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In the present study, the flow–structure interaction of a starting jet through a flexible
nozzle is experimentally investigated, with a focus on the optimal flexibility for thrust
generation. Water slug is impulsively accelerated through a cylindrical nozzle, fabricated
with silicone rubber of varying flexibility. In general, the flexible nozzle modifies the
vortical structure of the jet and augments the thrust of the starting jet. The measurement
of nozzle surface deformation revealed that a back-and-forth wave propagation on the
nozzle surface is responsible for the jet-vortex evolution augmenting the thrust generation.
Combining the hydrodynamic conservation equations and the linearized shell theory,
we also formulated the governing equations, dominated by two relevant dimensionless
parameters: the effective acceleration time of the jet (Π0) and the effective nozzle stiffness
(Π1). Asymptotic analysis of the equation showed that the dimensionless wave speed (ĉ) is
expressed as ĉ = (Π2

0 Π1/2)0.5, and the jet momentum is maximized at ĉ = ĉcrit (� 3.0),
the condition at which the release of elastic energy stored during nozzle contraction to the
jet is synchronized with the instant of termination of jet acceleration. While ĉ = ĉcrit, the
achievable maximum jet velocity decreases with the effective acceleration time of the jet
(Π0), which is attributed to the reduced speed of the surface wave by the flow inside the
nozzle.

Key words: flow–structure interactions, jets

1. Introduction

A starting jet is ubiquitous in diverse fluid applications that require the transport of fluid
energy to fulfil various purposes, such as the cleaning process of bag filters (Li et al.
2016) and pulsed-jet propulsion of aircraft (Garnier 2015), underwater vehicles (Linden
2011; Renda et al. 2015) and natural organisms such as squid (Packard 1969; Gosline &
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DeMont 1985; Weymouth & Triantafyllou 2013), salp (Sutherland & Madin 2010) and
jellyfish (Park et al. 2014; Fang et al. 2017). In the biomedical field, blood influx to the
atrium through the heart valve (Mittal 2018) and the transmission of viral droplets through
sneezing (Bourouiba, Dehandschoewercker & Bush 2014; Mittal, Ni & Seo 2020) can be
understood through the dynamics of a starting jet.

The flow induced by a starting jet can be characterized in terms of the hydrodynamic
impulse, contributed by fluid inertia and pressure difference, because it is directly related
to not only thrust generation but also the entrainment (mixing) of the ambient fluid
(Krueger & Gharib 2003; Krieg & Mohseni 2013). Because the momentum flux is an
integration of ρf u2

e (where ue is the jet-exit velocity and ρf is the fluid density) on the
jet-exit plane during a specified time duration, it is generally affected by the jet generator
(e.g. piston and impeller), in particular for a rigid nozzle or steady jetting condition.
On the other hand, the contribution of the pressure difference (p − p∞, where p∞ is
the ambient pressure) is affected by various factors (Krueger & Gharib 2003; Krieg &
Mohseni 2013; Gao et al. 2020). Because the jet-exit pressure is closely related to the
pinch-off dynamics of the vortex ring and the subsequent entrainment process, previous
studies used the formation number (F), defined as the ratio of piston stroke to nozzle
diameter, to understand it. Considering the formation number as a characteristic time scale,
it was suggested that the fully grown primary vortex ring pinches off the nozzle tip at a
critical value of F � 4.0, which entrains the ambient fluid and increases the pressure rise
at the exit, thereby maximizing the total thrust normalized by the momentum flux (Gharib,
Rambod & Shariff 1998; Krueger & Gharib 2003). At the same formation number, on the
other hand, a faster acceleration of the jet results in a higher thrust production (Krueger &
Gharib 2003), and Gao et al. (2020) mentioned that the pressure rise is altered by transient
jet evolution such as the growth of the primary vortex and the deceleration process of the
jet. Meanwhile, Krieg & Mohseni (2013) measured the increase in the impulse from a
converging nozzle by 70 % compared with a circular cylinder nozzle and explained that
the radial velocity contributes to the rise in pressure at the jet exit using the potential flow
theory. Meanwhile, Limbourg & Nedić (2021a,b) proposed the modified slug-flow model,
which can account for flow contraction at the nozzle exit.

In terms of a jet-propelled vehicle (or robot), it was reported that pulsed-jet propulsion
is more efficient than that by a steady jet because of the added mass and entrainment
effect (Siekmann 1963; Krueger & Gharib 2003; Dabiri 2009; Bujard, Giorgio-Serchi &
Weymouth 2021), which depends on the formation number (Moslemi & Krueger 2010;
Nichols & Krueger 2012; Whittlesey & Dabiri 2013), jet acceleration (or deceleration)
(Krieg & Mohseni 2015) and Reynolds number (Moslemi & Krueger 2011). Despite these
achievements, studies concerned with maximizing thrust are quite lacking. When the
nozzle through which a propulsive jet flow is issued is rigid, the generated impulse is
directly determined by the piston movement and nozzle geometry; however, if the nozzle
material is sufficiently flexible so that it can interact with the jet, the fluid–structure
interaction will significantly affect the generated impulse as well as the efficiency.

As a method to control the hydrodynamics of a moving body, on the other hand,
many nature-inspired researches have investigated the fluid–structure interaction in the
flow over a flexible (compliant) surface (Triantafyllou, Triantafyllou & Grosenbaugh
1993; Kang et al. 2011; Marais et al. 2012; Park et al. 2012, 2016; Dewey et al. 2013;
Quinn, Lauder & Smits 2014, 2015; David, Govardhan & Arakeri 2017; Medina &
Kang 2018). In common, they reported that a certain level of flexibility enhances thrust
generation or power efficiency of a flapping wing and fin model, which has been explained
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through the alignment of shed vortices with surface deformation. Dewey et al. (2013)
showed that thrust generation and propulsive efficiency of a flexible pitching panel are
maximized when the dimensionless pitching frequency (Strouhal number, St) is in the
range 0.2 < St < 0.25 (where St = fpAp/u∞, in which fp is the pitching frequency, Ap
is the pitching amplitude and u∞ is the free-stream velocity) and matches the natural
(structural) frequency of the panel. Park et al. (2012, 2016) explained the optimal flexibility
for thrust generation in terms of the phase lag (= π/2) between the pitching angle,
i.e. the condition of vortex shedding, and the rotation of the trailing edge owing to the
flexibility. Li, Jaiman & Khoo (2021) reported that the flow-induced oscillation of a
flexible membrane enhances lift generation by extending the leading-edge vortices, and
a transition of vibrational modes appears owing to the frequency lock-in between the
natural frequency of the membrane and vortex-shedding frequency. In addition, a flexible
flapping foil is known to suppress asymmetric vortex shedding, inhibiting deflection of the
propulsive jet (Marais et al. 2012).

Despite the advances in understanding the role of flexible surfaces in flow control, its
application is confined to undulating appendages like wing, fin and flag. Furthermore,
the effect of flexibility on jet flow requires a more fundamental investigation. For example,
Dabiri & Gharib (2005) reported that the circulation of the leading vortex ring is enhanced
by forcing the active shrinkage of a circular nozzle exit during the operation of the starting
jet, which decreases the kinetic energy of the vortex and thereby sustains the vorticity
supply. Das, Govardhan & Arakeri (2018) showed that a flexible flap attached to the tip of
a two-dimensional slit increases the jet impulse two times by enhancing the circulation of
jet vortices. Also, Jung, Song & Kim (2021) recently showed that the eversion of an elastic
sheet installed at the nozzle exit enhances the impulse of a starting jet, which increases
with bending rigidity. Dabiri (2009) suggested that a living structure (such as the human
heart and jetting marine animals) operates under specific optimal conditions in terms of
vortex formation. However, the governing parameter (i.e. formation number only) obtained
for the ideal case (i.e. piston experiment) has a limitation in terms of explaining the
different strategies used universally. Furthermore, a physical model for optimal flexibility,
beyond a qualitative description, needs to be developed based on fluid–structure interaction
analysis of unsteady jet-flow evolution. Indeed, most previous studies tend to simply
conclude that a flexible surface performs better than a rigid one without a systematic
quantification of the relevant parameters.

It would be helpful to briefly summarize the previous studies of flow inside a flexible
tube (Lin & Morgan 1956; Kraus 1967; Païdoussis & Denise 1972; Chen & Rosenberg
1974; Païdoussis 1998), which has gained more attention than jet flow. The natural
frequency and vibration mode of an immersed thin flexible tube can be predicted using
the thin elastic shell theory, together with hydrodynamic equations (Lin & Morgan 1956;
Kraus 1967). While the inertia and acoustic couplings between the flexible tube and
viscous fluid flow significantly affect the frequency and wavenumber of the resulting
wave on the tube (dispersion relation), each contribution can be characterized by the mass
(χ ) and speed ratio (csr). The mass ratio is defined as χ = ρf R/(ρsh), where ρs, h and
R are the tube density, wall thickness and tube radius, respectively, and the speed ratio
(cf /cs) is the ratio of the speed of sound in fluid (cf ) to the wave speed (cs) on the tube
surface (Lin & Morgan 1956; Chen & Rosenberg 1974; Païdoussis 1998). Furthermore,
the flow inside the flexible tube could lead to self-excited oscillation of various modes
and frequencies (Bertram, Raymond & Pedley 1991; Heil 1997; Kumaran 1998; Heil &
Waters 2006; Heil & Boyle 2010; Whittaker et al. 2010; Paak, Païdoussis & Misra 2013;
Siviglia & Toffolon 2014; Stewart 2017; Zhang, Luo & Cai 2018; Abdelbaki, Paidoussis &
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Misra 2020; Podoprosvetova & Vedeneev 2022). When one end of the tube is clamped and
the other is free, similar to the present condition, steady flow with a bulk velocity of ub
excites periodic, multimode or chaotic vibration at a specific velocity ratio, ur = ub/cs
(Paak et al. 2013). Thus, it is reasonable to assume that there should exist a specific
interaction between starting jet and flexible tube, which we do not understand clearly yet.

Therefore, in this study, we experimentally investigated the evolution of a starting jet
through a circular nozzle, the flexibility of which is varied, with a focus on the relation
between fluid–structure interaction and thrust generation (the hydrodynamic impulse
and total circulation). The conditions of liquid flow developing through the nozzle are
controlled by varying the acceleration duration (Tacc) and the terminal jet centreline
velocity (ut), such that the jet Reynolds number (defined as Rej = 2ρf utR/μf , where
μf is the dynamic viscosity of water) and the effective acceleration time (defined as
Π0 = Taccut/L, where L denotes the nozzle length) vary as 3290–12 500 and 1.05–2.33,
respectively. To understand the phenomenon better, we simultaneously measured the
deformation of the nozzle surface and flow fields (both inside and outside of the nozzle)
using high-speed particle image velocimetry (PIV). Based on the analysis, we suggest the
optimal condition for maximizing the thrust generation by analytically combining the shell
theory and principle of conservation (of mass and momentum). Asymptotic analysis and
energy balance were also used to formulate the model. We believe that the present results
will significantly enhance our understanding of the fluid–structure interaction occurring in
diverse flow geometries found in nature and in industry.

The remainder of this paper is organized as follows. We explain the experimental
set-up and characterize the flexible nozzle used in § 2. In § 3, we discuss the effects of
flexibility and flow conditions on jet evolution and the resultant thrust. In § 4, the analytical
derivation of the optimal condition for maximum thrust is explained and validated. Finally,
a summary and outlook of our work are given in § 5.

2. Experimental set-up and procedure

2.1. Facility for generating a starting jet
We established a piston–motor system to create a starting jet in a transparent acrylic
chamber (300 × 300 × 700 mm3) filled with tap water at room temperature (figure 1a).
Actuated by a servomotor (ELDM6020, LeadShine), an aluminium piston (with a diameter
of 50 mm) inside the acrylic cylinder instantly moves downward guided by a linear
stage placed above the chamber. The cylindrical passage of the piston is connected to a
smaller-diameter pipe (with an inner diameter of 15 mm) through a smooth contraction
part (contraction ratio of 0.09). A motor driver (ELD5-400, LeadShine) and built-in
control algorithm enable precise control of the motor to follow a designated velocity profile
with respect to the time at the jet exit (for the rigid nozzle). We observed that there is
neither mechanical vibration nor acoustic noise during the actuation, which may originate
from failure in optimizing the motor–driver system.

The motor is controlled to perform impulsive acceleration of the piston (i.e. flow
inside the pipe and subsequent jet flow) with time duration Tacc = 0.12–0.43 s (figure 2a)
to reach the targeted terminal velocity, ut = 0.20–0.84 m s−1 (figure 2b). Here, the
acceleration time (Tacc) denotes the time when the jet-exit velocity at the nozzle centre (ue)
reaches 90 % of the terminal velocity (ue = 0.9ut) with the rigid nozzle. Notably, the exit
velocities (ue and ut) are measured at (x/D, y/D) = (0.0, −0.2) to avoid interference with
the nozzle wall. The Reynolds number of the jet is considered to be Rej = 3290–12 500.
As the jet flow becomes as fast as ut = 0.64–0.84 m s−1, it tends to weakly oscillate
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Figure 1. (a) Schematic diagram for the jet-flow generating facility and the detailed installation of the
flexible nozzle on the piston system. (b) Image of the manufactured flexible nozzle with its support.

(figure 2b); for example, the oscillation amplitude of ut is approximately 0.05 m s−1 (6.8 %
of ut) at ut = 0.84 m s−1. This periodic fluctuation originates from the feedback control
implemented in the motor driver; however, we confirmed that the nozzle deformation is
dominated by the rapid acceleration of the jet, and the slight oscillation occurring at
t > Tacc does not affect the results. Before initiating each motor operation, the piston
is precisely aligned with the cylindrical container by adjusting the location of the linear
guide on the uppermost plate of the chamber to avoid physical contact with the inner
wall of the container. At ut = 0.22 m s−1, the deviation of the jet velocity at the nozzle
exit is approximately 0.03ut. Figure 2(c) shows the temporal variation of the jet-velocity
profile at the nozzle exit for the rigid nozzle, which shows the symmetry against the
nozzle centreline. Initially, the jet flow develops with two peaks near the nozzle wall
(t/Tacc = 0.5), which is attributed to the formation of a vortex ring (Didden 1979),
and gradually evolves into a top-hat profile because of the boundary layer that develops
inside the nozzle (t/Tacc > 1.5). Figure 2(d) shows the piston velocity compared with the
designated and actual jet-exit velocities. Piston velocity was measured using a high-speed
camera (SpeedSense M310, Dantec Dynamics), on which the oil pattern was marked to
be tracked by a correlation-based algorithm. To compensate the effect of contraction
geometry (see figure 1a), the effective piston velocity (up,eff ) is defined based on the
contraction ratio (� 0.09), expressed as up,eff = up/0.09. We measured five sets of piston
motion and their corresponding jet-exit velocities to obtain the averaged values and ensure
repeatability. It is confirmed that ue follows the planned velocity profile accurately. As
shown, they have the same acceleration time (0.2 s) and target velocity (−0.2 m s−1);
however, there is a slight deviation between up,eff and ue in the accelerating stage. This
deviation would be caused by the cylinder geometry (e.g. shape and length), piston setting
(e.g. sealing and stiffness of O-ring rubber) and coefficient of motor feedback control.

