A2

eA2xe2 (0)+
(
E1−A2

) (
xe1 (1)−xe2 (0)

)
A2−E1

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0

+ c1F2eE1xe1 (1)−A2 (xe1 (1)−xe2 (0) )

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0
,

E
(
eUX2

)
=

∫ xe1 (1)

xe2 (0)
(f0(x) + f1(x)) eU

_2
_1+_2

xdx + P0(xe2(0))eUxe2 (0)

+ P1(xe1(1))eU
_2

_1+_2
xe1 (1)

=
c0b (_1 + _2 + `0 − `1)A2

eA2xe2 (0)

A2−D1
e(D1−A2 ) (xe1 (1)−xe2 (0) )

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0

+ c1F2e−A2 (xe1 (1)−xe2 (0) )eD1xe1 (1) + c1D2eUxe2 (0)

b (_1 + _2 − `1) e−A2 (xe1 (1)−xe2 (0) ) − \`0
,

where A2 = \
_1+_2−`1

− b

`0
, D2 = b (_1 + _2 − `1) − `0\, F2 = b (_1 + _2 − `1) + \`0.

Case III. _1+_2=`1.
In this case, the fluid level stabilizes at xe2(0). The type 1 customers refuse to flow in and the entrance

probability of type 2 customers is `0
_2

when the system is in state 0. Besides, due to xe2(0) < xe1(1) <
xe2(1), two types of parallel customers flow into the buffer when the system is in state 1.

The expected social benefit per unit time is:

B (xe1(0), xe2(0), xe1(1), xe2(1))

=_1c1R1 + _2

(
c1 + c0

`0

_2

)
R2 −

[
C1E

(
eU

_1
_1+_2

xe2 (0)
)
+ C2E

(
eU

_2
_1+_2

xe2 (0)
)]

.

Case IV. `0 < _1 + _2 < `1.
In this case, the fluid level fluctuates within [0, xe2(0)]. The fluids choose to flow in when the fluid

level satisfies x ≤ xej (0), j = 1, 2, and the entrance probability of type 2 customers is `0
_2

when the fluid
level satisfies x = xe2(0) in state 0. Besides, due to xe2(0) < xe1(1) < xe2(1), two types of parallel
customers flow into the buffer when the system is in state 1. Based on Theorem 4.1, the stationary
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probability distribution F0(x) is continuous when the fluid levels satisfy x = 0 and x = xe1(0), then the
transient probabilities are P0(0) = 0 and P0(xe1(0)) = 0. The stationary probability distribution F1(x)
is continuous when the fluid level satisfies x = xe2(0), then the transient probability is P1(xe2 (0)) = 0.

The expected social benefit per unit time is:

B (xe1(0), xe2(0), xe1(1), xe2(1)) = _e1R1 + _e2R2 −
[
C1E

(
eUX1

)
+ C2E

(
eUX2

)]
,

where the effective arrival rates for two types of customers and the exponential expected fluid levels in
the system respectively are:

_e1 = _1

(∫ xe1 (0)

0
f0(x)dx + c1

)
= _1

(
c1 −

c0bE3e−A3xe1 (0)

\D3e−A3xe2 (0) + bE3

)
,

_e2 =_2

(∫ xe2 (0)

0
f0(x)dx + c1 + P0(xe2(0))

`0

_2

)
=_2

[
c1\D3 + c0

(
(\D3 + bE3) `0

_2
− bE3

)]
e−A3xe2 (0) + bE3

\D3e−A3xe2 (0) + bE3
,

E
(
eUX1

)
=

∫ xe1 (0)

0
f0(x)eU

_1
_1+_2

xdx +
∫ xe2 (0)

0
f1(x)eU

_1
_1+_2

xdx

=
c1\A3

[
E3e(E1−A3 )xe1 (0) − D3e(E1−A3 )xe2 (0)

][
\D3e−A3xe2 (0) + bE3

]
(E1 − A3)

,

E
(
eUX2

)
=

∫ xe1 (0)

0
f0(x)eD1xdx +

∫ xe2 (0)

xe1 (0)
f0(x)eUxdx +

∫ xe2 (0)

