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Abstract The aim of this paper is to prove the existence and uniqueness of mild and classical solutions
of the non-local Cauchy problem for a semilinear integrodifferential equation with deviating argument.
The results are established by using the method of semigroups and the contraction mapping principle.
The paper generalizes certain results of Lin and Liu.
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1. Introduction

Using the method of semigroups and the Banach fixed-point theorem, Byszewski [9]
proved the existence and uniqueness of mild, classical and strong solutions of the following
non-local Cauchy problem,

u′(t) + Au(t) = f(t, u(t)), t ∈ (t0, t0 + a], (1.1)

u(t0) + g(t1, . . . , tp, u(·)) = u0, (1.2)

where −A is the infinitesimal generator of a strongly continuous semigroup T (t), t > 0, on
a Banach space X, 0 6 t0 < t1 < · · · < tp 6 t0+a, a > 0, u0 ∈ X, f : [t0, t0+a]×X → X

and g : [t0, t0+a]p×X → X are given functions. Subsequently, Byszewski investigated the
same type of problem for a different class of evolution equations in a Banach space [4–11].
Moreover, Corduneanu [12] and Gripenberg et al . [15] studied the problem for Volterra
integral equations of various types using a semigroup approach. The solution of (1.1)
with u(t0) = u0 can be written as [18]:

u(t) = T (t − t0)u0 +
∫ t

t0

T (t − s)f(s, u(s)) ds, t0 6 t 6 t0 + a. (1.3)

Byszewski [9] proved the existence and uniqueness of the solution of (1.1) and (1.2)
by using a fixed-point argument. He also proved that the mild solutions are classical
solutions when f ∈ C1([t0, t0 + a] × X, X).
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Now, consider the classical heat equation for a material with memory [15]:

q(t, x) = −Eux(t, x) −
∫ t

0
b(t − s)ux(s, x) ds,

ut(t, x) = − ∂

∂x
q(t, x) + f(t, x),

u(x, 0) = u0(x).




(1.4)

The first equation gives the heat flux and the second is the balance equation. Equa-
tion (1.4) can be written as

ut(t, x) =
∂2

∂x2

[
u(t, x) +

∫ t

0
b(t − s)u(s, x) ds

]
+ f(t, x), u(0, x) = u0(x). (1.5)

It is clear that if non-local condition (1.2) is introduced to (1.5), then it will have a better
effect than the classical condition u(0, x) = u0(x), since condition (1.2) is usually more
precise for physical measurements than classical ones [2–8,10,11,16].

Lin and Liu [17] have studied semilinear integrodifferential equations with the non-
local Cauchy problem

u′(t) = A

[
u(t) +

∫ t

0
F (t − s)u(s) ds

]
+ f(t, u(t)), 0 6 t 6 T,

u(0) + g(t1, . . . , tp, u(t1), . . . , u(tp)) = u0,

in a Banach space X with A the generator of a strongly continuous semigroup and F (t)
a bounded operator for t ∈ [0, T ]. f : [0, T ] × X → X and g : [0, T ]p × Xp → X are given
functions.

The purpose of this paper is to extend the technique of Lin and Liu [17] to the following
integrodifferential equation with a deviating argument and non-local condition of the
form

u′(t) = A

[
u(t) +

∫ t

0
Z(t − s)u(s) ds

]
+ f(t, u(σ(t))), 0 6 t 6 T, (1.6)

u(0) + g(u(t1), . . . , u(tp)) = u0, (1.7)

where A generates a strongly continuous semigroup in a Banach space X, Z(t) is a
bounded operator for t ∈ [0, T ], σ : [0, T ] → [0, T ] is a continuous function such that
σ(t) 6 t for all t, f : [0, T ]×X → X and g : Xp → X are given functions. Let J = [0, T ].
Since equation (1.3) played a very important role in the study of (1.1) with u(t0) = u0,
the corresponding formula for (1.6) and (1.7) is given by [17],

u(t) = R(t)[u0 − g(u(t1), . . . , u(tp))] +
∫ t

0
R(t − s)f(s, u(σ(s))) ds, (1.8)

where the semigroup T (·) in (1.3) is replaced by the resolvent operator R(·), the coun-
terpart of T (·) for integrodifferential equations.
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The existence and uniqueness of solutions via variations of constants formula and other
properties of resolvent operators have been studied in [13,14]. We are able to use the
techniques developed by Pazy [18], Byszewski [9] and Lin and Liu [17] to study the
problem (1.6) and (1.7). The results generalize Theorems 3.2 and 3.3 in [17].