Notably, the starting jet in the present study refers to the initiation of a continuous jet,
indicating that the bulk velocity at the inlet of the nozzle is steady throughout the entire
process, rather than a pulsed jet. In previous studies, a pulsed jet was employed to make
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Figure 2. Time history of jet-exit velocity (ue) with varying (a) acceleration time (Tacc) under the same
terminal velocity of 0.2 m s−1 and (b) terminal velocity (ut) with Tacc = 0.12–0.43 s. (c) Velocity profile
in radial direction with ut = 0.2 m s−1 and Tacc = 0.2 s. (d) Comparison of ue with the piston and targeted
velocities. The jet velocities were measured at y/D = −0.2.

all the ejected fluid slug contribute to the formation of the leading vortex ring, i.e. without
the trailing jet, which was mainly characterized by the formation number (F) (Gharib et al.
1998; Krueger & Gharib 2003). In contrast, we are mainly interested in the role of the
interplay between the flexible nozzle and the accelerating jet in thrust generation. Thus,
a relatively longer jet (i.e. F = ∞) was chosen, which is more suitable for revealing the
fundamental mechanism of the fluid–structure interaction in the jet flow.

2.2. Preparation and installation of the flexible nozzle
The flexible nozzle in the present study needs to satisfy two conditions: (i) it has to be
thin enough to interact with the jet flow (below 200 μm for the present condition) and
(ii) it must be optically accessible (i.e. transparent) to allow measurement of the fluid flow
inside the nozzle. To achieve this, the dip-mould method was used to make a transparent
cylindrical nozzle with a wall of thickness of O(10–102) μm. First, liquid-state silicone
rubber (SortaClear 40A, SmoothOn) was poured onto an acrylic cylinder rod (mould)
with a diameter of 15 mm, mounted vertically on a support. The silicone flows down
along the sidewall of the cylinder and gradually forms a thin film during curing. The
silicone nozzle was then cut to the desired length and was carefully removed from the
mould, yielding a thin-walled and transparent nozzle (figure 1b). By varying the mass
fraction (9.1–32.4 wt%) of the thinner (Silicone Thinner, SmoothOn) to the liquid-state
silicone rubber, it was possible to control the mean thickness (h) of the wall from 170 to
70 μm, and the corresponding Young’s modulus (E) from 270 to 100 kPa, with a constant
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Poisson’s ratio of 0.4. The Young’s modulus and Poisson’s ratio were measured by the
two-dimensional digital image correlation (DIC) technique. First, specimens of 1 mm in
thickness of silicone rubber with a mass fraction of 9.1–32.4 wt% were prepared for tensile
testing, on which a speckle pattern was printed using oil-based ink. Next, the tensile test
machine extended the silicone rubber specimen while the high-resolution camera captured
the deformed speckle pattern on the rubber surface. Based on this, a strain–stress curve
is obtained, the slope of which corresponds to the Young’s modulus, and the Poisson’s
ratio also comes out from the two-dimensional strain field calculated by digital image
correlation (for details, see the supplementary material available at https://doi.org/10.1017/
jfm.2022.781).

The uniformity of the thickness distribution was also verified. Along the azimuthal
direction, we confirmed that the variation was negligible (a maximum deviation of
11.1 % at a mass fraction of 9.1–23.1 wt%) by measuring the cross-sections at multiple
streamwise locations using a microscope. However, the nozzle wall becomes thicker at a
rate of 12.5 % per nozzle diameter (= 15 mm) along the longitudinal direction, which is
inevitable for the present manufacturing process. For a nozzle of 45 mm in length, the
wall thickness at the nozzle tip (= 51.1 μm) is approximately 27 % thinner than that at the
support (= 70 μm) for a mass fraction of 9.1 wt%. Considering this variation, the averaged
thickness (h) is used as a characteristic thickness of the nozzle and, as we will discuss, the
theoretical analysis (see § 4) based on the assumption of a constant wall thickness agrees
well with the experimental results. On the other hand, the uncertainty in the repeatability
of the manufactured nozzle is found to be within 6.6 % (in terms of the wall thickness)
from six independent trials (for details, see the supplementary material available at https://
doi.org/10.1017/jfm.2022.781).

In total, we tested three flexible nozzles with nozzle structural stiffnesses of Eh = 7.0,
14.4 and 43.2 N m−1. The length (L) and inner diameter (D) of the cylinder were 41.1
and 15.0 mm, respectively, corresponding to an aspect ratio (L/D) of 2.74 (figure 1a).
Because a higher strain rate is concentrated at the junction between the flexible nozzle
and the rigid support as the nozzle is deformed by fluid forces, which can damage the
silicone wall, it is necessary to mount the flexible nozzle in a robust manner. To cope
with this, we manufactured a soft support together with the silicone nozzle (figure 1a),
having a smooth strain gradient at the junction of the thin nozzle and support. In addition
to flexible nozzles, we also tested a rigid nozzle as a reference, which is an aluminium tube
with a wall thickness of 0.5 mm. The length and inner diameter were the same as those
of the flexible nozzles. In table 1, we summarize the conditions of jet flow and the nozzle
morphology considered in the present experiments.

2.3. Measurement of flow velocity and nozzle deformation
Considering the nominally axisymmetric nozzle geometry and resultant flow, we
performed two-dimensional PIV to measure the flow fields inside and outside the nozzle.
Likewise, previous studies of jet flow from a circular nozzle focused on the velocity fields
measured on the centre plane (Dabiri & Gharib 2005; Gao et al. 2020). As tracer particles,
we used glass particles (HSG-10, Dantec Dynamics) of nominal diameter of 50 μm.
A 5 W Nd:YAG laser (RayPower 5000, Dantec Dynamics) generated a green-coloured
laser sheet of wavelength 532 nm and illuminated the seeding particles on the
measurement (x–y) plane (figure 1a). A high-speed camera (with a resolution of 1000 ×
800 pixels) captured images of the particles with a frequency ranging from 1000 to
2000 Hz depending on the targeted jet velocity. Acquisition of the image is triggered by the
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Category Variable Considered value(s)

Nozzle Inner diameter (D) 15.0 mm
Length (L) 41.1 mm

Structural stiffness (Eh) 7.0, 14.4, 43.2, ∞ (rigid) N m−1

Flow Terminal jet velocity (ut) 0.20–0.84 m s−1

Reynolds number (Rej) 3290–12 500
Acceleration time (Tacc) 0.12–0.43 s

Dimensionless Effective acceleration time 1.05–2.33
parameters (Π0 = Taccut/L)

Effective nozzle stiffness 1.33–120.02
(Π1 = Eh/(ρf u2

t R))
Dimensionless wave speed 1.88–17.58
(ĉ = (Π2

0 Π1/2)1/2)

Table 1. Summary of the geometric and material properties of the nozzle and the jet condition considered in
the present study, with the dimensionless parameters governing the starting jet–nozzle interaction.

initiation of the piston–motor system by directly hardwiring the motor driver and camera
adaptor. The time delay between the motor start and image acquisition is within 1.0 μs.
To capture both the development of the jet structure and the nozzle deformation, the field
of view has a width of 3D (D being the inner diameter of the nozzle) and vertically ranges
over 8D from the nozzle support in the jet direction.

To measure the unsteady deformation of the nozzle wall and velocity fields together,
an additional image-processing step is applied to the raw images, shown in figure 3(a).
As intended, the particles are clearly observed inside the nozzle. First, we apply a median
filter to remove the particle images (figure 3b). In the figure, the boundary of the nozzle
is detected as the position where the horizontal gradient of the grey-level intensity
becomes a maximum (figure 3c). To enhance the detection resolution as much as the
subpixel displacement (∼ 0.1 pixels or 0.04 % of D), we used Gaussian interpolation. By
subtracting the nozzle image from the original image, we obtained an image of particles
only (figure 3d), which is used to measure the flow velocities. The velocity vectors
were evaluated by a custom-made PIV algorithm adapting the subpixel offset-window
scheme (Scarano 2001). In detail, the interrogation window (32 × 32 pixels) is offset to the
subpixel displacement, pre-calculated from the larger-sized (64 × 64 pixels) interrogation
window. The resultant velocity distribution has a spatial resolution of 0.066D (=
0.99 mm).

Based on error propagation analysis (Clifford 1973), the uncertainty of the flow velocity
obtained by PIV can be expressed as δ(upiv) =

√
δ(MF)2 + δ(Δs)2 + δ(Δt)2 (Lawson

et al. 1999; Choi & Park 2018; Choi, Lee & Park 2019; Maeng & Park 2021). Here, δ(x)
denotes the percentage error while measuring x, MF is the pixel magnification factor,
Δt is the time difference between two particle images and Δs is the displacement of the
particle through Δt. In the present set-up, the percentage error involved in determining
the magnification factor is measured as 0.41 % with MF = 61.0 μm pixel−1. The error
in the time interval (Δt) is estimated as 0.1 %, given that the maximum uncertainty
is within 1.0 μs whereas the time interval between the image pair is 1.0 ms. Lastly,
the uncertainty of Δs is calculated as 3.8 % with an average particle displacement of
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Flexible

nozzle

(a) (b) (c) (d )

Figure 3. Image-processing procedure to measure the nozzle shape and particle image: (a) raw image
including the image of nozzle and particles; (b) nozzle image; (c) detected nozzle shape; (d) image of seeding
particles for PIV.

3.0 pixels (Scarano 2001). Combining all contributions, the overall uncertainty for the
velocity measurement is approximately 3.8 % for the present experiments.

2.4. Dimensionless parameters
As we will discuss, the analysis of the fluid–structure interaction for jet flow through the
deforming flexible nozzle is governed by a combination of the jet-flow conditions (terminal
velocity and acceleration time) and the morphological properties of the nozzle (Young’s
modulus, aspect ratio and wall thickness). Here, we propose two dimensionless parameters
to characterize the jet condition and the nozzle stiffness: the effective acceleration time
(Π0 = Taccut/L) and the effective nozzle stiffness (Π1 = Eh/(ρf u2

t R)), where R is the
inner radius of the nozzle (= D/2). Here, Π0 is defined as the ratio of jet acceleration time
(Tacc) to the characteristic time scale of the starting jet (L/ut), which is further understood
as the inverse of the Strouhal number (St), Π0 = utTacc/L = ( faccL/ut)

−1 = St−1, by
introducing facc = 1/Tacc. In previous studies of thrust generation by a flexible flapping
surface, the Strouhal number was considered to explain the interaction between the
geometric deformation and surrounding flow structure (Kang et al. 2011; Marais et al.
2012).

The second parameter (Π1) is the ratio of the elastic force released during the expansion
of the nozzle (∼ EhR; see Kraus 1967) to the inertia of the jet flow (∼ ρf u2

t R2). A similar
non-dimensional parameter (Π ′

1) was adopted in the study of the interaction between a
thin flexible body and flow around it, which was derived as Π ′

1 = E/(ρf u2
c) · (h/lc)3 from

the Euler–Bernoulli beam equation, where uc and lc denote the characteristic velocity
and length of geometry, respectively (Shapiro 1977; Kang et al. 2011; Dewey et al. 2013;
Siviglia & Toffolon 2014; Medina & Kang 2018). In those cases, the elastic body exchanges
momentum with the fluid flow through the bending force (∼ Eh3/lc, if the magnitude of
the beam deflection is comparable to the characteristic length) and the inertia of flow is
scaled as ρf u2

t l2c . For the present problem, nozzle expansion is dominant over bending, and
thus it is reasonable to consider the expansion force (∼ EhR) as the relevant dimensionless
parameter. From the perspective of discussing the balance between elastic and fluid forces,
we understand that the present parameter (Π1) is consistent with Π ′

1. In the following
sections, we discuss how the behaviour of the flexible nozzle and modulation of the
jet-flow structure are governed by these parameters. In § 4, their roles are emphasized by
analytically showing that they appear in the governing equations describing the internal
flow through the flexible nozzle and its shell deformation.
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3. Experimental results and discussion

3.1. Change in the jet characteristics with nozzle stiffness
First, we discuss the evolution of a starting jet depending on the structural stiffness (Eh) of
the nozzle (figure 4). Figure 4(a) shows the time history of the jet vortical structure from
the rigid nozzle, for the case of Rej = 3286 and Tacc = 0.2 s. As the jet starts, a pair of
counter-rotating vortices representing the cross-section of the vortex ring evolves gradually
(numbered as ‘1’ in figure 4a-ii), which pinches off from the nozzle exit (figure 4a-iii) at
t/Tacc � 0.76. Following the primary vortex, a trailing shear layer develops and rolls up
into the secondary vortex ring (numbered as ‘2’ in figure 4a-iv). As the flow develops, the
lateral distance between counter-rotating vortices, i.e. size of the vortex ring, increases, and
the secondary vortex is entrained and merged into the primary vortex (figure 4a-v,a-vi),
whereas the third and fourth vortices (numbered as ‘3’ and ‘4’ in the figure) show up
successively along with the jet shear layer. Overall, this temporal evolution of the vortical
structure of the starting jet from a circular nozzle is consistent with that observed in a
previous study (Zhao, Frankel & Mongeau 2000).

