
A
Groups: structure and notation
In high energy theory one has plenty of opportunity to use results from group theory, for which
Ref. [488] is one of the most often used sources. We will be interested in linear representa-
tions of groups, i.e., the applications of abstract groups in the form of linear transformations
of a vector space, V. By specifying this vector space together with a basis, the group repre-
sentation is specified in the form of matrices that map vectors from V linearly into vectors
that are also in V. A telegraphically brief and cursory review of some of the useful re-
sults in group theory provided here cannot possibly compete with the serious sources such as
Refs. [565, 258, 287, 581, 201, 80, 333, 260, 334, 256, 447].

A.1 Groups: definitions and applications
This cluster of appendices describes the general algebraic structure of groups and in particular of
Lie groups, and then discusses the general properties of the application of groups in physics. This
is important for understanding the content of scientific models and their relation with Nature, for
the description of which these models were invented.

A.1.1 Axioms and a rough classification
We will need several group-theoretical and algebraic structures and their concrete applications,
and they are briefly described here.

Groups
A group G consists of a set of elements {a, b, c, . . . } equipped with a binary operation ∗ that satisfies
the following axioms (given here with a textual “translation” of the formal symbolism):

1. ∀a, b ∈ G, a ∗ b ∈ G; (A.1a)
For each ( ∀ ) two elements a, b from the group G, the result of the binary operation a ∗ b is also in
(∈ ) the group G, making the operation ∗ closed;

2. ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c; (A.1b)
The binary operation ∗ is associative, i.e., the result of a repeated application of the binary
operation ∗ is independent from the order in which the two operations are computed;

3. ∃e ∈ G, ∀a ∈ G : a ∗ e = e ∗ a = a; (A.1c)
There exists ( ∃ ) a neutral element ( e) of the group G, such that the results of the binary operations
a ∗ e and e ∗ a equal the original element a, for each ( ∀) a of the group G.
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452 Groups: structure and notation

4. ∀a ∈ G, ∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e. (A.1d)
For each ( ∀) element a of the group G, there exists ( ∀) an inverse element a−1 in the group, such
that the results of the binary operations a ∗ a−1 and a−1 ∗ a equal the neutral element, e.

Pedantically, it is not necessary to require that the neutral and the inverse elements are both-sided:
it suffices to require that there exist, say, the left-neutral element (1L ∗ a = a) and the left-inverse
element (a−1

L ∗ a = 1); the existence of the right-neutral element (a ∗ 1D = a) and the right-inverse
element (a ∗ a−1

D ), as well as the equalities (1L = 1D and a−1
L = a−1

D ) then follow [331, 332].
A group is called abelian (commutative) if the binary operation commutes: (a ∗ b) = (b ∗ a),

for each two a, b ∈ G; otherwise, the group is called non-abelian (non-commutative). A group G is
called additive if ∗ is an addition, and multiplicative if ∗ is a multiplication.

According to the number of their elements, groups are classified as:

1. Finite, with a finite number of elements. For example, Z2 = {1,−1; ·} is the multiplicative
group that consists of two elements, 1 and −1.

2. Countably infinite, with countably infinitely many elements. For example, {Z; +} is the
additive group of all (countably many) integers.

3. Continuous, with a continuum of elements, which are further subdivided as:
(a) Finite-dimensional. For example, U(1) is the multiplicative group of (complex) unitary

numbers,1 i.e., numbers of the form eiϕ, where ϕ " ϕ + 2π. The number of group
elements is continuously infinite, since there is one element for each of the continuously
many angles ϕ ∈ [0, 2π]. These angles evidently form a subset of the 1-dimensional real
axis, R1, and U(1) is a 1-dimensional group.

(b) Infinite-dimensional.2 For example, Diff(S1) is the multiplicative group of all diffeomor-
phisms (continuous reparametrizations) of the circle, which is a concrete example of
the group of general coordinate transformations [☞ Definition 9.1 on p. 319], useful
within the theoretical system of strings.