2. Preliminaries

We make the following assumptions:

(i) A generates a strongly continuous semigroup in a Banach space X; and

(ii) Z(t) ∈ B(X), 0 6 t 6 T , Z(t) : Y → Y for x(·) continuous in Y , AZ(·)x(·) ∈
L1([0, T ], X). For x ∈ X, Z ′(t)x is continuous in t ∈ [0, T ], where B(X) is the
space of all linear and bounded operators on X, and Y is the Banach space formed
from D(A), the domain of A, endowed with the graph norm. We give the following
definitions.

Definition 2.1 (see [17]). R(·) is a resolvent operator of (1.6) with f ≡ 0 if R(t) ∈
B(X) for 0 6 t 6 T and satisfies

(1) R(0) = I (the identity operator on X);

(2) for all u ∈ X, R(t)u is continuous for 0 6 t 6 T ; and

(3) R(t) ∈ B(Y ), 0 6 t 6 T . For y ∈ Y , R(·)y ∈ C1([0, T ], X) ∩ C([0, T ], Y ) and

dR(t)
dt

y = A

[
R(t)y +

∫ t

0
Z(t − s)R(s)y ds

]

= R(t)Ay +
∫ t

0
R(t − s)AZ(s)y ds, 0 6 t 6 T.

Definition 2.2. u(., u0) ∈ C([0, T ], X) is a mild solution of (1.6) and (1.7) if it satisfies

u(t) = R(t)[u0 − g(u(t1), . . . , u(tp))] +
∫ t

0
R(t − s)f(s, u(σ(s))) ds.

Definition 2.3. A classical solution of (1.6) and (1.7) is a function u(·) ∈ C([0, T ], Y )∩
C1([0, T ], X) which satisfies (1.6) and (1.7) on [0, T ] and we denote it by u(., u0).

The existence and uniqueness of resolvent operators is guaranteed by the following
theorem, whose proof can be found in [14].

Theorem 2.4. Let assumptions (i) and (ii) be satisfied. Then (1.6) with f ≡ 0 has a
unique resolvent operator.
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3. Existence of solutions

Theorem 3.1. Assume that

(i) A generates a strongly continuous semigroup in a Banach space X with norm ‖ · ‖
and u0 ∈ X;

(ii) f : J × X → X is continuous in t on J and there exists a constant L > 0 such that

‖f(t, u1) − f(t, u2)‖X 6 L‖u1 − u2‖X , t ∈ J, u1, u2 ∈ X;

(iii) σ : J → J is differentiable and σ(t) 6 t for all t;

(iv) g : Xp → X and there exists a constant K > 0 such that

‖g(u(t1), . . . , u(tp)) − g(v(t1), . . . , v(tp))‖X 6 K sup
t∈J

‖u(t) − v(t)‖X ;

(v) M = maxt∈J ‖R(t)‖B(X), q = (MK + MLT ) < 1;

then problem (1.6) and (1.7) has a unique mild solution on J .

Proof. Let us take E = C(J, X).
Then define an operator F : E → E by

(Fv)(t) = R(t)[u0 − g(v(t1), . . . , v(tp))] +
∫ t

0
R(t − s)f(s, v(σ(s))) ds, t ∈ J.

Now, for every v1, v2 ∈ E and t ∈ J , we have

‖(Fv1)(t) − (Fv2)(t)‖X

6 ‖R(t)‖B(X)‖g(v1(t1), . . . , v1(tp)) − g(v2(t1), . . . , v2(tp))‖X

+
∫ t

0
‖R(t − s)‖B(X)‖f(s, v1(σ(s))) − f(s, v2(σ(s)))‖X ds

6 MK sup
t∈J

‖v1(t) − v2(t)‖X + ML

∫ t

0
‖v1(σ(s)) − v2(σ(s))‖X ds

6 MK sup
t∈J

‖v1(t) − v2(t)‖X + MLT sup
t∈J

‖v1(t) − v2(t)‖X

6 (MK + MLT ) sup
t∈J

‖v1(t) − v2(t)‖X , v1, v2 ∈ X, t ∈ J

6 q sup
t∈J

‖v1(t) − v2(t)‖X , 0 < q < 1.