Under the same flow conditions, the change in the jet vortical structures from flexible
nozzles with different structural stiffness (Eh = 43.2, 14.4 and 7.0 N m−1) is shown
in figure 4(b–d), together with the nozzle profile. With flexible nozzles, similar flow
structures are retained such that the primary vortex develops (figure 4b-ii–d-ii) and pinches
off (figure 4b-iii–d-iii) as the jet flow accelerates. However, the pinch-off instant of
the primary vortex from the shear layer is affected by the flexibility of the nozzle. It
occurs at t/Tacc = 0.35, 0.6 and 0.77 for Eh = 43.2, 14.4 and 7.0 N m−1, respectively,
while it is at t/Tacc = 0.76 for the rigid nozzle (Eh = ∞). Thus, it is understood that
the promotion and delay of the vortex pinch-off for the relatively stiffer (Eh = 43.2 and
14.4 N m−1) and softer (Eh = 7.0 N m−1) nozzles, respectively, are closely associated
with the expansion and contraction behaviour of the deformable nozzle, which is discussed
in the following sections. Away from the nozzle exit, the primary vortex merges with
the secondary vortex (figure 4b-v–d-v) while moving downward. For Eh = 43.2 N m−1,
interestingly, the merging of the first and second vortex rings is less organized than that
in other cases, which is judged from the scattered small-scale eddies around the merged
vortex (figure 4b-vi). In addition, the radius of the merged vortex ring (∼ 0.9D) is larger
than others (∼ 0.8D). This is related to the early pinch-off (t/Tacc � 0.35) of the primary
vortex; the strength of the secondary vortex ring is comparable (figure 4b-iv) with the
primary vortex ring with an insufficient feeding of the vorticity from the shear layer. This
results in a more vigorous interaction between the vortex rings, which does not occur
for other nozzles (figure 4a-iv,c-iv,d-iv). After merging with the secondary vortex ring,
the primary vortex is convected downward faster as the nozzle becomes more flexible,
indicated by the longer distance travelled from the nozzle exit: at t/Tacc = 2.66, it is
measured to be 3.7D (Eh = 43.2 N m−1), 4.5D (14.4 N m−1) and 5.0D (7.0 N m−1)
(figure 4b-vi–d-vi). The convection speed of the vortex is proportional to its circulation
(Γvor), the growth rate of which is associated with the jet-exit velocity (ue), expressed as
dΓvor/dt = u2

e/2, if the horizontal velocity is absent at the jet exit (Saffman 1995; Krieg &
Mohseni 2013). For the present set-up, the pinch-off time and the jet-exit velocity increase
(see figure 7b) with decreasing Eh, which results in faster migration of the vortex ring.

Because the amplitude of nozzle deformation is less than 5 % of the nozzle diameter,
which is not sufficiently large to make a quantitative analysis (figure 4), we additionally
performed subpixel image processing (Scarano 2001) to extract the unsteady variation
of radial displacement (wn) of the nozzle wall from processed images (figure 2c) with
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Figure 4. Evolution of jet flow (velocity vectors and vorticity (ω̂ = ωD/ut) contour) depending on the
structural stiffness (Eh) of the nozzle at Rej = 3286 and Tacc = 0.2 s: (a) Eh = ∞ (Π0 = 1.05 and Π1 = ∞);
(b) 43.2 N m−1 (1.05 and 120.02); (c) 14.4 N m−1 (1.05 and 40.0); (d) 7.0 N m−1 (1.05 and 19.45). The profile
of the deformed nozzle is drawn as black lines, and the numbered index in each box indicates the birth order of
each vortex.
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Figure 5. Spatio-temporal contour of the normalized nozzle displacement (ŵ∗ = wn/wn,max) at Rej = 3286
and Tacc = 0.2 s, depending on the structural stiffness: (a) Eh = 43.2; (b) 14.4; (c) 7.0 N m−1. Here, the
maximum displacement wn,max/D is measured as (a) 0.010, (b) 0.022 and (c) 0.036.

a resolution of approximately 0.0004D. The measured wn( y, t) is further normalized
with the maximum radial displacement (wn,max) as w∗

n = wn/wn,max. Note that the nozzle
deformation was not averaged circumferentially but was measured on one centre plane
considering the axisymmetric expansion and contraction of the nozzle. Figure 5 shows the
spatio-temporal contour of w∗

n with varying Eh of the nozzle for the same flow conditions
as those of figure 4. As shown, the nozzle initially expands axisymmetrically and reaches
the maximum expansion, which is delayed with decreasing Eh: wn,max = 0.0040D (at
t/Tacc = 0.15), 0.012D (at 0.20) and 0.024D (at 0.35) for Eh = 43.2, 14.4 and 7.0 N m−1,
respectively. Once the expansion wave is transmitted to the nozzle exit (y/D = 0), it
returns to the original position with almost the same speed (note that the slopes of the solid
and dashed lines drawn around the first expansion wave are equivalent). That is, the nozzle
contracts towards its original shape (wn = 0) without a delay. After one cyclic transmission
of the expansion wave, the nozzle subsequently undergoes irregular collapses (buckling
that causes flow asymmetry inside the nozzle in figure 4d-iv) because of the negative
pressure inside the nozzle induced by the accelerated fluid jetting out of the nozzle (at
t/Tacc > 0.25, 0.4 and 0.60 for Eh = 43.2, 14.4 and 7.0 N m−1, respectively) (figure 5).
At this stage, optical edge detection shows its limitation as the nozzle wall is folded and
wrinkled, over-reflecting light, and we removed the corresponding data in figure 5 to avoid
any misunderstanding. Notably, the jet characteristics responsible for thrust generation
are mainly relevant to the stage of expansion–contraction by the first surface wave (i.e.
t/Tacc < 0.25, 0.4 and 0.60 for Eh = 43.2, 14.4 and 7.0 N m−1, respectively). Thus, in
the following sections, we focus on the initial stage to discuss the optimal fluid–structure
interaction condition to achieve enhanced thrust generation.

As highlighted with arrows in figure 5, expansion–contraction of the nozzle results in the
surface wave propagating with constant speed (the edge of displacement contour is fitted
linearly) between the nozzle support (y/D � 2.5) and tip (y/D = 0). Through this surface
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(e)

(b)(a) (c) (d )

( f ) (g) (h)

Figure 6. (a–d) Temporal variation of dye visualization of vortex formation for the case of Eh = 7.0 N m−1

and (e–h) the deformation of the nozzle tip viewed from the bottom at the same instant: (a,e) t/Tacc = 0.7;
(b, f ) 1.7; (c,g) 2.5; (d,h) 2.8. The flow conditions are Rej = 3286 and Tacc = 0.2 s. In (e–h) the laser sheet is
positioned at y/D = 0.1 to highlight the profile of the nozzle tip.

deformation, the elastic energy stored during expansion is transported to the ejecting
jet, increasing the impulse of the jet flow. The first cycle (Tc) of expansion–contraction
gets longer as the nozzle becomes more flexible; for example, Tc/Tacc = 0.3, 0.4 and
0.6 for Eh = 43.2, 14.4 and 7.0 N m−1, respectively. Interestingly, this matches the
instant when the primary vortex ring pinches off: 0.35Tacc, 0.6Tacc and 0.77Tacc (for
Eh = 43.2, 14.4 and 7.0 N m−1, respectively), indicating the close relationship between
nozzle deformation and vortex evolution, which is further analysed in the following
sections.

The visualization shown in figure 6 describes the mechanism of vortex formation
(figure 6a–d) and nozzle deformation along the azimuthal direction (figure 6e–h) for the
case of Eh = 7.0 N m−1 corresponding to the most flexible condition tested. Near the
end of jet acceleration (t/Tacc = 0.7), the primary vortex is developing at the nozzle exit
(figure 6a), which subsequently pinches off from the shear layer and convects downstream.
At this time, the nozzle tip maintains its circular shape (figure 6e). After acceleration of the
jet is completed (t/Tacc = 1.7), the jet shear layer following the primary vortex becomes
unstable (indicated by the arrow in figure 6b), which rolls up into the secondary vortex. As
can be expected from figure 4, the nozzle tip deforms (shrinks) beyond its original size,
driven by the strong jet inertia, resulting in a wrinkled structure (figure 6f ), which is known
to have lower energy compared with the axisymmetric shape under the same pressure
distribution (Hibbeler 2013). For a flexible nozzle, the roll-up and formation of subsequent
(third, fourth and so on) vortex rings occur at the nozzle tip (figure 4b-v–d-v) driven by its
lateral flapping movement, rather than the growth of the shear-layer instability, which is
the leading cause in the jet from the rigid nozzle (figure 4a-vi). Figures 6(c) and 6(d) show
the formation of the third and fourth vortices triggered by the movement of the nozzle tip
(noted with the solid and dotted arrows, respectively, in the figures). During this process,
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Figure 7. Temporal evolution of the jet-flow characteristics: (a) dimensionless total circulation, Γ̂ = Γ/(utD);
(b) dimensionless jet-exit velocity, ûe = ue/ut; (c) relative hydrodynamic impulse, Îh = Ih/Ih,rigid|t/Tacc=1.0.
For the cases plotted, Rej = 3286 and Tacc = 0.2 s. The solid arrow in each panel denotes the direction of
increasing Eh.

flapping motion of the nozzle tip results in a triangular shape, the orientation of which
is synchronized with sequential vortex shedding (figure 6g,h). Interestingly, the nozzle
deforms in an organized shape after the transient (shedding of the second vortex ring)
stage of irregular wobbling. For the case of Eh = 7.0 N m−1, the wavenumber (i.e. the
number of waves on the circumference) along the circumferential direction corresponding
to this organized deformation is 3.0 (triangle), and it varies depending on the stiffness of
the nozzle and the jet conditions. Although this is not the primary concern of the present
study and requires a detailed structural analysis in the future, we performed a brief modal
analysis to understand this behaviour (see Appendix A).

On the other hand, the inherent azimuthal instability of a vortex ring (Widnall &
Sullivan 1973; Widnall, Bliss & Tsai 1974; Hattori & Fukumoto 2003; Fukumoto
& Hattori 2005; Dazin, Dupont & Stanislas 2006) can be a potential cause of the
circumferential deformation of the nozzle. This instability originates from the resonance
between azimuthal perturbations with two different wavenumbers and simultaneously
amplifies the disturbance in a linearly developing stage. It was reported that the growth of
azimuthal instability in a vortex ring incurs a marked decrease in both the circulation and
translational velocity of a vortex ring because of the generation of secondary vortex and
subsequent nonlinear processes (Dazin et al. 2006; Bergdorf, Koumoutsakos & Leonard
2007). However, as we discuss below (see figure 8), the vortex ring tends to grow by
being fed continuously from a shear layer or merging with following vortices. Therefore,
the waviness of the nozzle tip (figure 6f ) seems to be irrelevant to the instability of a
vortex ring; rather, it is related to the fluid–structure interaction of the elastic nozzle.
On the other hand, the present flexible nozzle can be stretched (figure 6a,e) or bent
(figure 6b–d, f ,g). Through stretching, the nozzle stores and releases elastic energy to the
jet flow until the expansion–contraction cycle ends (figures 5 and 8). Bending occurs after
this stage (figure 6f –h); however, the increment to the hydrodynamic impulse is found to
be negligible. As we discuss in relation to figure 7(c), bending does not produce additional
thrust but contributes to the generation of successive vortex rings (figure 6c,d).

Das et al. (2018) reported that a flexible flap installed at the outlet of a slit (plane)
nozzle is deformed by a starting jet approximately twice the nozzle diameter (∼ 2D)
under similar conditions (Rej = 2700, Tacc = 0.1 s, D = 15 mm and L/D = 3), which is
larger than that in the current study (< 0.2D). For the two-dimensional flap, the fluid
pressure inside the nozzle due to jet acceleration balances with the bending moment
rather than the tensile force, while the latter dominates in the flow through the circular
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flexible nozzle. A brief scale analysis is given as follows. When the amplitude of
nozzle deflection is δb, the bending force can be scaled as Eh3δb/l2c (Shapiro 1977;
Kang et al. 2011; Dewey et al. 2013; Siviglia & Toffolon 2014; Medina & Kang 2018),
whereas the tensile force is associated with Ehδt, where δt denotes the displacement of
the axisymmetric expansion (Kraus 1967). If the nozzle is very thin (i.e. h/lc � 1.0),
δb/δt ∼ (lc/h)2 � 1.0, indicating that the bending amplitude is much greater than that by
expansion.

Figure 7(a) shows the temporal variation of the total circulation (Γ ) depending on
nozzle stiffness, which is calculated as Γ = 0.5

∫
C |ωθ | dA, where the integration area C

ranges between −2 ≤ x/D ≤ 2 and −5.5 ≤ y/D ≤ 0 on the measurement plane, excluding
the area inside the nozzle located at y/D > 0. It is further non-dimensionalized as Γ̂ =
Γ/(utD). Consistent with the jet-flow development in figure 4, the total circulation at
t/Tacc = 1.0 (when the acceleration ends) is maximum for the case of Eh = 7.0 N m−1,
and it decreases with increasing Eh. When we consider the trends closely, an initial time
lag (up to 0.2Tacc) is observed before Γ̂ starts to rapidly increase, which is attributed
to the time required for the fluid to be accumulated inside the nozzle sufficiently to
radially expand the nozzle. The fluid is then released during the contraction phase through
the nozzle exit, which increases the circulation (during t/Tacc � 0.2–1.0). As the nozzle
becomes more flexible (smaller Eh), Γ̂ increases sharply for a longer duration because the
contraction (as well as the expansion) time of the nozzle is increased, as shown in figure 5.
While recovering the original shape (t/Tacc > 1.0), the growth rate of the total circulation
is reduced, which gradually converges to that for the rigid nozzle. This can be understood
from the conservation of the circulation according to the Helmholtz theorem. Because
all nozzles are supplied with the same influx of vorticity through the same movement
of the piston–motor system, the time history of the total circulation contained in the
control volume has to be identical. After jet acceleration ends and the nozzle recovers its
original shape, the influx from different nozzles becomes identical and the total circulation
converges.

Figure 7(b) shows the jet velocity at the nozzle exit normalized by the terminal jet
velocity, ûe = ue/ut. As the flow inside the flexible nozzle is accelerated, ûe abruptly
increases after a short time lag owing to nozzle expansion and reaches the maximum
velocity faster than the terminal velocity (ut), i.e. |ûe| ≥ 1.0. Clearly, the maximum jet-exit
velocity becomes higher as the nozzle becomes more flexible, which is responsible for the
rapid increase of Γ (figure 7a). The time (tmax) at which the jet reaches the maximum
velocity is delayed as the nozzle becomes flexible; it is tmax/Tacc = 0.2, 0.3 and 0.6 for
Eh = 43.2, 14.4 and 7.0 N m−1, respectively. It coincides with the instants at which the
nozzle contraction ends (figure 5) and the vortex ring pinches off (figure 4), indicating
that the fluid–structure interaction associated with nozzle deformation governs the jet
characteristics. It is meaningful to mention that the agility of the nozzle system as well as
the thrust (i.e. the maximum velocity) are markedly enhanced using the flexible surface.
For a flexible nozzle of Eh = 43.2 N m−1, for example, only 0.17Tacc is required to
reach 90 % of terminal velocity. This implies that the elastic appendage can increase
the accelerating performance of the system. In physiology and biomimetic engineering,
a flexible actuator quickly releases the stored force in movements such as jumping,
capturing prey and escaping, and it is even advantageous in overcoming physiological
and neurological limits (Higham & Irschick 2013; Haldane et al. 2016).

