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Abstract. The automorphism group of a virtually polycyclic group G is either
virtually polycyclic or it contains a non-abelian free subgroup. We describe conditions
on the structure of G to decide which of the two alternatives occurs for Aut(G).
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1. Introduction. A group G is virtually polycyclic (or polycyclic-by-finite) if it
contains a polycyclic normal subgroup of finite index. The automorphism group Aut(G)
of a virtually polycyclic group G is finitely generated and embeds into GL(n, �) for some
n ∈ �. Thus, Tits’ alternative yields that Aut(G) is virtually polycyclic or it contains a
non-abelian free subgroup.

Here we consider the question: Given a virtually polycyclic group G, can we decide
whether Aut(G) is virtually polycyclic without explicitly determining Aut(G)?

Each virtually polycyclic group G has a characteristic semisimple series; that is, a
characteristic series whose factors are either finite or free abelian and rationally
semisimple. We want to use the module structure of the free abelian factors in such
a series to investigate Aut(G). We say that a free abelian subfactor F of G is �-
inhomogeneous if F considered as a �G-module is a direct sum of pairwise non-
isomorphic irreducible modules F = F1 ⊕ . . . ⊕ Fr and each Fi either has Schur index
m�(Fi) = 1 or Fi is irreducible as a �G-module. The module structure of G yields the
following sufficient condition for Aut(G) to be virtually polycyclic (see Section 3).

THEOREM 1.1. Let G be virtually polycyclic. Then Aut(G) is virtually polycyclic if
each free abelian factor F in a characteristic semisimple series of G is �-inhomogeneous.

In certain cases, this sufficient condition is also necessary. We prove the following
criterion to decide whether Aut(G) is virtually polycyclic (see Section 4).

THEOREM 1.2. Let G be virtually polycyclic and let F be a characteristic, free abelian
and rationally semisimple subgroup of G which has an almost complement in G. We
denote H = G/F. Then Aut(G) is virtually polycyclic if and only if

� F is �-inhomogeneous, and
� CAut(H)(H/CH(F)) is virtually polycyclic.

Thus if there exists a characteristic, free abelian and rationally semisimple subgroup
F in G which is almost complemented, then the module structure of F and the
automorphism group of its factor Aut(G/F) determine whether Aut(G) is virtually
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polycyclic. Note that F is almost complemented if there exists a subgroup U in G with
U ∩ F = 1 and [G : UF ] < ∞.

Malfait and Szczepanski introduced the �-inhomogeneous modules in [3] and
used them to decide whether the automorphism group of a given Bieberbach group
is virtually polycyclic. This is a special case of Theorem 1.2 as we show in Section 6.
Section 6 also includes some applications of the above Theorems and an example to
demonstrate that the condition of Theorem 1.1 is not necessary in general. Section 5
gives a further analysis of �-inhomogeneous modules.

2. Preliminaries. Each virtually polycyclic group G has a characteristic series
whose factors are either finite or free abelian and such a series can be determined
readily without computing Aut(G). (See [5] for background on polycyclic groups.) We
observe in the following that such a series can be refined to a characteristic semisimple
series of G. If F is a free abelian subfactor of G and K is a field extension of �,
then we can consider FK = F ⊗ K as a KG-module. We say that F is semisimple if
F� is semisimple as a �G-module. Further, the radical Rad�G(F�) is defined as the
intersection of all maximal submodules of F�.

LEMMA 2.1. Let F be a characteristic, free abelian subfactor of G. Then the radical
R = F ∩ Rad�G(F�) is an Aut(G)-invariant subgroup of F with semisimple factor F/R.

Proof. Aut(G) acts linearly on F� and the maximal submodules of F� are permuted
under this action. Hence their intersection Rad�G(F�) is Aut(G)-invariant. Thus also
R is Aut(G)-invariant. Since F� is finite dimensional, its radical factor is semisimple.
Thus also F/R is semisimple. �
Lemma 2.1 yields that each virtually polycyclic group G has a characteristic semisimple
series which can be determined without computing Aut(G).

LEMMA 2.2. Let G be a virtually polycyclic group and let G = G1 > . . . > Gl+1 = 1
be a characteristic semisimple series of G with I = {i ∈ {1, . . . , l} | Gi/Gi+1 free abelian}.
Then Aut(G) is virtually polycyclic if and only if Aut(G) induces a virtually polycyclic
group of automorphisms on Gi/Gi+1 for each i ∈ I.