This shows that operator F is a contraction on E. Applying Banach’s fixed-point
theorem we get a unique fixed-point for F and this point is the mild solution of problem
(1.6) and (1.7) on J . �
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Remark 3.2. If the inequality in assumption (ii) holds only for u, v in a small ball in
X, as shown in [9], then similar conditions as those in [9] can be obtained here.

Next, we prove that the mild solutions are classical solutions when f ∈ C1(J × X, X).

Theorem 3.3. Let assumptions (i)–(v) in Theorem 3.1 be satisfied and let u(·) be the
unique mild solution of (1.6) and (1.7). Assume further that u0 ∈ D(A), f ∈ C1(J×X, X)
and g : Xp → D(A). Then u(·) is a unique classical solutions of (1.6) and (1.7).

Proof. Since all the assumptions of Theorem 3.1 are satisfied, then problem (1.6)
and (1.7) possesses a unique mild solution which is denoted by u(·). We will show that
u(·) ∈ C1(J, X).

Next, we shall show that this mild solution is a classical solution of problem (1.6) and
(1.7) on J .

To this end, let

B(s) =
∂

∂u(σ(s))
f(s, u(σ(s)))σ′(s), s ∈ J (3.1)

and

k(t) = R(t)f(0, u(σ(0))) + A

[
R(t)u(0) +

∫ t

0
Z(t − s)R(s)u(0) ds

]

+
∫ t

0
R(t − s)

∂

∂s
f(s, u(σ(s))) ds, t ∈ J. (3.2)

Note that u(0) ∈ Y , from Definition 2.1 and our assumptions, k(·) ∈ E. Thus, the method
used in Pazy [18, pp. 184–187] or in the proof of the Theorem 3.3 above can be applied
here to show that the integral equation

w(t) = k(t) +
∫ t

0
R(t − s)B(s)w(σ(s)) ds, t ∈ J, (3.3)

has a unique solution w(·) ∈ E (see also [1]). Moreover, from the assumptions we have

f(s, u(σ(s + h))) − f(s, u(σ(s))) = B(s)[u(σ(s + h)) − u(σ(s))] + w1(s, h) (3.4)

and

f(s + h, u(σ(s + h))) − f(s, u(σ(s + h))) =
∂

∂s
f(s, u(σ(s + h)))h + w2(s, h), (3.5)

where

h−1‖wi(s, h)‖ → 0, as h → 0, (3.6)

uniformly on s ∈ J for i = 1, 2.
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Define

wh(t) =
u(t + h) − u(t)

h
− w(t). (3.7)

Then, from (3.1), (3.2), (3.3), (3.7) and the fact that u(·) is a mild solution, we obtain

wh(t) =
(

h−1[R(t + h)u(0) − R(t)u(0)] − A

[
R(t)u(0) +

∫ t

0
Z(t − s)R(s)u(0) ds

])

+
(

h−1
[∫ t+h

0
R(t + h − s)f(s, u(σ(s))) ds −

∫ t

0
R(t − s)f(s, u(σ(s))) ds

])

−
[
R(t)f(0, u(σ(0))) +

∫ t

0
R(t − s)

∂

∂s
f(s, u(σ(s))) ds

]

−
∫ t

0
R(t − s)B(s)w(σ(s)) ds

=
(

h−1[R(t + h)u(0) − R(t)u(0)] − A

[
R(t)u(0) +

∫ t

0
Z(t − s)R(s)u(0) ds

])