Coset
Besides groups, we also need the concept of a coset: For any group G and its subgroup H, the
(right) coset G/H consists of the elements

coset : G/H :=
{

g " g ∗ h : g ∈ G, h ∈ H
}

, (A.2)

where ∗ is the binary operation in the group G and in the subgroup H ⊂ G. In other words, the
coset elements are defined as equivalence classes “up to right ‘multiplication’ by elements from
H.” The left coset is defined similarly, and if the group G is abelian, the left and the right coset are
identical, of course.

This formal definition describes some very familiar examples:

Days of the week Consider the additive group of integers Z+ (which is abelian, i.e., commutative),
and its subgroup 7Z+, the additive group of integers that are divisible by 7. The coset Z7 :=
Z+/7Z+ is then defined as the additive group of equivalence classes of integers Z+, where
numbers n ∈ Z and n + k (for each k ∈ 7Z) are regarded as equivalent ("). The coset Z7
therefore consists of elements

[0 " 7 " 14 " . . . ], [1 " 8 " 15 " . . . ], [2 " 9 " 16 " . . . ], . . . (A.3)

which may be represented: {
[0], [1], [2], [3], [4], [5], [6]

}
= Z7, (A.4)

1 It follows that their modulus, i.e., absolute value is 1: z−1 = z∗ ⇒ 1 = z∗ z = |z|2 ⇒ |z| = 1, as |z| � 0.
2 These are further subdivided into several classes, but this will not concern us here.
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and where the classes [n] may be identified with the days of the week, [0]=Sunday,
[1]=Monday, etc. Indeed, seven days from Monday is again Monday, twenty-one days before
Saturday was again Saturday, 7n days from Tuesday is again Tuesday, etc.

Circle Consider the additive group of real numbers R+ and its subgroup of additive numbers
2πZ+, the elements of which are integral multiples of 2π. The coset R+/2πZ+ then may
be identified with the circle S1, as the coset R+/2πZ+ is parametrized by the equiva-
lence classes of real number [φ " φ + 2nπ], for each n ∈ Z, known as angles. Thus,
R+/2πZ+ ∼= S1.

It is useful to know that all n-dimensional spheres may be identified with the coset

Sn :=

{
x ∈ Rn+1 :

n

∑
i=0

x 2
i = r2

}
∼= SO(n+1)/ SO(n), (A.5)

where SO(n) is the group of real and orthogonal n×n matrices of determinant +1. For the details
of the isomorphism (∼=), the Reader is directed to the literature on Lie groups [565, 258, 581, 256,
80, 260, 333, 447].

Quotient space
The following generalization of the coset turns out to be very useful. Let V be a vector space over
the field k, and μ : V → V some mapping of that vector space into itself. One then says that

V/μ :=
{
[�v " μ(�v)] : v ∈ V

}
(A.6)

is a quotient space of the vector space V by the action of the mapping μ. The coset is then the
special case of the quotient space, where V is regarded as an additive group,3 and μ is a mapping
that preserves this structure, e.g.:

1. Adding integral linear combinations of a specified collection of vectors �wi ∈ V, i =
1, 2, 3, . . . ; indeed, the subset {n�v0 : n ∈ Z} evidently forms a subgroup of the additive
group V.
Example: The 2-dimensional torus T2 = R2/Λ, where Λ = {nL1ê1 + mL2ê2} is a Cartesian
lattice with spacings L1 and L2, which are then the circumferences of one and the other
circle in the torus.