To quantify the effect of nozzle flexibility, the hydrodynamic impulse (Ih) is calculated,
which has been used as a measure of thrust generation (Krueger & Gharib 2003). It is
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expressed as follows (Saffman 1995):

Ih = 1
2
ρf

∫
C

x × ω dV. (3.1)

Here, x = (r, θ, y) is the position vector whose origin is located at the centre of the
nozzle exit (figure 1b) and the vorticity vector is given as ω = (ωr, ωθ , ωy). Considering
that the flow is axisymmetric (ωr = ωy = 0) and dV = 2πr dA, hydrodynamic impulse
can be calculated as Ih = 0.5πρf

∫
C r2|ωθ(r, y)| dA, where the control surface C is the

same as for the calculation of Γ (figure 7a) and ωθ denotes the component of vorticity
perpendicular to the measurement plane. In figure 7(c), we compare the hydrodynamic
impulse from the flexible nozzle with that from the rigid nozzle, which is defined as Îh =
Ih/Ih,rigid|t/Tacc=1.0. As expected, the relative hydrodynamic impulse becomes stronger
as the nozzle becomes more flexible. When the jet acceleration ends (t/Tacc = 1.0), Îh
becomes 1.44 (for Eh = 43.2 N m−1), 1.46 (14.4) and 1.9 (7.0). Thus, the flexible nozzle
with Eh = 7.0 N m−1 (the most flexible case among those considered) can produce a
thrust 90 % larger than that produced by the rigid nozzle instantly.

Considering the potential application of a flexible nozzle in a jet-propelled robot, we
estimated the hydrodynamic impulses (Ih) in figure 7(c) in a physical unit, which is
Ih = 0.93, 1.25, 1.39 and 1.79 mN s at t/Tacc = 1 for Eh = ∞, 43.2, 14.4 and 7.0 N m−1,
respectively. Krueger & Gharib (2003) reported an impulse of a starting jet of around
6.0–6.6 mN s, when F = 3.0 (for the present study, the instantaneous formation number
(Fi) defined by Limbourg & Nedić (2021a) is calculated as Fi = 2.7 at t/Tacc = 1). Since
the contribution of the pressure to the impulse is less than 10 % of the total impulse (Gao
et al. 2020), the total impulse can be roughly estimated by the momentum contribution
(∼ ρf u2

eA, where ue and A denote the velocity and cross-section at the nozzle exit,
respectively). By comparing the jet velocity and the exit area, it is estimated that the jet
impulse from Krueger & Gharib (2003) would be 4.5 times larger than ours, which is
consistent with the measurement.

As we have shown, the increase in the jet impulse is associated with delayed vortex
pinch-off, and previous studies tried to achieve this by controlling the exit diameter of
the nozzle (Dabiri & Gharib 2005) and by inducing a radial velocity of the jet using the
converging circular nozzle (Krieg & Mohseni 2013), by which the jet thrust was enhanced
by 35 % and 70 %–75 %, respectively. In the present study, compared with active control
(Dabiri & Gharib 2005) requiring external energy input, the hydrodynamic impulse is
improved by a passive fluid–structure interaction, and the magnitude of the increment
is larger. On the other hand, the increment of the impulse may be contributed by either
an increase in the fluid momentum (i.e. the accelerated jet exit velocity) or a pressure
rise at the exit, which is attributed to the radial velocity at the exit (Krieg & Mohseni
2013). Because the radial component of the velocity is negligible compared with the
streamwise one in the present configuration, the augmentation of the jet impulse is caused
by the increased fluid momentum (evidenced in figure 7b), and it is closely related to the
expansion–contraction of the nozzle (an analytical analysis of this is given in § 4).

As shown in figure 4, on the other hand, the evolution of a leading vortex ring from
the nozzles is also affected by nozzle flexibility. To investigate this, the horizontal (xv)
and vertical (yv) locations of vortex ring are detected based on the maximum vorticity
(ωmax). Then, its translational velocity (Vv) is calculated as Vv = dyv/dt, and the vortex
radius (Rv) is obtained from xv . Finally, the core radius (av) of a vortex ring is defined
as the equivalent radius of the closed loop at which the vorticity corresponds to 0.9ωmax
(Das, Bansal & Manghnani 2017). Das et al. (2017) showed that the core radius obtained
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based on vorticity is comparable with the velocity-based one (Arakeri et al. 2004) as well
as the theoretical prediction of av = √

4νTs (where Ts is the stroke time during vortex
ring generation), which assumes that the vorticity in a core follows a Gaussian distribution
(Saffman 1995). To measure the circulation of vortex ring (Γv), the inner region of a vortex
on the two-dimensional flow field should be specified, on which the vorticity is integrated.
We used the swirling strength (λ) to define that region with a closed curve (Zhang & Rival
2020). That is, based on the maximum swirling strength (centre of the vortex ring), the
isocurve of 0.1λmax is drawn and the vorticity is integrated to obtain Γv . Considering the
symmetric vortex ring, the variables mentioned above were obtained for both sides (x > 0
and x < 0) and averaged, which were normalized with the nozzle diameter (D) and jet
terminal velocity (ut).

Figure 8 shows the temporal variation of the characteristics of a leading vortex ring
depending on Eh. Figure 8(a) shows that the vortex ring from a flexible nozzle rapidly
accelerates and saturates (at t/Tacc = 0.5–1.0) to a specific velocity that increases with
decreasing Eh, whereas the vortex from the rigid nozzle gradually accelerates. At t/Tacc >

2.0, vortex velocity slightly decreases for flexible nozzles of Eh = 14.4 and 7.0 N m−1,
while that from the stiffer nozzle (Eh = 43.2 N m−1) marginally increases at t/Tacc � 1.5.
The trend of circulation (figure 8b) is similar to that of Vv . However, the circulation tends to
remain constant for Eh = 14.4 and 7.0 N m−1, and slightly increases for Eh = 7.0 N m−1.
Assuming that the vortex radius (Rv) is much larger than core radius (av), and the
vorticity follows the Gaussian distribution inside a core, translational velocity (Vv) of a
vortex ring is expressed as Vv = Γv/4πRv(ln(8Rv/av) − 0.552) (Lamb 1945; Saffman
1970; Sullivan et al. 2008). This relation explains the similarity between the translational
velocity (figure 8a) and circulation (figure 8b) of a vortex ring because Rv and av are quite
similar for all nozzles (figure 8c,d). Interestingly, the difference in both radii is barely
noticeable between nozzles despite the strong nozzle–jet interaction (figure 6), except
for Rv of Eh = 43.2 N m−1. In the present configuration, the piston supplies momentum
for entire duration of measurement (thus, the stroke time is the same for all cases), and
the vorticity is sufficiently fed to vortex ring for all nozzles. Therefore, considering the
theoretical model of Saffman (1995), the core radius is almost the same for all nozzles
(figure 8c). Meanwhile, for Eh = 43.2 N m−1, the vortex radius becomes larger than
others at t/Tacc > 1. This is attributed to the vortex interaction, shown in figure 4b-iv;
that is, the early pinch-off of a leading vortex results in coalescence (at t/Tacc � 1.5)
with subsequent vortices, enlarging the vortex radius of the leading vortex ring, and also
slightly increasing the translational velocity (figure 8a) and circulation (figure 8b). Vortex
merging also happens for Eh = 14.4 (figure 4c-v) and 7.0 (figure 4d-v,vi) but circulation
and radius are not affected, unlike the case of Eh = 43.2 N m−1. This is because the
trailing vortex ring is not sufficiently large to incur the vortex interaction but is passively
entrained by the leading vortex. In brief, the nozzle flexibility alters the jet vortices not
only for the generation and growth of a leading vortex but also for the birth of trailing
vortices (figure 6c,d,g,h).

3.2. Effect of flow condition on jet characteristics
Figure 9 shows the temporal evolution of the jet characteristics when Rej increases
to 12 555 and Tacc is shortened to 0.12 s (Π0 = 2.33 and Π1 = 1.33–8.22). For the
cases shown in figure 7, Rej = 3286 and the acceleration time is 0.2 s, corresponding
to Π0 = 1.05 and Π1 = 19.45–120.02. Interestingly, the total circulation for the
intermediate flexibility (Eh = 14.4 N m−1) is larger than that for the more flexible nozzle
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Figure 8. Temporal variation of the characteristics of a leading vortex ring depending on Eh: (a) translational
velocity of the vortex (V̂v = Vv/ut); (b) vortex circulation (Γ̂v = Γv/(utD)); (c) vortex radius (R̂v = Rv/D);
(d) core radius (âv = av/D). For the cases plotted, Rej = 12 555 and Tacc = 0.12 s.

(Eh = 7.0 N m−1) at t/Tacc = 1.0 (figure 9a), contrary to the result in figure 7(a), in which
the maximum total circulation (at t/Tacc = 1.0) is achieved with the minimum stiffness
(Eh = 7.0 N m−1). Similarly, reversed trends in the jet exit velocity (figure 9b) and
hydrodynamic impulse (figure 9c) are observed. The maximum ûe and Îh achieved with
Eh = 14.4 N m−1 at t/Tacc = 1.0 are slightly larger than those for Eh = 7.0 N m−1. This
implies that enhanced flexibility does not always augment the jet thrust, whereas many
previous studies tended to conclude that the aerodynamic (or hydrodynamic) performance
of a body is enhanced monotonically as its surface becomes more flexible (Kim & Gharib
2011; Marais et al. 2012; Das et al. 2018). Rather, there should be an optimal flexibility for
maximizing the thrust, and it is not only determined by the stiffness but also depends
on the flow condition (such as the acceleration time and the terminal velocity for the
present problem). Meanwhile, the optimal condition for enhancing thrust (or efficiency)
of a flexible flapping wing (panel) is closely associated with the phase lag in the angular
displacements of the root and the deflected tip (Kang et al. 2011; Dewey et al. 2013;
Quinn et al. 2014; Park et al. 2016). The physical significance of the phase lag implies
that the time-scale ratio of the structural natural frequency to the undulation (flapping)
frequency governs thrust generation and vortical structures emanating from the flexible
body. Similarly, for the present flexible nozzle, we need a similar approach or a parameter
that can compare the jet-flow time scale with the structural response time scale (material
and geometrical properties of the nozzle).

In figure 10, we show the temporal variation of the averaged nozzle displacement along
the radial direction, defined as w∗

avg = (w∗
left + w∗

right)/2, where w∗
left and w∗

right correspond
to the normalized radial displacement at x < 0 and x > 0, respectively. The operation
condition is the same as that for figure 9. Note that the contour range is deliberately biased
to positive value to effectively show the expansion–contraction behaviour of the nozzle.
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Figure 9. Temporal evolution of jet-flow characteristics: (a) dimensionless total circulation, Γ̂ = Γ/(utD);
(b) dimensionless jet-exit velocity, ûe = ue/ut; (c) relative hydrodynamic impulse, Îh = Ih/Ih,rigid|t/Tacc=1.0.
For the cases plotted, Rej = 12 555 and Tacc = 0.12 s.
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Figure 10. Spatio-temporal contour of the averaged nozzle displacement (w∗
avg = (w∗

left + w∗
right)/2) at

Rej = 12 555 and Tacc = 0.12 s, depending on the structural stiffness: (a) Eh = 43.2; (b) 14.4; (c) 7.0 N m−1.
Here, the maximum displacement, wn,max/D, is given as (a) 0.025, (b) 0.062 and (c) 0.14.

Similar to the case of lower Rej = 3285 (figure 5), the flexible nozzle radially expands and
contracts as the jet accelerates, and the period of expansion–contraction (tcycle) becomes
longer as the stiffness of the nozzle decreases. For the stiffest case (Eh = 43.2 N m−1),
nozzle contraction is completed at ∼ 0.6Tacc when the growth rate of the exit velocity
is significantly reduced (figure 9b), which is attributed to the early end of the supply
of elastic energy from the nozzle to the jet flow. Notably, for Eh = 14.4 N m−1, the
expansion–contraction cycle corresponds to the time for jet acceleration (tcycle � 1.4Tacc),
indicating that elastic energy stored in the nozzle is fully transferred to the flow during
acceleration. For a nozzle with Eh = 7.0 N m−1, contraction persists up to t/Tacc > 1.5,
implying that the elastic energy does not entirely add fluid momentum even after jet
acceleration ends. That is, the response of the nozzle lags behind the acceleration of the
jet.

Based on our analyses so far, the expansion–contraction cycle (tcycle) should be
comparable to the acceleration time of the jet, tcycle � Tacc, to enhance thrust generation.
Precisely, on the other hand, the nozzle may further release energy at t > tcycle until
the nozzle fully contracts at t = tfc. Therefore, the effective time required to maximize
thrust generation must cover the duration for complete nozzle shrinkage (tfc). Based on the
present measurements (figure 5a,b), the time span of tcycle < t < tfc is comparable to half
of the expansion–contraction cycle; thus, the optimal jet acceleration time (Tacc) should
match tfc � 1.5tcycle. Hence, it is expected that the elastic energy stored in the flexible
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Figure 11. Spatio-temporal contour of the averaged nozzle displacement (w∗
avg = (w∗

left + w∗
right)/2) with

acceleration time (a,b) and jet Reynolds number: (a) Tacc = 0.20 s; (b) 0.22 s; (c) Rej = 6360; (d) 12 555.
For (a,b), Rej = 3286 and Tacc = 0.12–0.13 s for (c,d). For all cases, the structural stiffness is fixed as
Eh = 7.0 N m−1. Here, the maximum displacement wn,max/D is given as (a) 0.036, (b) 0.031, (c) 0.081 and
(d) 0.14.

nozzle is fully transferred to the kinetic energy of the ejecting jet when satisfying tfc =
Tacc, and this would incur the highest jet-exit velocity (figure 9b). Otherwise, for tfc < Tacc
or tfc > Tacc, the maximum jet-exit velocity decreases due to the early (figure 10a) or
retarded (figure 10c) contraction of the nozzle, respectively.