0
f1(x)eD1xdx

+ P0(xe2(0))e
U

[
xe2 (0)−

_1
_1+_2

xe1 (0)
]

=

c0bA3

[
E3e

(
D1−A3

)
xe1 (0)+D3e

(
D1−A3

)
xe2 (0)

D1−A3
+ E3e

(
U−A3

) (
xe2 (0)−xe1 (0)

)
U−A3

]
\D3e−A3xe2 (0) + bE3

+ c0 [bE3 + \D3] eU
[
xe2 (0)−

_1
_1+_2

xe1 (0)
]
−A3xe2 (0)

\D3e−A3xe2 (0) + bE3
,

where A3 =
b

p_1+_2−`0
+ \

_1+_2−`1
, D3 = p_1 + _2 − `0, E3 = _1 + _2 − `1.

4.3. Numerical comparisons of the expected social benefit

The optimal balking strategy (xe1 (0), xe2(0), xe1(1), xe2 (1)) is assumed to obtain the maximal
expected social benefit per unit time. However, the optimal balking strategy cannot be accom-
plished by conventional mathematical methods due to the complexity of the utility function
B (xe1(0), xe2(0), xe1(1), xe2(1)). This subsection continues to investigate the effects of the optimal
balking strategy on the expected social benefit by some numerical examples. Then, we assume that
_1= 2.8, _2 = 3, \= 0.4, b= 0.3, `0= 1, R1= 10, R2= 15, C1= 3, C2= 4, U= 0.2 in the following cases.

Figure 1 shows the variation of the expected social benefit per unit time with the thresholds xe2(0)
and xe1(1) when `1 = 3. In this case, the type 2 customers’ arrival rate is equal to the normal service
rate, that is _2 = `1 < _1 + _2. The expected social benefit decreases with the increase of the type 2
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Figure 1. Expected social benefit versus thresholds xej (i) when `1 = 3.

Figure 2. Expected social benefit versus thresholds xej (i) when `1 = 3.3.

customers’ threshold xe2(0) when the type 1 customers’ threshold xe1(1) is fixed. On the contrary,
the expected social benefit per unit time increases first and then decreases with the increase of the
threshold xe1(1) when the threshold xe2(0) is fixed. This indicates that if each fluid flows into the buffer
selfishly, the system will be over-congested and cannot achieve the global maximum. Therefore, the
system designers could appropriately regulate the joining thresholds for better deployment management.
The expected social benefit is concave, and the maximal benefit Bmax = 53.7 can be obtained at the
thresholds xe2(0) = 0 and xe1(1) = 6.3.

Figure 2 describes the sensitivity between the expected social benefit per unit time and the thresholds
xe2(0) and xe1(1) when the outflow rate is `1 = 3.3. When parameters satisfy _2 < `1 < _1 + _2,
the variable tendency of the expected social benefit is positively correlated with the type 1 customers’
threshold xe1(1) while negatively correlated with the type 2 customers’ threshold xe2(0). As the optimal
threshold xe2(0) continues to increase, substantial customers are emerging in the system, and the buffer
may be heavily loaded, which inevitably has a negative impact on society under the fully observable case.
Evidently, when the threshold xe1(1) is sufficiently large, the expected social benefit is more likely to
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Figure 3. Expected social benefit versus thresholds xej (0) when `1 = 6.

Figure 4. Expected social benefit versus thresholds xej (0) when `1 = 6.5.

reach its maximum. The expected social benefit achieves a maximum Bmax = 76 at thresholds xe2(0) = 0
and xe1(1) = 7.8.

Figures 3 and 4 present the sensitivity between the socially optimal thresholds and the expected social
benefit per unit time when the sum of the arrival rates is less than the outflow rate under the normal
working state, that is _1 + _2 < `1. The expected social benefit accelerates its decline significantly
when the type 1 customers’ threshold xe1 (0) increases. Moreover, when the thresholds for two types
of customers are almost equal, the expected social benefit per unit time grows slowly and gradually
stabilizes. Then, the expected social benefit reaches its maximum when the fluid flows into the buffer
at this time.