+
[
h−1

∫ h

0
R(t + h − s)f(s, u(σ(s))) ds − R(t)f(0, u(σ(0)))

]

+ h−1
[∫ t

0
R(t − s)

[
∂

∂s
f(s, u(σ(s + h)))h + w2(s, h)

]
ds

+
∫ t

0
R(t − s)

[
∂

∂u(σ(s))
f(s, u(σ(s)))σ′(s)

× [u(σ(s + h)) − u(σ(s))] + w1(s, h)
]

ds

]

−
∫ t

0
R(t − s)

∂

∂s
f(s, u(σ(s))) ds −

∫ t

0
R(t − s)B(s)w(σ(s)) ds

=
(

h−1[R(t + h)u(0) − R(t)u(0)] − A

[
R(t)u(0) +

∫ t

0
Z(t − s)R(s)u(0) ds

])

+
[
h−1

∫ h

0
R(t + h − s)f(s, u(σ(s))) ds − R(t)f(0, u(σ(0)))

]

+ h−1
[∫ t

0
R(t − s)[w1(s, h) + w2(s, h)] ds

+
∫ t

0
R(t − s)

∂

∂s
[f(s, u(σ(s + h))) − f(s, u(σ(s)))] ds

]

+
∫ t

0
R(t − s)

∂

∂u(σ(s))
f(s, u(σ(s)))σ′(s)

×
[
u(σ(s + h)) − u(σ(s))

h
− w(σ(s))

]
ds
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‖wh(t)‖ 6
∥∥∥∥h−1[R(t + h)u(0) − R(t)u(0)] − A

[
R(t)u(0) +

∫ t

0
Z(t − s)R(s)u(0) ds

]∥∥∥∥
+

∥∥∥∥h−1
∫ h

0
R(t + h − s)f(s, u(σ(s))) ds − R(t)f(0, u(σ(0)))

∥∥∥∥
+

∥∥∥∥h−1
∫ t

0
R(t − s)[w1(s, h) + w2(s, h)] ds

∥∥∥∥
+

∥∥∥∥h−1
∫ t

0
R(t − s)

∂

∂s
[f(s, u(σ(s + h))) − f(s, u(σ(s)))] ds

∥∥∥∥
+ N

∫ t

0
‖wh(σ(s))σ′(s)‖ ds, (3.8)

where

N = max
t∈J

∥∥∥∥R(t − s)
∂

∂u(σ(s))
f(s, u(σ(s)))

∥∥∥∥
B(X)

.

From the definition of resolvent operator and our assumptions, it is clear that the norm
of each one of the four first terms on the right-hand side of (3.8) tends to zero as h → 0.
Therefore, we have

‖wh(t)‖X 6 ε(h) + N

∫ σ(t)

σ(0)
‖wh(s)‖X ds, (3.9)

and ε(h) → 0 as h → 0.
From (3.9), it follows by Gronwall’s inequality that

‖wh(t)‖X 6 ε(h)eTN ,

and, therefore, ‖wh(t)‖X → 0, h → 0, t ∈ J .
This implies that u(t) is differentiable on J and that w(t) is the derivative of u(t).

Since w ∈ E, u is continuously differentiable on J .
Finally, to show that u is the classical solution of problem (1.6) and (1.7). Observe

that, from the continuous differentiability of u and f ∈ C1(J ×X, X), t → f(t, u(σ(t))) is
continuously differentiable on J . Therefore, the linear Cauchy problem [17, Theorem 2.5]

v′(t) = A

[
v(t) +

∫ t

0
Z(t − s)v(s) ds

]
+ f(t, u(σ(t))), 0 6 t 6 T,

v(0) = u0 − g(u(t1), . . . , u(tp)),




has a unique classical solution v(·) given by

v(t) = R(t)[u0 − g(u(t1), . . . , u(tp))] +
∫ t

0
R(t − s)f(s, u(σ(s))) ds. (3.10)

The right-hand side of (3.10) is u(t) since u(·) is the mild solution. So we have v(t) = u(t),
t ∈ J , and, hence, u(·) is the classical solutions of (1.6) and (1.7). Hence, the theorem is
proved. �
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