As noted, the acceleration time (Tacc) is generally predetermined by the configuration
of the motor–piston system; however, the instant of full contraction (tfc) is determined by
the jet–nozzle interaction. Because tcycle can be understood as the time during which the
travelling wave on the nozzle (which originally starts from the support of the nozzle at
y/D = 2.74) comes back to its original position, it is expressed as tcycle = 2L/c, where c
and L denote the wave speed and the nozzle length, respectively. Thus, the above optimal
condition can be written as Tacc(= tfc) = 3L/c.

Before discussing theoretical aspects, notably, the measured data already indicate the
strong dependency of the wave speed on the nozzle stiffness. Figure 11 shows the variation
of w∗

avg depending on the acceleration time (Tacc = 0.20 and 0.22 s in figures 11a and
11b, respectively) and the terminal velocity of the jet (corresponding to Rej = 3286 and
12 555 in figures 11c and 11d, respectively), while fixing the structural stiffness as Eh =
7.0 N m−1. Note that the time in the figure is dimensional. During the expansion (t <

0.05 s) stage, the wave on the nozzle surface travels from the support to the tip (denoted
as solid arrows in the figure), and, interestingly, its speed is almost independent of both
Tacc and Rej. This is contrary to the cases shown in figures 5 and 10, such that the wave
speed significantly varies with nozzle stiffness; however, the only invariant parameter in
figure 11 is the structural stiffness. Therefore, it can be speculated that the wave speed
is determined by the material property rather than by the flow condition. To support this,
quantitative measurements of the wave speed and its analytical analysis are provided in the
following sections.
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Figure 12. Schematic diagram of the deformed cylindrical shell: (a) isometric view; (b) top view; (c) view
with respect to the plane (A–A′) involving both the centre plane (r = 0) and the point pm. The dashed lines
denote the original circular cylinder before deformation. During deformation, the material curve Cm and the
point pm (on Cm) translate to the curve C′

m and point p′
m (on C′

m) with a displacement of w = (wy, ws, wn).
Note that the curve C′

m is not necessarily parallel to the r–θ plane.

4. Analytical formulation of the optimal flexibility condition

4.1. Derivation of governing equations for nozzle deformation and jet velocity
To construct equations for the fluid–structure interaction occurring in the present flexible
circular nozzle, we defined the problem using the schematics of the deformed flexible
nozzle in figure 12. Initially (without external forces), the nozzle has the shape of a circular
cylinder (dashed line in figure 12a) with diameter D (= 2R), length L and thickness h.
Here, the boundaries B1 and B2, respectively, correspond to the support and tip of the
nozzle at the initial state. Global coordinates (r, θ, y) are defined with the origin at the
centre of the nozzle tip. During deformation, the shape and location of support (B1) remain
fixed, but are not necessarily fixed for the tip (B2) that is a free end. For the present set-up,
the vertical location (y) of the nozzle tip changes slightly (maximum deviation of 0.2D).
Thus, we assume that the nozzle length is constant at L (the plane of B2 and B′

2 is the
same in figure 12a). As a result of deformation owing to the accelerated flow inside, we
assume that the arbitrary material curve Cm on the nozzle is distorted to the curve C′

m;
the point on curve Cm (denoted as point pm) translates to point p′

m on C′
m (figure 12a).

The displacement of pm can be expressed as w = (wy, ws, wn) (figure 12b,c). Here, the n
and s axes are defined to be normal to the surface of the initial geometry and parallel to
the θ axis, respectively (figure 12b). The radial direction outward from the nozzle is set
to be positive, and the y axis is parallel to the direction of the nozzle length (figure 12c).
To characterize the fluid flow inside the nozzle, the vector field of v(r, θ) = (vr, vθ , vy) is
considered on the arbitrary cross-sectional (normal to the y axis) planes of the deformed
nozzle.
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Because the material of the nozzle is impermeable, fluid flow inside the nozzle should
satisfy mass conservation, and momentum conservation can also be formulated from
the pressure distribution and surface force acting inside the nozzle. As we have shown,
the nozzle deformation is assumed to be nominally axisymmetric (ws � 0) and both the
radial and azimuthal velocity components are negligibly small, i.e. v � (vy, 0, 0). For the
characteristic vertical velocity, on the other hand, the bulk velocity (u) is used, defined as
u = ∫

S vy dA/S = Q/S, where S and Q denote the arbitrary cross-sectional area normal to
the y axis and the volume flux passing through S, respectively. Therefore, the conservation
law for mass and momentum is expressed as follows (Shapiro 1977; Siviglia & Toffolon
2014):

∂Q
∂y

+ ∂S
∂t

= 0, (4.1)

∂Q
∂t

+ ∂(uQ)

∂y
+ S

ρf

∂p
∂y

= −Bu. (4.2)

Here, t, ρf and p denote the time, fluid density and pressure difference between the
outer and inner wall of the nozzle, respectively. The term on the right-hand side of
(4.2) corresponds to the viscous friction on the inner wall of the nozzle, modelled as
being linearly proportional to the bulk velocity with dimensional coefficient B. The
cross-sectional area (S) and fluid flux (Q) can be calculated as S = π(R + wn)

2 and
Q = uS = uπ(R + wn)

2, respectively. Hence, (4.1) and (4.2) are written in terms of u and
wn ((4.3) and (4.4)):

∂wn

∂t
+ R + wn

2
∂u
∂y

+ u
∂wn

∂y
= 0, (4.3)

∂u
∂t

+ u
∂u
∂y

+ 1
ρf

∂p
∂y

= − B
π(R + wn)2 u. (4.4)

The above equations can be solved if pressure p is determined based on the physical
relation to the nozzle deformation and fluid flow, which is known as the ‘tube law’ (Siviglia
& Toffolon 2014). Meanwhile, based on the assumption of axisymmetric deformation
of the nozzle, the pressure can be analytically derived from the shell theory (detailed
derivation is provided in Appendix B) as follows:

p = Eh
R2 wn. (4.5)

Equation (4.5) states that the pressure is linearly proportional to the radial displacement
(wn) with structural stiffness (Eh/R2) as a proportional rate, resembling Hooke’s
law. When the jet accelerates, the pressure (p) at y = yp pushes the fluid volume
at 0 < y < yp, which is accelerated with acceleration a towards the nozzle exit.
Considering the control volume surrounded by the inner walls of the nozzle and
the planes y = yp and y = 0, the change in the vertical momentum is determined
by the difference in the pressure on the planes y = 0 and y = yp, and the viscous
friction (τw) on the inner wall, expressed as ρf (πR2yp)a = (πR2)Δp − τw(2πRyp).
For accelerating pipe flow, the unsteady wall-shear stress was obtained as τw =
ρf aR(4η0.5 + 3η)/2, where η = tνf /R2 (νf , kinematic viscosity of the fluid; t, time)
(Annus et al. 2013). Thus, the ratio of inertia to pressure rise is expressed as
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Figure 13. Comparison of the measured maximum radial displacement (ŵn,max = wn,max/D) of the nozzle
diameter with the prediction of (4.6).

fin = ρf (πR2yp)a/(πR2Δp) = 1/(1 + 2τw/(ρf aR)) = 1/(1 + 4η0.5 + 3η). This indicates
that inertia solely determines the pressure rise initially, i.e. fin = 1.0 at t = 0. As the jet
accelerates, fin slightly decreases to 0.85 in the middle of acceleration (at t = 0.5Tacc)
when the frictional loss would be the largest. Thus, we may ignore the viscous stress
for the whole process, and the expression for the pressure difference is reduced to Δp =
ρf ypa. Assuming that the reference pressure at the nozzle exit is zero, (4.5) is rewritten
as ρf ayp = Ehwn/R2. Here, the flow acceleration can be approximated as a � ut/Tacc.
Because the maximum displacement (wn,max) occurs near the support of the nozzle at
yp � L (see figure 5), wn,max/D can be obtained as follows:

ŵn,max = wn,max

D
= ρf ujLD

4EhTacc
. (4.6)

In figure 13, we compare the measured wn,max with that predicted by (4.6), which shows
that the above analytical derivation is quite robust.

Confirming the reliability of (4.5), it is plugged into (4.3) and (4.4), and the resulting
governing equations for mass and momentum conservation are derived as (4.7) and (4.8),
respectively:

1
Π0

∂ŵy

∂ t̂
+ û

∂ŵn

∂ ŷ
= −1 + ŵn

2
∂ û
∂ ŷ

, (4.7)

1
Π0

∂ û
∂ t̂

+ û
(1 + ŵn)2

∂ û
∂ ŷ

= −Π1
∂ŵn

∂ ŷ
. (4.8)

Here, the variables were normalized as ŷ = y/L, t̂ = t/Tacc, ŵn = wn/R and û = u/ut,
and the friction was neglected (B = 0). Equations (4.7) and (4.8) explain how nozzle
displacement and bulk velocity of the fluid are correlated. Interestingly, two dimensionless
parameters (Π0 = Taccut/L and Π1 = Eh/(ρf u2

j R)) appear, the physical meanings of
which (the effective acceleration time and the effective nozzle stiffness, respectively)
were discussed in § 2.4. This supports our understanding that Π0 and Π1 dictate the
fluid–structure interaction between the starting jet and deformable nozzle. For both
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equations, the two terms on the left-hand side are similar to the material derivative (D =
(1/Π0)∂/∂ t̂ + û∂/∂ ŷ) because ŵn < 0.1 and (1 + ŵn)

2 � 1.0, as shown in figure 13.
Here, the effective acceleration time (Π0) determines the relative contribution of the local
acceleration (∂/∂ t̂) to the convection acceleration (û ∂/∂ ŷ). This understanding is extended
such that Π0 plays a similar role to the Strouhal number characterizing the unsteadiness
of the flow structures. Equations (4.7) and (4.8) explain that the rate of change in ŵy
and û (Dŵy and Dû, respectively) is determined by the spatial gradient of the counterpart
variables, ∂ û/∂ ŷ and ∂ŵy/∂ ŷ, respectively. For example, a positive ∂ û/∂ ŷ indicates that the
nozzle should contract in diameter, i.e. Dŵy < 0, to satisfy the mass conservation, which
is consistent with (4.7). In contrast, in (4.8), a positive ∂ŵy/∂ ŷ corresponds to ∂p/∂y > 0
following (4.5). The favourable pressure gradient will accelerate the bulk velocity, which
agrees with the equation. Notably, the acceleration of the flow inside the nozzle (Dû) is
correlated with the nozzle deformation (∂ŵy/∂ ŷ) with the proportional coefficient of Π1,
which originates from the relation between the displacement and pressure in the flow.

4.2. Description of optimal flexibility for maximum thrust generation
To determine the optimal condition (Tacc � 3L/c) for maximizing thrust generation, it is
necessary to find the speed (c) of the wave travelling on the nozzle surface. However, the
governing equations (4.7) and (4.8) are nonlinear partial differential equations that can
not be easily solved analytically. Rather than calculating the exact solution for the wave
speed, we found that the asymptotic approach can successfully estimate the wave speed in
a reasonable manner. At the early stage of jet acceleration (t/Tacc � 1.0), the bulk velocity
is smaller than the terminal velocity (û = u/ut � 1.0), and the nozzle deformation is also
negligible (ŵn = wn/R < 0.2). Therefore, the second terms on the left-hand sides of (4.7)
and (4.8) can be ignored, resulting in

1
Π0

∂ŵy

∂ t̂
+ 1

2
∂ û
∂ ŷ

= 0, (4.9)

1
Π0

∂ û
∂ t̂

+ Π1
∂ŵn

∂ ŷ
= 0. (4.10)

Subtraction between (4.9) and (4.10), after they are differentiated in terms of t̂ and ŷ,
respectively, provides the equation for ŵn (equation (4.11)), and a similar procedure can be
performed to obtain the equation for û (equation (4.12)):

∂2ŵn

∂ t̂2
− Π1Π

2
0

2
∂2ŵn

∂ ŷ2 = 0, (4.11)

∂2û
∂ t̂2

− Π1Π
2
0

2
∂2û
∂ ŷ2 = 0. (4.12)

The resulting equations have the form of a one-dimensional wave equation; both ŵn
and û have identical relations with the same coefficient of Π1Π

2
0 /2. To extract the wave

speed from the equation, a normal mode of the perturbation of ŵn and û (expressed as
û, ŵn ∼ exp[i(k̂ŷ − ω̂t̂)], where k̂ and ω̂ correspond to the normalized frequency and the
wavenumber of the perturbation, respectively) is replaced in (4.11) and (4.12), resulting in
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i2ω̂2 − (Π1Π
2
0 /2)i2k̂2 = 0. Therefore, the dimensionless wave speed is as follows:

ĉ = ω̂

k̂
= ±

√
Π1Π

2
0

2
= ±

√
EhT2

acc

ρf DL2 . (4.13)

The dimensionless wave speed is determined by two dimensionless parameters that we
derived from the governing equations (4.7) and (4.8). The effective acceleration time
(Π0 = utTacc/L) is the non-dimensional jet velocity (ut) normalized by the characteristic
velocity (L/Tacc). In the meantime, Π0.5

1 can be understood as the dimensionless wave

speed such that Π0.5
1 =

√
Eh/(ρf u2

t R) = (cs/ut)χ
0.5, where cs and χ denote the wave

velocity of the elastic material (Païdoussis 1998; Paak et al. 2013) and the mass
ratio between the nozzle wall and fluid (χ = ρsh/(ρf R)). Therefore, Π0Π

0.5
1 physically

indicates the ratio of the surface wave speed to the characteristic flow velocity, as ĉ =
c/(LT−1

acc).
In dimensional form, the wave speed can be rewritten as follows:

c = ĉ
L

Tacc
= ±

√
Eh
ρf D

. (4.14)

This implies that the wave speed is independent of the jet velocity and the acceleration
time, which is consistent with the observation in figure 11. The positive and negative signs,
respectively, denote that the surface wave may propagate either downward (−y) or upward
(+y). As the nozzle stiffness (Eh) increases and the fluid inertia (ρf D) decreases, the wave
speed increases. Equation (4.14) can also be deduced as one of the limiting cases from the
acoustic interaction between an elastic cylinder and contained fluid (Lin & Morgan 1956).
If the sound speed (cf ) and fluid inertia (ρf R) are much greater than the wave speed on
the nozzle surface (c) and the nozzle inertia (ρsh), two solutions of the wave with mode
n = 0 (axisymmetric) can be expressed as c2

1 = E(1 + ν2/(2χ))/(ρs(1 − ν2)) and c2
2 =

Eh/(2ρf R(1 + ν2/(2χ))), where ρs and ν correspond to the nozzle density and Poisson’s
ratio, respectively, obtained from the linearized equation of a thin circular cylindrical shell
and two equations regarding the wave propagation (Laplace equation) and the momentum
conservation. The former solution (c1) denotes the axial vibration due to the negligible
fluid viscosity and the latter (c2) corresponds to the radial vibration that is related to the
present point of interest. For all cases in the present study, we found that χ > 46.9 and
ν2 = 0.16, so the latter solution is directly simplified to (4.14) since ν2/(2χ) � 1.0.