By comparing Figures 3 and 4, we observe that when the service rate `1 increases, an arriving
customer who is served in a shorter waiting time tends to have a stronger joining willingness. Concretely,
the customers have more chances to be served at a higher service rate `1, which can reduce their overall
sojourn time and increase the expected social benefit. Besides, the impact of the type 1 customers’
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threshold xe1(0) on the expected social benefit significantly reduces and the overall benefit tends to be
stable when the outflow rate increases.

5. Analysis of the entrance fee strategy

Arrivals are self-interested and consider their own benefits first when encountering a joining/balk-
ing problem based on the non-cooperative game theory. The fluid inclines to flow out of the system
as quickly as possible, then the buffer is saturated ultimately, which results in the over-utilization of
resources and overcrowding of the system. The expected social benefit per unit time may not be globally
optimal. Consequently, the decision-makers can impose an entrance fee pj (j = 1, 2) on type j customers,
which can make the fluid comply with the globally optimal threshold x∗ej (i), x∗ej (i) > xej (i). The entrance
fees can relieve the queue congestion for systems and provide management insights for the optimal
design of the fluid queues, which has theoretical and practical significance. An example is the entrance
tickets for “fast-pass” in the amusement parks, and the separate fees and reservations for popular attrac-
tions can limit the queue length. Besides, some patients with life-threatening situations must choose to
go to the emergency room and pay an expensive fee in order to receive services immediately and reduce
the pressure on normal clinics.

The expected net benefit of the type j customers who observe the buffer at state i and decide to enter
the system is yielded as:

B(xj (i)) = Rj − pj − Cj
xj (i) + 1

`i
, (13)

where xj (i) is the fluid level of the type j customers in state i.
The expected net benefit should be non-negative to ensure that customers are willing to join. When

the buffer is in a maintenance period, the entrance fee of the type j customers satisfies:
B(x∗ej (0) − 1) = Rj − Cj

x∗ej (0)
`0

− pj ≥ 0,

B(x∗ej (0)) = Rj − Cj
x∗ej (0)+1

`0
− pj < 0,

that is, the entrance fee pj satisfies:

Rj − Cj
x∗ej (0) + 1

`0
< pj ≤ Rj − Cj

x∗ej (0)
`0

.

Then the maximal entrance fee p∗j in state 0 satisfies:

p∗j = Rj − Cj
x∗ej (0)
`0

< Rj − Cj
xej (0)
`0

. (14)

On the other hand, when the buffer is in a normal working period, we have:
B(x∗ej (1) − 1) = Rj − Cj

x∗ej (1)
`1

− pj ≥ 0,

B(x∗ej (1)) = Rj − Cj
x∗ej (1)+1

`1
− pj < 0,

that is, the entrance fee pj satisfies:

Rj − Cj
x∗ej (1) + 1

`1
< pj ≤ Rj − Cj

x∗ej (1)
`1

.
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Thus, the maximal entrance fee p∗j in state 1 satisfies:

p∗j = Rj − Cj
x∗ej (1)
`1

< Rj − Cj
xej (1)
`0

. (15)

The benefit for a service provider can be expressed as:

Z (x1(i), x2(i)) = _1 [1 − Pi (x1(i))]p1 + _2 [1 − Pi (x2(i))]p2,

where Pi (xj (i)) is the probability that the type j fluid reaches the threshold xj (i) in state i.

Theorem 5.1. In the fully observable fluid queue with two types of parallel customers and incomplete
fault, if the fluid observes the state

(
xj (i), i

)
and decides to join, the maximal entrance fee per unit time

can be expressed as
Case I. _2 > `1.

Z
(
x∗e1(1), x

∗
e2(1)

)
= _1

(
R1 −

C1x∗e1 (1)
`1

)
+ _2

[
1 − P1(x∗e2(1))

] (
R2 −

C2x∗e2(1)
`1

)
,

where

P1 (x∗e2(1)) =
c1 [b (q_1 + _2 − `1) − \`0] e−

(
\

q_1+_2−`1
− b

`0

) (
x∗e2 (1)−xe2 (0)

)
b (q_1 + _2 − `1) e−

(
\

q_1+_2−`1
− b

`0

) (
x∗e2 (1)−xe2 (0)

)
− \`0

.