Proof. Let Aut(G)
ψ−→ ∏l

i=1 Aut(Gi/Gi+1)
ϕ−→ ∏

i∈I Aut(Gi/Gi+1) be the natural
homomorphisms. By Hall’s theorem, Ker(ψ) is nilpotent. Since the factors Gi/Gi+1

for i �∈ I are finite, Ker(ϕ) is finite. Hence Ker(ψϕ) is virtually nilpotent. The image
Im(ψϕ) is virtually polycyclic if and only if Im(ψi) is virtually polycyclic for each i ∈ I ,
where ψi : Aut(G) → Aut(Gi/Gi+1) denotes the natural action. �

3. The module structure of a virtually polycyclic group. In this section we prove
Theorem 1.1 and thus we obtain a sufficient condition on G to have a virtually polycyclic
automorphism group Aut(G). The proof is divided into a sequence of theorems as
outlined in the following. We call a subgroup K ≤ GL(d, �) semisimple or irreducible
if the natural �K-module �d is semisimple or irreducible as a �K-module.

THEOREM 3.1. Let K ≤ GL(d, �) be virtually polycyclic and semisimple. We write
C = CGL(d,�)(K) and N = NGL(d,�)(K). Then N/C is virtually abelian.

Proof. It is well-known that a semisimple, virtually polycyclic subgroup K of
GL(d, �) has a characteristic, abelian subgroup F of finite index. For example,
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Z(Fit(K)) is of this type, see [2, 6.3 and 6.5]. Let V ∼= �d be the natural �K-module.
Since F has finite index in K , we have that V is semisimple as a �F-module. Thus V� is
semisimple as a �F-module. Since F � N, we can apply Lemma 1.12 of [6] and obtain
that [N : CN(F)] < ∞.

Let U = CN(F) and note that it suffices to prove that U/C is virtually abelian. By
construction, the factor U/C embeds into Aut(K). As F is central in U , we obtain that
the image of this embedding is contained in S = CAut(K)(F). The group S is virtually
abelian, since CS(K/F) is a free abelian normal subgroup of finite index in S. Thus
U/C is virtually abelian as desired. �

Next, we consider the centralizer of a semisimple subgroup K ≤ GL(d, �). The fol-
lowing theorem is proved in [3] for finite groups K . The proof is based on the
investigation in [7] of the unit group of a �-order in the centralizer algebra of K and it
generalizes directly to semisimple groups K .

THEOREM 3.2. Let K ≤ GL(d, �) be semisimple. Then the centralizer CGL(d,�)(K) is
virtually polycyclic if and only if the natural module for K is �-inhomogeneous.

Theorems 3.1 and 3.2 yield the following as a direct corollary.

THEOREM 3.3. Let K ≤ GL(d, �) be virtually polycyclic and semisimple. Then the
normalizer NGL(d,�)(K) is virtually polycyclic if and only if the natural module for K is
�-inhomogeneous.

Theorem 1.1 is a corollary of Theorem 3.3 and Lemma 2.2. To see this let F be a
free abelian factor in a characteristic semisimple series of G. Then Aut(F) ∼= GL(d, �)
for some d ∈ � and G acts as a virtually polycyclic, semisimple group K ≤ GL(d, �)
on F . The image of ψF : Aut(G) → GL(d, �) fulfills Aut(G)ψF ≤ NGL(d,�)(K). Thus if
F is �-inhomogeneous for all free abelian factors F in the given series, then Aut(G)ψF

is virtually polycyclic for all F by Theorem 3.3 and Aut(G) is virtually polycyclic by
Lemma 2.2.

4. The extension structure of a virtually polycyclic group. In this section we prove
Theorem 1.2 and thus we obtain a necessary and sufficient condition for Aut(G) to be
virtually polycyclic for certain groups G. This investigation is based on the extension
structure of G. As a first step, we recall the structure of the automorphism group of an
extension in the following theorem. For further details and a proof we refer to [4].

THEOREM 4.1. Let F be a characteristic, free abelian subgroup of G and set H = G/F.
Let H → Aut(F) : h �→ h be the action of H on F and let P(G, F) = {(α, ν) ∈ Aut(H) ×
Aut(F) | hα = h

ν
for all h ∈ H} be the group of compatible pairs.

(a) Let ψ : Aut(G) → Aut(H) × Aut(F) be the natural homomorphism induced by
the action of Aut(G) on H and F. Then Ker(ψ) is abelian and Im(ψ) ≤ P(G, F).

(b) Let γ ∈ H2(H, A) be a cocycle corresponding to the extension G of F by H. Then
using the natural action of P(G, F) on H2(H, A) we obtain Im(ψ) = StabP(G,F)(γ ).

This description of the automorphism group of an extension can be used to prove the
desired Theorem 1.2 as we observe in the following.

THEOREM 4.2. Let G be virtually polycyclic and let F be a characteristic, free abelian
and semisimple subgroup of G.
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(a) Suppose that F has an almost complement in G. Then Aut(G) is virtually
polycyclic if and only if P(G, F) is virtually polycyclic.