To further validate our analysis, we directly measured the wave speed from the result
of nozzle deformation (figures 5, 10 and 11); the time delay (Twave) between the instants
when the enlarged diameter reaches 50 % of its maximum at two locations of y1/D = 2.5
and y2/D = 1.5 is measured, and the wave speed is calculated as c = ( y1 − y2)/Twave.
Figure 14 compares the measured wave speed with the prediction (4.14), which shows
remarkable agreement. This supports our analysis such that the surface wave speed
solely depends on the material property of the nozzle rather than on the jet conditions.
Additionally, we observed that the wave is faster than the terminal velocity of the jet
(ut = 0.20–0.84 m s−1), implying that there exist two characteristic velocities for the
starting jet issuing from a flexible nozzle.

Now, the optimal condition (Tacc � 3L/c) for maximum thrust can be expressed with
two non-dimensional parameters (Π0 and Π1) representing the flow and nozzle conditions,
respectively, by substituting the relation for surface wave speed. The resulting relation is
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Figure 14. Validation of the wave speed (c) on the nozzle wall with the prediction of (4.14).

given as

ĉ = c
Tacc

L
=
√

Π1Π
2
0

2
� 3.0. (4.15)

As noted, the optimized value of the dimensionless wave speed is given together, which is
∼3.0 for the present configuration. To confirm the validity of condition (4.15), we have
plotted all the considered cases in the parameter space of Π0 and Π1 in figure 15(a)
(optimal condition (4.15) is shown as a dashed line in the figure). Clearly, the cases
with a larger thrust lie on the line ĉ = 3.0. As we analysed above, for ĉ > 3.0 (above
the dashed line in figure 15a), the wave speed is relatively fast so that the full contraction
is completed before jet acceleration ends (see figure 10). Because the nozzle releases its
elastic energy before the jet reaches the maximum velocity, the timing mismatch weakens
thrust generation (figure 9c). On the other hand, for ĉ < 3.0, the response of the nozzle to
the acceleration is too slow, forcing the nozzle to contract after the acceleration finishes,
which also produces weaker thrust.

Figure 15(b) shows the relative impulse (Îh) depending on the dimensionless wave speed
(ĉ) for the same dataset shown in figure 15(a). The impulse is measured at t/Tacc = 1.0 and
normalized with the value from the rigid nozzle, expressed as Îh|t=Tacc = Ih/Ih,rigid|t=Tacc .
Clearly, the impulse increases as ĉ approaches 3.0 from both regimes of ĉ > 3.0 and ĉ <

3.0. Interestingly, for the cases of ĉ � 3.0 (denoted with symbols with cross marks), the
amplification of the relative impulse is not identical but tends to increase with increasing
effective stiffness, Π1 (or tends to decrease with increasing effective acceleration time,
Π0): e.g. Îh|t=Tacc = 1.35 (for Π1 = 2.74), 1.47 (4.72), 1.77 (10.68) and 2.07 (19.45).

4.3. Scaling law for optimal flexibility
The enhancement in thrust (figure 15b) comes from the elastic potential energy (P)
transferred to the kinetic energy of the fluid flow inside the nozzle during contraction.
The elastic potential energy is expressed in terms of the deformation amplitude (wn) as
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Figure 15. (a) Regime map (Π0–Π1) and (b) impulse generation depending on the dimensionless wave speed
(ĉ) for all cases tested in the present study. The dashed lines correspond to ĉ = 3.0, and the symbols with cross
marks denote the cases near the optimal condition.

(Kraus 1967)

P =
∫ L

0

∫ 2π

0

1
2

Nsswn dθ dy. (4.16)

Here, Nss corresponds to the tensile stress in the azimuthal direction (see the detailed
definition and its derivation in Appendix C). Considering that (i) the nozzle expands
predominantly in the radial direction (ŵn � ŵy), (ii) the deformation is axisymmetric and
(iii) the relation between pressure and radial displacement (4.6) holds, the elastic energy
can be rewritten as (the detailed procedure of derivation is given in Appendix C)

P �
πR3a2ρ2

f L3

3(1 − ν2)Eh
. (4.17)

The acceleration is approximated as a � u/Tacc, and ν denotes Poisson’s ratio of the
nozzle material. Meanwhile, the kinetic energy (M) of the jet is calculated as M =
ρf (πR2L)u2/2, and its increment (ΔM) corresponding to the change in jet velocity (Δu)
is obtained as ΔM = Δ(ρf πR2Lu2/2) = ρf πR2L(uΔu).

Using the experimental data, it is possible to examine the transfer of elastic
potential energy of the nozzle to jet kinetic energy. The elastic potential energy
(P) of the nozzle deforming axisymmetrically with a normal displacement (wn) is
calculated as P = πEhR/(1 − ν2)

∫ L
0 (wn/R)2dy ((C4) in Appendix C), which is further

non-dimensionalized as P̂ = P/(πEhRL). Meanwhile, the kinetic energy (Ek) of the
axisymmetric and non-swirling flow can be calculated as Ek = 0.5πρf

∫
C r(u2 + v2) dA

(Saffman 1995; Limbourg & Nedić 2021a), where the control surface (C) is the same
as that used for calculating Γ (figure 7a), which corresponds to the flow domain below
the nozzle exit (y < 0). Here, u and v denote the horizontal and vertical velocity,
respectively. The normalized kinetic energy is defined as Êk = Ek/(ρf u2

t D3). Figure 16
shows the time history of Êk and P̂ depending on the structural stiffness (Eh). For the rigid
nozzle (Eh = ∞), the kinetic energy starts to increase gradually from t = 0; however,
for the flexible nozzles, it starts to increase at delayed instants of t/Tacc = 0.16 (for
Eh = 43.2 N m−1), 0.21 (14.4 N m−1) and 0.31 (7.0 N m−1), agreeing with the instants
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Figure 16. Time history of jet kinetic energy (Êk = Ek/(0.5ρf u2
t D3)) and elastic potential energy

(P̂ = P/(πEhLR) of the flexible nozzle depending on Eh.

when the corresponding potential energy reaches its maximum value and decreases. This
clearly indicates that the elastic potential energy is transferred to the jet kinetic energy
during nozzle deformation. The stored elastic potential energy increases with decreasing
Eh, implying that the optimally flexible nozzle can attain the largest amount of elastic
energy from the accelerating jet. For the same reason, the growth rate of jet kinetic energy
becomes steeper as Eh decreases. If the stored potential (elastic) energy is fully converted
to kinetic energy of the jet (i.e. ΔM ∼ P) during the contraction of the nozzle, the increase
in the jet velocity can be obtained by combining (4.17) and the relation for ΔM (see the
detailed derivation in Appendix D):

Δu
u

∼ Π2
0

Π1
∼ 1

ĉ2 . (4.18)

Equation (4.18) implies that the change in the jet velocity is also related to the effective
acceleration time (Π0 = Taccut/L) and effective stiffness (Π1 = Eh/ρf u2

j R). The increase
in the jet velocity is further scaled as Δu/u ∼ 1/ĉ2, indicating that the maximum velocity
would remain unchanged if two dimensionless parameters satisfy the optimal condition
(ĉ = 3.0). This is different from the result shown in figure 15(b), where the jet impulse
varies although the dimensionless wave speed converges to a value of 3.0.

We believe that this discrepancy originates from the assumption that the entire elastic
energy is transferred to the kinetic energy of the jet (ΔM ∼ P) during acceleration of
the jet. In figures 10(b) and 10(c), we can see that the duration of nozzle contraction
is longer than that of nozzle expansion. Other evidence is that the temporal variation
of the averaged nozzle diameter for the three cases satisfying ĉ � 3.0 (denoted as
symbols with cross marks in figure 15) is shown in figure 17. The wave speeds along
the expansion stage (denoted as dotted arrows in the figure) seem to be identical to
each other because the dimensionless wave speed is very similar to that of the optimal
value. In the contraction stage (denoted as solid arrows in the figure), however, the nozzle
contracts more slowly as Π0 increases (or Π1 decreases). This is because the accelerated
flow inside the nozzle involves the process of wave propagation (i.e. fluid–structure
interaction). This does not occur when contraction ends far before acceleration ends
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Figure 17. Spatio-temporal contour of the averaged nozzle displacement (w∗
avg = (w∗

left + w∗
right)/2) for cases

satisfying the optimal condition: (a) ĉ = 3.08 (Π0 = 1.33, Π1 = 10.7); (b) 2.73 (Π0 = 1.79, Π1 = 4.72);
(c) 2.70 (Π0 = 2.33, Π1 = 2.74). Here, Eh = 14.4 N m−1 and Tacc = 0.12–0.13 s for all cases. Here, the
maximum displacement wn,max/D is given as (a) 0.042, (b) 0.055 and (c) 0.062.

(t/Tacc � 1.0). For this condition, the durations of both expansion and contraction are
identical because the assumption for jet velocity (u � 0) in (4.9) and (4.10) is valid, as
shown
in figure 5.

To model this decelerated wave speed, we revisit the governing equations that we
derived for the nozzle deformation and jet speed. Let us consider the surface wave moving
downward (−y) while the jet velocity saturates to u = ut. A small perturbation on the jet
velocity (up) is introduced as û = 1 + ûp (note that a hat denotes normalization with ut).
Based on the observation that the radial displacement is small compared with the nozzle
radius (ŵn = wn/R � 1), (4.7) and (4.8) are reduced to

Dŵn + 1
2

∂ ûp

∂ ŷ
= 0, (4.19)

Dûp + Π1
∂ŵn

∂ ŷ
= 0. (4.20)

Here, the differential operator D is defined as D = (1/Π0)∂/∂ t̂ + ∂/∂ ŷ, and
the higher-order terms are ignored. Then, through similar procedures to construct
single-variable equations, the above equations can be rearranged as follows:

D2ŵn − Π1

2
∂2ŵn

∂ ŷ2 = 0, (4.21)

D2ûp − Π1

2
∂2ûp

∂ ŷ2 = 0. (4.22)

As expected, ŵn and ûp are the solutions of the same wave equation. By substituting the
normal mode of perturbation defined as ûp, ŵn ∼ exp[i(k̂ŷ − ω̂t̂)], the dispersion relation
appears as (1/Π2

0 )ω̂2 − (2/Π0)k̂ω̂ + (1 − Π1/2)k̂2 = 0. Using the quadratic formula for
frequency (ω̂), the reduced wave speed (ĉr) is obtained in both dimensionless (4.23) and
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dimensional (4.24) forms, respectively,

ĉr = ω̂

k̂
= Π0(1 ±

√
Π1/2), (4.23)

cr = ĉrL
Tacc

= ut(1 ±
√

Π1/2) = ut ±
√

Eh
ρf D

= ut ± |c|. (4.24)

The negative sign corresponds to the jet direction. According to (4.24), the wave speed is
not only affected by the effective nozzle stiffness but is also augmented by the jet terminal
velocity (ut), unlike (4.13) and (4.14). A similar formulation was reported for the free
vibrations of a fluid-conveying shell (Chen & Rosenberg 1974). From the shell equation
without assuming a thin shell, i.e. Flügge equation, and the fluid momentum conservation
equation, the water-hammer wave speed with vibration of n = 0 (axisymmetric mode)
can be calculated as ut ± cf /

√
1 + 2KR/(Eh), where K and cf denote the fluid’s bulk

modulus and wave speed, respectively. Because K = ρf c2
f , this relation can be rewritten as

ut ± 1/
√

(1/c2
f + 2ρf R/(Eh) = ut ± 1/

√
1/c2

f + 1/c2, which is directly reduced to (4.24)

under the condition of c2/c2
f � 1. Thus, relation (4.24) corresponds to the case in which

acoustic waves decouple. Next, the wave speed in the upward direction is cr,u = ut + |c|
(note that ut has a negative sign). Therefore, the effective time duration corresponding to
the release of the elastic energy stored in the expanded nozzle (Teff ) is calculated with the
reduced wave speed as Teff = L/cr,u. Accordingly, the energy balance used to derive (4.18)
can be modified such that the emitted potential (elastic) energy of the nozzle contributes
to the generation of maximum thrust during the acceleration time (Tacc) only. This can be
considered as follows:

ΔM ∼ P
Tacc

Teff
. (4.25)

Substituting the relation for ΔM, P and Teff , the equation for the change in the jet velocity
is rewritten as follows (the detailed derivation can be found in Appendix D):

Δu
u

∼ 1 −
√

2
Π1

= J∗. (4.26)

The scaling relation (4.26) indicates that if the nozzle material and the jet characteristics
satisfy the optimal condition (i.e. ĉ = 3.0), the maximum jet velocity increases with
increasing effective stiffness (Π1). While validating the modified argument on the
transfer of elastic energy to the jet kinetic energy, figure 18 clearly shows that both the
augmentation in jet velocity and the impulse for the cases around the optimal condition
(1.5 < ĉ < 4.5) are well correlated with J∗. For the off-optimal condition (ĉ > 4.5), flow
variables related to thrust show poor correlation with J∗. Another implication that we can
learn from J∗ is that there is an upper limit of J∗ → 1.0 as Π1 → ∞. That is, increasing
the nozzle stiffness will saturate the thrust to a certain value (under the condition that
the jet and the nozzle satisfy the optimal condition). In figure 18(a), extrapolation of
the optimal condition (denoted as dashed arrows) predicts that the augmented velocity
will be approximately 131 % (236 % for the hydrodynamic impulse) larger than that of
the rigid nozzle. Unfortunately, the limitation in manufacturing thinner nozzles than
those tested and the faster response time of the motor specification did not allow us to
explore the corresponding regime of J∗ � 1.0. Together with (4.15), (4.26) raises the
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Figure 18. (a) The maximum increase of jet-exit velocity (Δue/ut|max) and (b) the relative hydrodynamic
impulse at t = Tacc depending on J∗: �, 1.5 < ĉ < 4.5; •, ĉ > 4.5. The dashed lines are the extrapolation
curves of a1J∗ + a2, where (a1, a2) = (0.46, 0.15) (a) and (2.75, 0.38) (b).

important implication that thrust generation must be treated for understanding the optimal
condition (which considers the ratio between the structural response time and flow time
scale) and the mechanism of the delayed release of the flexible nozzle (which stems
from the slower surface wave speed with decreasing effective stiffness). Without this
consideration, misinterpretations can occur; for example, reduced stiffness either enhances
the impulse generation (as observed in figure 7) or, totally conversely, reduces it (as shown
in figure 18b). This will be useful for understanding and predicting thrust generation from
a flexible nozzle, which is prevalent in nature and industrial applications.