Case II. _1 + _2 > `1 and _2 ≤ `1.

Z
(
x∗e1(1), x

∗
e2(1)

)
= _1 [1 − P1(x∗e1 (1))]

(
R1 −

C1x∗e1(1)
`1

)
+ _2

(
R2 −

C2x∗e2(1)
`1

)
,

where

P1(x∗e1(1)) =
c1 [b (_1 + _2 − `1) − \`0] e−

(
\

_1+_2−`1
− b

`0

) (
x∗e1 (1)−xe2 (0)

)
b (_1 + _2 − `1) e−

(
\

_1+_2−`1
− b

`0

) (
x∗e1 (1)−xe2 (0)

)
− \`0

.

Case III. _1+_2=`1.

Z
(
x∗e1(1), x

∗
e2 (1)

)
= _1

(
R1 −

C1x∗e1(1)
`1

)
+ _2

(
R2 −

C2x∗e2(1)
`1

)
.
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Case IV. `0 < _1 + _2 < `1.

Z
(
x∗e1(0), x

∗
e2(0)

)
= _1

(
R1 −

C1x∗e1(0)
`0

)
+ _2 [1 − P0(x∗e2(0))]

(
R2 −

C2x∗e2(0)
`0

)
,

Z
(
x∗e1 (1), x

∗
e2(1)

)
= _1

(
R1 −

C1x∗e1(1)
`1

)
+ _2

(
R2 −

C2x∗e2(1)
`1

)
,

where

P0(x∗e2(0)) =
c0 [\ (p_1 + _2 − `0) + b (_1 + _2 − `1)] e−

(
b

p_1+_2−`0
+ \
_1+_2−`1

)
x∗e2 (0)

\ (p_1 + _2 − `0) e−
(

b

p_1+_2−`0
+ \
_1+_2−`1

)
x∗e2 (0) + b (_1 + _2 − `1)

.

Proof. By comparing the arrival rate and the outflow rate, the entrance fee per unit time can be obtained
in the following four cases.

Case I. _2 > `1.
When the buffer is in state 0, the fluid level is always greater than the balking thresholds of the

customers, then the fluid is reluctant to flow into the system. When the buffer is in state 1, the entrance
fee benefit shows a strictly growing trend with the increase of the fluid level. Therefore, the total entrance
fees of the service provider can maximize when the fluid level reaches its maximum. According to (14)
and (15), the maximal unit price of the entrance fee is Rj −Cj

x∗ej (1)
`1

. The fluid flows into the buffer when
the fluid level is less than the threshold strategy x∗ej (1), j = 1, 2, then the inflow probability per unit time

is _jP
(
x < x∗ej (1)

)
= _j [1 − P1(x∗ej (1))], j = 1, 2. According to the steady-state probability distribution

in Theorem 4.1, the function F1(x) is continuous when the fluid level reaches the threshold x∗e1(1), then
the transient probability is P1(x∗e1(1)) = 0. Therefore, the maximal income of service providers per unit
time is Z

(
x∗e1(1), x

∗
e2(1)

)
= _1p1 + _2 [1 − P1(x∗e2(1))]p2.

Case II. _1 + _2 > `1 and _2 ≤ `1.
When the buffer is in state 0, the fluid level is greater than the thresholds of two types of customers,

and the fluid chooses to balk. When the buffer is in state 1, the maximal unit price of the entrance fee is
Rj −Cj

x∗ej (1)
`1

, and the inflow probability of the type 1 customers is 1−P1(x∗e1 (1)). The type 2 customers
flow into the buffer when the fluid level is less than the threshold x∗e2(1), then the maximal income of
service providers per unit time is Z

(
x∗e1(1), x

∗
e2(1)

)
= _1 [1 − P1(x∗e1(1))]p1 + _2p2.

Case III. _1+_2 = `1.
When the buffer is in state 0, the fluid chooses to balk and the inflow probability is 0. When the buffer

is in state 1, the probability that the fluid level reaches the threshold x∗ej (1) is P1(x∗ej (1)) = 0, then we
get the maximal income Z

(
x∗e1(1), x

∗
e2(1)

)
= _1p1 + _2p2.