(b) Denote H = G/F and let H → Aut(F) : h �→ h be the action of H on F. Then
P(G, F) is virtually polycyclic if and only if NAut(F)(H) and CAut(H)(H/CH(F)) are virtually
polycyclic.

Proof. (a) Let γ ∈ H2(H, A) be a cocycle corresponding to the extension G of F
by H. If F has an almost complement in G, then γ has finite order, see [4, 2.5]. Since
P(G, F) acts as a group of automorphisms on the finitely generated abelian group
H2(H, F), we obtain that the orbit of γ under P(G, F) is finite. By Theorem 4.1b) this
yields that Aut(G) is virtually polycyclic if and only if P(G, F) is virtually polycyclic.

(b) Let γ : P(G, F) → Aut(F) be the natural projection on the second factor and
denote C = CAut(F)(H) and N = NAut(F)(H). By the definition of P(G, F), we obtain
that C ≤ Im(γ ) ≤ N. Since F� is semisimple, Theorem 3.1 applies and N is virtually
polycyclic if and only if C is virtually polycyclic. In turn, we obtain that Im(γ ) is
virtually polycyclic if and only if N is virtually polycyclic. Further, Ker(γ ) = {(α, id) |
hα = h for all h ∈ H} ∼= CAut(H)(H) and H ∼= H/CH(F). �
Theorem 1.2 can now be derived directly from Theorems 3.3 and 4.2.

5. An investigation of �-inhomogeneous modules. Let K ≤ GL(d, �) be irredu-
cible and denote by V the natural module for K , that is, V = �d is irreducible as a
�K-module. In this section we investigate the property of being �-inhomogeneous in
more detail. We define

A = CMd (�)(K) its rational centralizer algebra,

B = CMd (�)(K) its integral centralizer ring, and

C = CGL(d,�)(K) its centralizer.

By Schur’s lemma A is a simple algebra, B is a �-order in A and C is the group of units
in B. As shown in [7] and [3] we have

V is �-inhomogeneous

⇔ A is commutative or a positive definite quaternion algebra over �

⇔ C is virtually polycyclic.

We note that a basis of A can be obtained by solving a system of linear equation. Also, a
basis of the centre Z(A) can be determined using linear algebra and thus its dimension
[Z(A) : �] can be read off. The following lemma yields an approach to check whether
A is commutative or a quaternion algebra over �. (Compare with [1] also.)

LEMMA 5.1. Let K ≤ GL(d, �) be irreducible and let V and A be as above.
(a) dim(A) = zm2, where m = m�(V ) and z = [Z(A) : �].
(b) A is commutative if and only if m = 1.
(c) A is a quaternion algebra over � if and only if m = 2 and z = 1.

Proof. (a) Since �K is a simple algebra, we have that �K = Mr(D) for some
division algebra D of dimension m2 over Z(A). The algebra D is anti-isomorphic to A
and thus we obtain dim(A) = zm2.
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(b) The algebra A is commutative if and only if A = Z(A).
(c) A quaternion algebra over � has dimension 4 and � as its centre by definition.

Vice versa, each simple algebra of dimension 4 with centre � is a quaternion
algebra. �
If V� is irreducible, then A� = A ⊗ � is a division algebra. By the classification of the
finite-dimensional real division algebras, A� is either �, � or �, the real quaternions.
Thus A is either commutative or a positive definite quaternion algebra. Vice versa, if
A is a positive definite quaternion algebra, then A� is a division algebra and V� is
irreducible.

6. Sample applications. For practical applications of Theorem 1.2 it is useful to
observe that a normal subgroup F has an almost complement in G if there exists a
nilpotent normal subgroup Q/F in G/F which acts fixed-point freely on F . This is used
in the following.

EXAMPLE 6.1. We consider the polycyclic group

G = 〈a, b, c, d, e | ba = be, ca = d, da = e, ea = cd4, cb = c2d, db = d2e, eb = cd4e2,

ba−1 = bd−1, ca−1 = c−4e, da−1 = c, ea−1 = d, cb−1 = d−2e, db−1 = cd4e−2,

eb−1 = c−2d−7e4 (c, d, e commute)〉
Then F = Fit(G) = 〈c, d, e〉 ∼= �3 is a characteristic, free abelian subgroup of G with
factor group H = G/F ∼= �2. The group G acts on F ∼= �3 via the matrices

a =




0 1 0
0 0 1
1 4 0


 and b =




2 1 0
0 2 1
1 4 2


 .

Since the minimal polynomials of these matrices are irreducible of degree 3, we can
readily observe that F is �G-irreducible. This yields that F is semisimple and, since G
acts fixed-point freely on F , we obtain that F has an almost complement in G. (But F
is not complemented in G.)

Let K = 〈a, b〉 ≤ GL(2, �) be the action of G on F and let A = CM3(�)(K). Then
A is a commutative algebra of dimension 3 and hence F is �-inhomogeneous. Further,
CH(F) = 1. Hence CAut(H)(H/CH(F)) = CAut(H)(H) = 1 is virtually polycyclic.