5. Concluding remarks

We conducted an experimental and analytical investigation of the evolution of a starting
jet through a flexible circular nozzle. The flexible nozzles are manufactured with three
different structural stiffnesses, and the terminal velocity of the jet and acceleration time
are systematically adjusted using an in-house piston–motor system. To understand the
dynamics of the jet structure in time and space, we performed two-dimensional PIV
measurements, and measured the deformation of the nozzle surface together with subpixel
image processing. The evolution of the flow field shows that the primary vortex shed
from the nozzle exit convects faster as the nozzle is more flexible; consequently, the
hydrodynamic thrust increases approximately 90 % greater than that of the rigid nozzle.
Based on the quantification of nozzle deformation, we found that the expansion and
contraction of the nozzle, respectively, accumulates the elastic potential energy and
transfers it to the flow inside the jet, thereby increasing the jet velocity inside the
nozzle. This is the key fluid–structure interaction mechanism responsible for maximizing
thrust generation. To characterize the interaction between the flexible nozzle and the
accelerating flow in it, the governing equations for the nozzle deformation and flow
velocity are derived from the shell theory and conservation laws for mass and momentum,
in which two dimensionless parameters, i.e. effective acceleration time (Π0) and effective
nozzle stiffness (Π1), are used. The subsequent analytical investigation, supported by
the measured flow field and nozzle deformation, indicates that the time when the
contraction completely ends has to be comparable to the instance when the jet reaches
maximum velocity, to produce maximum thrust. This optimal condition is expressed as
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ĉ =
√

Π2
0 Π1/2 � 3.0, where ĉ is the dimensionless surface wave speed. While satisfying

this condition, furthermore, the maximum jet velocity of the flexible nozzle depends on
the effective nozzle stiffness (Π1), which is attributed to the reduced wave speed drawn
by asymptotic analysis. The augmentation in the jet-exit velocity is found to increase with
effective stiffness, which is scaled as Δu/u ∼ 1 − √

2/Π1.
Therefore, we understand that the flexibility of the nozzle has the potential not only for

thrust improvement in jet flow but also for the agility of the system. Numerous organisms
and industrial applications make use of a flexible nozzle, which ejects an impulsively
starting jet. Thus, it will be fascinating to examine if jet conditions (i.e. the terminal
velocity and the acceleration time) and the material property of the nozzle (i.e. Young’s
modulus and thickness) follow the optimal condition derived in the present study. In
addition, the dimensionless surface wave speed (it was approximately 3.0 for the circular
nozzle) must be quantified, depending on the nozzle geometry such as a cone-shaped
nozzle.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.781.
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Appendix A. Nozzle exit deformation after acceleration (t/Tacc > 1)

The nozzle exit deformation after Tacc is briefly outlined here. In § 3.1, we showed
that two-dimensional edge detection has its limitation after expansion–contraction stage
(figure 5) because the deformation is three-dimensional (figure 6g,h). To investigate the
dynamics of the nozzle tip for various conditions, the tip deformation was measured for
three jet conditions (Rej = 3600, 7200 and 9300) and three nozzle flexibilities (Eh = 7.0,
14.4 and 43.2 N m−1), using a high-speed camera with a resolution of 720 × 712 pixels
and an acquisition rate of 1000 Hz. Illuminated by the horizontal laser sheet, the nozzle
tip could be identified as a bright closed curve (figure 19a), which is binarized using an
in-house image-processing technique (figure 19b) to quantify the morphology. Figure 19
shows the time-varying deformation of the nozzle tip for Eh = 43.2 N m−1 and Rej =
9300 at t/Tacc = 3.2–3.5. We observe that the triangular shape, i.e. the wavenumber (n)
of 3, is salient at t/Tacc = 3.2 and evolves into a reversed triangle at t/Tacc = 3.48.

For quantitative analysis, the measured radial deformation in the azimuthal direction
at each time (see the polar coordinate in figure 19b) can be expressed as the sum of
waves with modes n > 0, using the Fourier transform. Figure 20 shows the temporal
variation of amplitude of each wave for Rej = 3600–9300 and Eh = 7.0–43.2 N m−1.
When the jet velocity is low (Rej = 3600) and the nozzle is stiffer (Eh = 43.2 N m−1),
the nozzle shape is static (figure 20a) and the amplitudes are negligible. Thus, the
nozzle tip remains in its original shape as a circle at all times. However, increasing
the jet velocity (Rej = 7200–9300 and Eh = 43.2 N m−1; figure 20b,c), the periodic
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r(t)

t/Tacc = 3.20 3.27 3.34 3.41 3.48

θ

(b)

(a)

Figure 19. (a) The time-varying tip deformation of the flexible nozzle for Eh = 43.2 N m−1 and Rej = 9300
at t/Tacc = 3.2–3.5 with (b) the binarized images.

oscillation with mode n = 3 is manifested after the acceleration (t/Tacc > 1), while
interestingly, a rectangular oscillation appears for the stiffer nozzle when Rej = 7200
and Eh = 14.4 N m−1 (figure 20e). On the other hand, the mixed modes n = 3 and 4
occur at the lowest velocity (Rej = 3600) and softer nozzles (Eh = 7.0–14.4 N m−1) in
figures 20(d) and 20(g) at t/Tacc > 1. Finally, for the highest Reynolds numbers and softer
nozzles (figure 20f,h,i), the wave amplitudes become weaker, possibly owing to (i) the
irregular deformation resulting from the interaction between multiple modes and (ii) the
development of the wave in the longitudinal direction which disrupts the formation of
an organized deformation pattern. Note that there is a difficulty in evaluating the higher
modes (n > 4) owing to their smaller amplitude compared with the lower modes (n < 4).
For example, at t = Tacc, the nozzle generally experiences buckling, characterized by
wrinkles of the tip (n � 7 in figure 6f ), which cannot be extracted clearly from the present
resolution.

The modal deformation of a thin nozzle with internal flow can be predicted using the
nonlinear shell theory that accounts for the large nozzle deformation and viscous structural
damping (Païdoussis & Denise 1972; Païdoussis 1998; Paak et al. 2013). It was reported
that the periodic deformation of the azimuthal mode (n = 3) occurs for similar geometric
conditions of L/D = 3, h/R = 0.02 (Paak et al. 2013), while our cases correspond to
L/D = 2.74 and h/R = 0.021 for figures 20(b) and 20(c). However, there is a discrepancy
in the bulk velocity inside the shell (ur = ub/cs, where ub and cs denote the fluid bulk
velocity and the material velocity, cs = E/(ρs(1 − ν2)), respectively): ur = 0.5 for Paak
et al. (2013) and 0.028–0.036 for the present work. In that previous work, the shell became
unstable at ur > 0.42, while ur = 0.013 was sufficient to excite the self-oscillation of
the flexible nozzle in the present study. The early onset of vibration may originate from
the initial non-ideal conditions of the nozzle and inflow. The deformation of the nozzle
at t/Tacc = 2–4 begins with energetic contraction motion at t/Tacc � 1, which is large
enough to cause the dynamic system to reach another equilibrium state. For the present
starting jet condition, it did not allow observation of the oscillation for a long period
(t/Tacc > 10) due to the finite length of the ejected fluid slug. On the other hand, it

949 A39-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.781


D. Choi and H. Park
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Figure 20. Temporal variation of the wave amplitude with mode n = 2 (◦); 3 (�); 4 (�); 5 (
); 6 (�). For the
operating conditions, the jet Reynolds number (Rej) is 3600 (a–c), 7200 (d–f ) and 9300 (g–i), and the structural
stiffness (Eh) is 43.2 N m−1 (a,d,g), 14.4 N m−1 (b,e,h) and 7.0 N m−1 (c, f,i). The insets show representative
images of tip deformation.

was found that the fluid velocity at t/Tacc > 1 slightly oscillates (oscillation amplitude
is approximately 6.8 % of ut), thus indicating that inherent perturbation exists in the inlet
condition.

Appendix B. Derivation of pressure distribution using the shell theory

To determine the flow bulk velocity (u) and nozzle deformation (wn) from (4.7) and (4.8),
it is necessary to elucidate the relation between the pressure and the displacement, i.e. the
tube law. The deformation of the thin flexible nozzle can be assumed as the motion of a
cylindrical shell with a uniform thickness (Kraus 1967). Assuming that the nozzle is thin
enough (less than approximately 10 % of the nozzle diameter) and the deformation is small
enough for the material to follow Hooke’s law (Love 1888), the infinitesimal element of
the elastic material is governed by the theory of thin elastic shell (the orientation of each
force and moment is given in figure 21):

∂Nyy

∂y
+ ∂Nys

∂s
+ qy = ρnh

∂2wy

∂t2
, (B1)

∂Nys

∂y
+ ∂Nss

∂s
+ Nsn

R
+ qs = ρnh

∂2ws

∂t2
, (B2)
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h

R

y
s

n

Nym

Nyy

Nys

qn

qy

qs

Mss

Msy

Mys
Myy

Nsy

Nsn

Nss

(b)(a)

(c)

Figure 21. Schematic diagrams showing (a) the infinitesimal element in the thin flexible nozzle on which the
reference coordinates (y, n, s) are defined, (b) the edge forces and (c) the edge moments and external surface
forces on the element in (a).

∂Nyn

∂y
+ ∂Nsn

∂s
− Nss

R
− qn = ρnh

∂2wn

∂t2
, (B3)

∂Mys

∂y
+ ∂Myy

∂s
− Nyn = 0, (B4)

∂Myy

∂y
+ ∂Msy

∂s
− Nsn = 0. (B5)

Here, Nij and Mij denote the resultant stress and the stress couple (i.e. moment),
respectively, in the direction of the j axis acting on the surface normal to the i axis
(i, j = y, s, n). Here, y, s and n represent the components parallel to the nozzle length,
circumference and normal to the nozzle wall, respectively (figure 21), and t is time.
Parameters qi and wi denote the external force acting on the nozzle surfaces and the
displacement in the i direction, respectively, and ρn, R and h are the density, radius and
thickness of the nozzle, respectively. Equations (B1)–(B3) correspond to Newton’s second
law along each axis and (B4) and (B5) state the balance of the moment in the y and s
directions (here, the equation in the n direction is omitted since it is automatically satisfied
by the symmetry of the stress tensors).

If the nozzle is thin enough (membrane state), the moment on the nozzle wall can be
ignored, resulting in Nyn = Nsn = 0 according to (B4) and (B5). Since the deformation
of the nozzle is axisymmetric during the acceleration time (∂/∂s = 0 and ws = qs = 0),
(B1)–(B3) are reduced to (B6)–(B8):

∂Nyy

∂y
+ qy = ρnh

∂2wy

∂t2
, (B6)

∂Nys

∂y
= 0, (B7)

−Nss

R
− qn = ρnh

∂2wn

∂t2
. (B8)
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Equation (B7) can be integrated to have Nys = 0 since the stress vanishes at the nozzle
tip (y = 0). Therefore, the nozzle deformation is governed by (B6) and (B8). Following
Love’s postulates that state that the normal stress is negligible and the normal vector to
the nozzle surface remains unchanged (i.e. εn = γyn = γsn = 0, where ε and γ denote the
normal and shearing strain), the following relations are obtained:

Nyy = Eh
1 − ν2 (εy + νεs), (B9)

Nss = Eh
1 − ν2 (εs + νεy), (B10)

Nsy = Nys = Ghγys, (B11)

εy = ∂wy

∂y
, (B12)

εs = ∂ws

∂s
+ wn

R
, (B13)

γxs = ∂ws

∂y
+ ∂wy

∂s
. (B14)

Here, (B9)–(B11) and (B12)–(B14) denote the stress–strain and the strain–displacement
relations, respectively. The elastic properties E, G and ν are the Young’s modulus, shear
modulus and Poisson’s ratio, respectively. Equation (B11) vanishes since Nys = 0 from
(B7). Applying the assumption of axisymmetry immediately eliminates (B14) (since ws =
0 and ∂/∂s = 0) and reduces (B13) to εs = wn/R. Now, the substitution of (B12) and (B13)
into (B9) and (B10) results in the relation between the stress and displacement:

Nyy = Eh
1 − ν2

(
∂wy

∂y
+ ν

wn

R

)
, (B15)

Nss = Eh
1 − ν2

(
wn

R
+ ν

∂wy

∂y

)
. (B16)

Finally, the substitution of (B15) and (B16) into (B6) and (B8) results in the following
equations:

E
ρn(1 − ν2)

(
∂2wy

∂y2 + ν

R
∂wn

∂y

)
+ qy

ρnh
= ∂2wy

∂t2
, (B17)

− E
ρn(1 − ν2)

(
wn

R2 + ν

R
∂wy

∂y

)
+ qn

ρnh
= ∂2wn

∂t2
. (B18)

Through these relations, the displacements (wn and wy) can be obtained if the external
(surface) forces (qy and qn) are determined. The boundary conditions of (B17) and (B18)
come from the fact that the nozzle is rigidly attached to the support (wy = wn = 0 at
y = L) and is free at the tip (Nyy = ∂wy/∂y + νwn/R = 0 at y = 0). All variables in (B17)
and (B18) are then non-dimensionalized as follows:

ŷ = y/L, t̂ = t/Tacc, ŵy = wy/R, ŵn = wn/R. (B19a–d)
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Substituting equation (B19a–d) into (B17) and (B18) leads to

∂2ŵy

∂ ŷ2 + νL
R

∂ŵn

∂ ŷ
+ f̂y = T̂

∂2ŵy

∂ t̂2
, (B20)

−
(

L
R

)2

ŵn − νL
R

∂ŵy

∂ ŷ
+ f̂n = T̂

∂2ŵn

∂ t̂2
. (B21)