Case IV. `0 < _1 + _2 < `1.
When the buffer is in state 0, the maximal unit price of the entrance fee is Rj−Cj

x∗ej (0)
`0

. The fluid flows
into the buffer when the fluid level is less than the threshold strategy x∗ej (0), j = 1, 2, then the inflow

probability per unit time is _jP
(
x < x∗ej (0)

)
= _j [1−P0(x∗ej (0))], j = 1, 2. According to the steady-state

probability distribution in Theorem 4.1, the function F0(x) is continuous when the fluid level reaches
the threshold x∗e1(0), then the transient probability is P0(x∗e1(0)) = 0. Therefore, the maximal income
of service providers per unit time is Z

(
x∗e1(0), x

∗
e2(0)

)
= _1p1 + _2 [1 − P0(x∗e2(0))]p2. When the buffer

is in state 1, the probability that the fluid level reaches the threshold x∗ej (1) is P1(x∗ej (1)) = 0, and the
maximal income per unit time is Z

(
x∗e1(1), x

∗
e2(1)

)
= _1p1 + _2p2. �
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Figure 5. Entrance fee income Z
(
x∗e1(0), x

∗
e2(0)

)
versus thresholds x∗ej (0) when `0 = 1.5.

Figure 6. Entrance fee income Z
(
x∗e1(0), x

∗
e2(0)

)
versus thresholds x∗ej (0) when `0 = 1.9.

Next, we present some numerical examples intuitively with case IV due to the
complexity of the maximal income per unit time in Theorem 5.1. We assume that
_1= 2, _2= 3, \= 0.6, b= 0.4, `1= 6, R1= 15, R2= 25, C1= 2, C2 = 3,U= 0.2 in the following
cases.

When the buffer is in state 1, Z
(
x∗e1 (1), x

∗
e2(1)

)
decreases monotonically with the thresholds

x∗ej (1), j = 1, 2 according to the expression of the maximal income in Theorem 5.1. Figure 5 displays
the sensitivity between the maximal income and the thresholds x∗ej (0), j = 1, 2 in state 0 with parameter
`0 = 1.5. Z

(
x∗e1(0), x

∗
e2(0)

)
first increases and then decreases with the threshold x∗e2(0), and always

decreases with the threshold x∗e1(0). The income of the entrance fee is concave and the optimal thresh-
olds x∗e1(0) and x∗e2(0) can be set to 0 and 2.6 to maximize the entrance fee Z

(
x∗e1(0), x

∗
e2 (0)

)
= 62.

Figure 6 shows the variation between the maximal income and the optimal thresholds x∗ej (0) in state 0
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with parameter `0 = 1.9. The overall trend of Z
(
x∗e1(0), x

∗
e2(0)

)
is similar to Figure 5, and the entrance

fee varies significantly when the threshold x∗e1(0) is relatively small.
From Figures 5 and 6, we can observe that the maximal income per unit time increases with faster ser-

vice rates and more frequent deliveries, which has a positive impact on society under the fully observable
case. This suggests that the social planners can appropriately accelerate the service rate and reasonably
control the optimal thresholds for the fluid to gain more entrance fees. However, if the fee-collecting
organization imposes excessively expensive fees on customers, the arrivals are reluctant to join the sys-
tem due to the greater waiting costs, which affects society negatively and cannot achieve the global
optimum.

6. Conclusion

Based on the queueing theory and non-cooperative game theory, this paper explores the equilibrium
strategies in a fluid model with incomplete fault and parallel arrivals. The existence and uniqueness of
the strategic behavior are derived, and an exponential utility function is constructed in the fully observ-
able case. The entrance fee strategy for the arrivals and social designers could be imposed on the fluid
and regulated the system parameters dynamically, which can maximize the social benefits without com-
promising individual interests. Finally, the effects of the inflow and outflow rates on the expected social
benefit and the entrance fee income are illustrated by several numerical examples. The research results
provide a feasible method and valuable insights for computer technologies, digital communication net-
works, and flexible manufacturing systems. Further extension of this work may explore the equilibrium
behavior of the fluid in the unobservable cases. The economic analysis of the fluid queue with two types
of priority customers and incomplete fault is also an intriguing and challenging direction.
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