Using Theorem 1.2 we can therefore conclude that Aut(G) is polycyclic.

6.1. Groups with finite action. We consider the special case of Theorem 1.2 of a
free abelian subgroup with finite action in the following.

THEOREM 6.2. Let G be virtually polycyclic and let F be a characteristic and free
abelian subgroup of G such that [G : CG(F)] < ∞. Denote H = G/F and suppose that F
has an almost complement in G. Then Aut(G) is virtually polycyclic if and only if

� F is �-inhomogeneous, and
� Aut(H) is virtually polycyclic.

Proof. Since CG(F) has finite index in G, we have that G acts as a finite group on F
and thus F is semisimple as a �G-module by Maschke’s theorem. Hence Theorem 1.2
applies. Further, we note that the factor Aut(H)/CAut(H)(H/CH(F)) embeds into the

https://doi.org/10.1017/S0017089503001423 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001423


532 BETTINA EICK

finite group Aut(G/CG(F)). Hence CAut(H)(H/CH(F)) is virtually polycyclic if and only
if Aut(H) is virtually polycyclic. �

As a consequence of Theorem 6.2 we obtain the following theorem which has also
been proved in [3]. A group G is crystallographic if Fit(G) is free abelian of finite index
in G and G does not contain a non-trivial normal torsion subgroup. Further, the group
G is a Bieberbach group if G is crystallographic and torsion-free.

COROLLARY 6.3 (Malfait & Szczepanski). Let G be crystallographic group and let
F = Fit(G). Then Aut(G) is virtually polycyclic if and only if F is �-inhomogeneous.

Proof. Note that F has finite index in G. Thus the trivial subgroup is an almost
complement to F in G and Aut(G/F) is finite. �
For a variety of explicit applications of this theorem we refer to [3].

6.2. Finitely generated nilpotent groups. Each finitely generated nilpotent group
is virtually polycyclic and it has a characteristic central series whose factors are either
finite or free abelian. The free abelian factors in such a series are clearly semisimple,
but they are not �-inhomogeneous unless they have dimension 1. Hence Theorem 1.1
does not apply to this type of group. The following well-known theorem investigates
the structure of the automorphism group of a finitely generated nilpotent group. We
refer to [5, Chapter 1B], for background.

THEOREM 6.4. Let G be a finitely generated nilpotent group and let ψ : Aut(G) →
Aut(G/G′) be the natural action of Aut(G) on the characteristic abelian factor G/G′.
Then Ker(ψ) is nilpotent.

Hence the action of Aut(G) on the factor G/G′ decides whether Aut(G) is virtually
polycyclic or contains a non-abelian free subgroup. We give two examples, showing
that both cases can occur.

EXAMPLE 6.5. Let G = 〈a, b, c, d, e | [a, b] = c, [a, c] = d, [b, c] = e, (e, d central)〉
be the free nilpotent group on 2 generators with class 3. Then G′ = 〈c, d, e〉 with
G/G′ ∼= �2 and G is generated by a and b. It is straightforward to show that the maps

α : G → G :
{

a �→ a
b �→ ab and β : G → G :

{
a �→ ab
b �→ b

induce automorphisms of G. Thus the image of ψ : Aut(G) → Aut(G/G′) and hence
also Aut(G) contains a non-abelian free subgroup.

A characteristic semisimple series of G is given by G > G′ > 〈d, e〉 > 1. However,
its first factor F = G/G′ is not �-inhomogeneous, since F� is the direct sum of two
isomorphic �G-modules. Hence Theorem 1.1 does not apply.

EXAMPLE 6.6. Let G = 〈a, b, c, d | [a, b] = c, [a, c] = d, [b, c] = 1, (d central)〉. Then
G′ = 〈c, d〉 ∼= �2 and G is generated by a and b. Let α ∈ Aut(G) such that α induces
an element of SL(2, �) on G/G′. Then cα ≡ c mod 〈d〉. Write bα = aeb f x for some
e, f ∈ � and x ∈ G′. Then we obtain

1 = [b, c]α = [bα, cα] = [aeb f x, c] = [ae, c]b
f x[b f, c]x[x, c] = [ae, c]b

f x = de.
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Hence e = 1 and bα ≡ b f mod G′. Therefore Aut(G) induces an upper triangular
matrix group on Aut(G/G′). Thus Aut(G/G′) and also Aut(G) are virtually polycyclic.

A characteristic semisimple series of G is given by G > G′ > 〈d〉 > 1 and, as
above, its first factor G/G′ is not �-inhomogeneous. This shows that the condition
of Theorem 1.1 is not necessary to enforce that Aut(G) is virtually polycyclic.

REFERENCES
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