Here, T̂ and f̂i (i = n, y) are dimensionless parameters, expressed as T̂ = ρn(1 −
ν2)L2/(ET2

acc) and f̂i = qi(1 − ν2)L2/(ERh), respectively. Parameter T̂ measures the
relative contribution of the time-varying term (∂2ŵi/∂ t̂2) in both equations. For the present
experiments, T̂ is found to be negligible, T̂ = O(10−4), where ρn = 1070 kg m−3, L =
0.041 m, ν = 0.55, E = 100–270 kPa and Tacc = 0.20–0.43 s. The negligible contribution
of the inertia term implies that the nozzle immediately reaches the quasi-equilibrium state,
i.e. the deformation of the nozzle immediately conforms to the external forcing in y and n
directions. Thus, the left-hand side of both equations can be ignored as follows:

∂2ŵy

∂ ŷ2 + νL
R

∂ŵn

∂ ŷ
+ f̂y = 0, (B22)

−
(

L
R

)2

ŵn − νL
R

∂ŵy

∂ ŷ
+ f̂n = 0. (B23)

Integration of (B22) with ŷ from 0 to yp (an arbitrary vertical location on the nozzle) gives
the following relation:

∂ŵy

∂ ŷ

∣∣∣∣
ŷ=yp

− ∂ŵy

∂ ŷ

∣∣∣∣
ŷ=0

+ νL
R

(ŵn|ŷ=yp − ŵn|ŷ=0) +
∫ yp

0
f̂y dŷ = 0. (B24)

Applying the boundary condition at the nozzle tip (∂wy/∂y + νwn/R = ∂ŵy/∂ ŷ +
(νL/R)ŵn = 0), equation (B24) can be rewritten as (here, the subscript of ŷ = yp is
neglected for convenience)

∂ŵy

∂ ŷ
= −νL

R
ŵn −

∫ yp

0
f̂y dŷ = 0. (B25)

Now, the gradient of the displacement (∂wy/∂y) in (B23) can be replaced by the relation
(B25):

L2(1 − ν2)

R2 ŵn − νL
R

∫ yp

0
f̂y dŷ − f̂n = 0. (B26)

Now, (B26) reveals that the normal displacement, ŵn, is directly determined by the
external forces normal (f̂n) and tangent (f̂y) to the nozzle surface. Considering that the
jet Reynolds number is of the order of 103, the contribution of friction is assumed to be
negligible (f̂y � 0), which simplifies (B26) to L2(1 − ν2)ŵn/R2 = f̂n. By the definition of
f̂n = qn(1 − ν2)L2/(ERh) and the fact that the normal stress corresponds to the pressure
difference between the nozzle wall (p) due to the jet acceleration (i.e. p = qn), the pressure
can be calculated as

R
Eh

p = ŵn. (B27)
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Appendix C. Formulation of the potential energy stored by the flexible nozzle

This appendix presents the derivation of (4.17) in § 4.3. The elastic potential energy (P)
is defined as the integration of the strain energy density (Z) along the nozzle volume (V),
expressed as follows (Kraus 1967):

P =
∫

V
Z dV. (C1)

Here, the strain energy density is defined as Z = 0.5σijεij, where σij and εij denote the
stress and strain tensors, respectively, acting in the direction of the j axis on the surface
normal to the i axis. The volume integration is performed as follows:.

P =
∫ h/2

−h/2

∫ L

0

∫ 2π

0

1
2
σijεijR(1 + ζ/R) dθdy dζ. (C2)

Since the axisymmetric deformation is dominant, the strain energy density can be
approximated as σijεij � σssεss, where εss = wn/R from (B13). Using the definition of the
stress resultant (Nss = ∫ h/2

−h/2 σss dζ ), (C2) can be reduced to

P =
∫ L

0

∫ 2π

0

1
2

Nsswn dθ dy. (C3)

Integral
∫ h/2
−h/2 σijζ dζ was neglected since it is of O(h2). Equation (C3) is identical to

(4.16). The relation between the stress resultant (Nss) and the displacements (wy and wn)
is given in (B15). Substitution of these into (C3) results in (C4):

P = π
EhR

1 − ν2

∫ L

0

(wn

R

)2
dy. (C4)

Here, the normal displacement of the nozzle (wn) can be estimated by the operation
conditions using (4.6) in § 4.2 (which is rewritten as ŵn,max = ρf utLD/(4EhTacc)). Thus,
the elastic potential energy can be finally obtained as follows:

P = π

3(1 − ν2)

ρ2
f u2

t R3L3

EhT2
acc

. (C5)

Appendix D. Calculation of the energy balance

In § 4.3, it was stated that the stored potential (elastic) energy is converted to kinetic energy
of the jet during the contraction of the nozzle, expressed as follows:

ΔM ∼ P. (D1)

Here, the increase in the kinetic energy of the jet (ΔM) is given as Δ(ρf πR2Lu2/2) =
ρf πR2L(uΔu), and P comes from (4.17). Thus, (D1) can be rewritten as follows:

ρf πR2L(uΔu) ∼
πR3a2ρ2

f L3

3(1 − ν2)Eh
. (D2)
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If (D2) is divided by u2
t and is rearranged with respect to Δu/u, the following relation

appears:

Δu
u

∼ ρf RL2

3(1 − ν2)EhT2
acc

= 1
3(1 − ν2)

ρf u2
t R

Eh
L2

u2
t T2

acc
. (D3)

Recalling the dimensionless parameters, the effective acceleration time (Π0) and the
effective nozzle stiffness (Π1), (D3) is modified into the following equation:

Δu
u

∼ Π2
0

Π1
∼ 1

ĉ2 . (D4)

Similarly, (4.26) can be obtained from (4.25) in § 4.3. First, (4.25) reads as follows:

ΔM ∼ P
Tacc

Teff
. (D5)

Here, the reduced wave speed in the upward direction (+y) is expressed as cr,u = ut(1 −√
Π1/2) = −ut(

√
Π1/2 − 1) since Π1 > 2 in general. The substitution of ΔM, P and cr

into (D5) gives

ρf πR2L(uΔu) ∼
πR3a2ρ2

f L3

3(1 − ν2)Eh
Taccut(

√
Π1/2 − 1)

L
. (D6)

Again, (D6) is rewritten with respect to Δu/u:

Δu
u

∼ 1
3(1 − ν2)

ρf utRL
TaccEh

(
√

Π1/2 − 1) ∼ ρf u2
t R

Eh
L

utTacc
(
√

Π1/2 − 1). (D7)

Then, the substitution of the dimensionless parameters (Π0 = L/utTacc and Π1 =
Eh/(ρf u2

t R)) results in (D8):

Δu
u

∼
√

Π1/2 − 1
Π0Π1

. (D8)

Since Π2
0 /Π1 scales with 1/ĉ2, the relation of Π2

0 ∼ ĉ2Π1 ∼ 1/Π1 holds when satisfying
the optimal condition of ĉ � 3.0. The substitution of Π2

0 ∼ 1/Π1 into (B8) leads to the
following:

Δu
u

∼
√

Π1/2 − 1√
Π1

= 1√
2

(
1 −

√
2

Π1

)
∼ 1 −

√
2

Π1
. (D9)

REFERENCES

ABDELBAKI, A.R., PAIDOUSSIS, M.P. & MISRA, A.K. 2020 A nonlinear model for a hanging cantilevered
pipe discharging fluid with a partially-confined external flow. Intl J. Non-Linear Mech. 118, 103290.

ANNUS, I., KOPPEL, T., SARV, L. & AINOLA, L. 2013 Development of accelerating pipe flow starting from
rest. Trans. ASME J. Fluids Engng 135, 111204.

ARAKERI, J.H., DAS, D., KROTHAPALLI, A. & LOURENCO, L. 2004 Vortex ring formation at the open end
of a shock tube: a particle image velocimetry study. J. Phys. Fluids 16, 1008–1019.

BERGDORF, M., KOUMOUTSAKOS, P. & LEONARD, A. 2007 Direct numerical simulations of vortex rings at
ReΓ = 7500. J. Fluid Mech. 581, 495–505.

BERTRAM, C.D., RAYMOND, C.J. & PEDLEY, T.J. 1991 Application of nonlinear dynamics concepts to the
analysis of self-excited oscillations of a collapsible tube conveying a fluid. J. Fluid Struct. 5, 391–426.

949 A39-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.781


D. Choi and H. Park

BOUROUIBA, L., DEHANDSCHOEWERCKER, E. & BUSH, J.W. 2014 Violent expiratory events: on coughing
and sneezing. J. Fluid Mech. 745, 537–563.

BUJARD, T., GIORGIO-SERCHI, F. & WEYMOUTH, G.D. 2021 A resonant squid-inspired robot unlocks
biological propulsive efficiency. Sci. Robot. 6, eabd2971.

CHEN, S.S. & ROSENBERG, G.S. 1974 Free vibrations of fluid-conveying cylindrical shells. ASME J. Engng
Indus. 96, 420–426.

CHOI, H., LEE, J. & PARK, H. 2019 Wake structures behind a rotor with superhydrophobic-coated blades at
low Reynolds number. Phys. Fluids 31, 015102.

CHOI, D. & PARK, H. 2018 Flow around in-line sphere array at moderate Reynolds number. Phys. Fluids 30,
097104.

CLIFFORD, A.A. 1973 Multivariate Error Analysis: A Handbook of Error Propagation and Calculation in
Many-Parameter Systems. John Wiley & Sons.

DABIRI, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid
Mech. 41, 17–33.

DABIRI, J.O. & GHARIB, M. 2005 Starting flow through nozzles with temporally variable exit diameter.
J. Fluid Mech. 538, 111–136.

DAS, D., BANSAL, M. & MANGHNANI, A. 2017 Generation and characteristics of vortex rings free of piston
vortex and stopping vortex effects. J. Fluid Mech. 811, 138–167.

DAS, P., GOVARDHAN, R.N. & ARAKERI, J.H. 2018 Unsteady two-dimensional jet with flexible flaps at the
channel exit. J. Fluid Mech. 845, 462–498.

DAVID, M.J., GOVARDHAN, R.N. & ARAKERI, J.H. 2017 Thrust generation from pitching foils with flexible
trailing edge flaps. J. Fluid Mech. 828, 70–103.

DAZIN, A., DUPONT, P. & STANISLAS, M. 2006 Experimental characterization of the instability of the vortex
rings. Part II: non-linear phase. Exp. Fluids 41, 401–413.

DEWEY, P.A., BOSCHITSCH, B.M., MOORED, K.W., STONE, H.A. & SMITS, A.J. 2013 Scaling laws for
the thrust production of flexible pitching panels. J. Fluid Mech. 732, 29–46.

DIDDEN, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math.
Phys. 30, 101–116.

FANG, F., HO, K.L., RISTROPH, L. & SHELLEY, M.J. 2017 A computational model of the flight dynamics
and aerodynamics of a jellyfish-like flying machine. J. Fluid Mech. 819, 621–655.

FUKUMOTO, Y. & HATTORI, Y. 2005 Curvature instability of a vortex ring. J. Fluid Mech. 526, 77–115.
GAO, L., WANG, X., SIMON, C.M. & CHYU, M.K. 2020 Development of the impulse and thrust for laminar

starting jets with finite discharged volume. J. Fluid Mech. 902, A27.
GARNIER, E. 2015 Flow control by pulsed jet in a curved S-duct: a spectral analysis. AIAA J. 53, 2813–2827.
GHARIB, M., RAMBOD, E. & SHARIFF, K. 1998 A universal time scale for vortex ring formation. J. Fluid

Mech. 360, 121–140.
GOSLINE, J.M. & DEMONT, M.E. 1985 Jet-propelled swimming in squids. Sci. Am. 252, 96–103.
HALDANE, D.W., PLECNIK, M.M., YIM, J.K. & FEARING, R.S. 2016 Robotic vertical jumping agility via

series-elastic power modulation. Sci. Robot. 1, eaag2048.
HATTORI, Y. & FUKUMOTO, Y. 2003 Short-wavelength stability analysis of thin vortex rings. Phys. Fluids

15, 3151–3163.
HEIL, M. 1997 Stokes flow in collapsible tubes: computation and experiment. J. Fluid Mech. 353, 285–312.
HEIL, M. & BOYLE, J. 2010 Self-excited oscillations in three-dimensional collapsible tubes: simulating their

onset and large-amplitude oscillations. J. Fluid Mech. 652, 405–426.
HEIL, M. & WATERS, S.L. 2006 Transverse flows in rapidly oscillating elastic cylindrical shells. J. Fluid

Mech. 547, 185–214.
HIBBELER, R.C. 2013 Statics and Mechanics of Materials. Pearson.
HIGHAM, T.E. & IRSCHICK, D.J. 2013 Springs, steroids, and slingshots: the roles of enhancers and constraints

in animal movement. J. Comput. Physiol. B 183, 583–595.
JUNG, C., SONG, M. & KIM, D. 2021 Starting jet formation through eversion of elastic sheets. J. Fluid Mech.

924, A7.
KANG, C.K., AONO, H., CESNIK, C. & SHYY, W. 2011 Effects of flexibility on the aerodynamic performance

of flapping wings. J. Fluid Mech. 689, 32–74.
KIM, D. & GHARIB, M. 2011 Flexibility effects on vortex formation of translating plates. J. Fluid Mech. 677,

255–271.
KRAUS, H. 1967 Thin Elastic Shells: An Introduction to the Theoretical Foundations and the Analysis of their

Static and Dynamic Behavior. Wiley.
KRIEG, M. & MOHSENI, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with

non-zero radial velocity. J. Fluid Mech. 719, 488–526.

949 A39-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.781


Flow–structure interaction of starting jet through a nozzle

KRIEG, M. & MOHSENI, K. 2015 Pressure and work analysis of unsteady, deformable, axisymmetric, jet
producing cavity bodies. J. Fluid Mech. 769, 337–368.

KRUEGER, P.S. & GHARIB, M. 2003 The significance of vortex ring formation to the impulse and thrust of a
starting jet. Phys. Fluids 15, 1271–1281.

KUMARAN, V. 1998 Stability of the flow of a fluid through a flexible tube at intermediate Reynolds number.
J. Fluid Mech. 357, 123–140.

LAMB, H. 1945 Hydrodynamics. Dover.
LAWSON, N.J., RUDMAN, M., GUERRA, A. & LIOW, J.L. 1999 Experimental and numerical comparisons of

the break-up of a large bubble. Exp. Fluids 26, 524–534.
LI, H., CHOI, J., LI, B., KIM, I. & HEO, J. 2016 Numerical analysis on the gas flow dynamics from a

rectangular slot-nozzle for pulse cleaning of filter unit. Powder Technol. 297, 330–339.
LI, G., JAIMAN, R.K. & KHOO, B.C. 2021 Flow-excited membrane instability at moderate Reynolds

numbers. J. Fluid Mech. 929, A40.
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