2. (An)isotropic homothety: rescaling of the (basis) vectors

μ : (ê1, ê2, . . . ) → (λa1 ê1,λa2 ê2, . . . ) ∈ V (A.7)

where 0 �= λ ∈ k, and since�a = aiêi is an invariantly defined vector, the definition (A.7) is
in fact independent of the choice of a basis {ê1, ê2, . . . } ∈ V.
Example: The n-dimensional sphere Sn may be identified also with the quotient space
Rn+1/R∗

>0, where R∗
>0 is the multiplicative group of positive real numbers and the particular

action on Rn+1 is isotropic:

μ : (x0, x1, . . . ) �→ (λx0,λx1, . . . ), λ > 0. (A.8)

Every element Rn+1/R∗
>0 then looks like a ray in the (n+1)-dimensional space, starting

at the coordinate origin (not including the origin itself) to infinity (not including infinity).
Taking one point to represent each ray, e.g., at a same, fixed distance from the coordinate
origin, then gives the familiar image of the n-dimensional sphere.

3 The sum of any two vectors is again a vector; adding vectors is associative; �0 is the neutral element with respect to
addition; −�v is the “inverse” vector with respect to addition.
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Besides, the physical degrees of freedom in all gauge fields and potentials (including also
gravitation) always have the structure of a quotient space [☞ Examples 11.1–11.4, p. 416–417]:
the number of physical polarizations of a gauge particle is always smaller than the number of
components of the mathematical object (gauge 4-vector, metric tensor, etc.) that must be used to
represent the particle.

A.1.2 Lie groups
Of the finite-dimensional continuous groups, of special interest are the so-called Lie groups, G, the
elements of which may be written as g(a) := exp{i aj T j}, where summing over j is understood,
a := (a1, . . . , an) is an n-tuple of parameters, n the dimension of the group, and T j are the group
generators. Conversely, the group generators, T j, are obtained by linearizing:

T j := −i
∂g(a)
∂aj

∣∣∣
ak=0

. (A.9)

This means that the space of elements of every Lie group has a well-defined tangent plane in every
point, whereupon this group space is a smooth manifold, which locally looks like a Euclidean
n-dimensional space. The non-abelian structure of a group G reflects in the difference

1 − g(a) g(b) g(a)−1 g(b)−1 = aibj[Ti, T j] + · · · (A.10)

where “ . . . ” denotes contributions of higher order in parameters a, b.4 Since a product of group
elements must again be a group element, the product g(a) g(b) g(a)−1 g(b)−1 must be expressible
as g(c) = 1 + icjT j + · · · for some c, from which it follows that the generators Ti must satisfy the
relations [

T j , Tk
]

= i f jk
m Tm, (A.11a)

where the coefficients fij
k = − f ji

k are the group structure constants, and the binary operation [ , ]
is called the commutator, or the Lie bracket.

Definition A.1 Formally, the n-dimensional vector space A, the elements of which are of the
form ajT j, and for which the multiplicative operation

(ajT j) ∗ (bkTk) := ajbk[T j, Tk] = (i ajbk fjk
m)Tm ∈ A (A.11b)

is defined is called the algebra of the group G.

Comment A.1 Since both the Lie groups and the Lie algebras have continuously many ele-
ments, omitting (the action of) finitely many elements does not change the formal relation
between a group and its algebra, but it is important to account for such elements.

Example A.1 For example, the Pauli matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(A.12)

may be used as generators of the group SU(2), the elements of which are of the form
exp

{
i ajσ

j}, and also as a basis for the su(2) algebra, the elements of which are of the

4 Recall that, in this book, n-vectors as a whole are denoted by upright letters, so a and b are n-vectors with components
ai and bi, i = 1, 2, . . . , n.
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form ajσ
j.5 On the other hand, the SU(2) group elements are defined (in its funda-

mental representation) as 2×2 unitary matrices with unit determinant. That certainly
includes both the 2×2 identity matrix 1 = exp{i O} that corresponds to the coordinate
origin in the a-space, a = (0, 0, 0). However, the SU(2) group also includes the element
−1 = exp{iπ1}, which is omitted in the relation between the SU(2) group and the
su(2) algebra, since π1 �= ajσσσσ

j, and π1 �⊂ su(2). Thus, although exp{i ajσ
j} differs from

SU(2) by continuously infinitely many elements of the form −1 exp{i ajσ
j}, all the omit-

ted elements may be recovered by multiplying (from left or from right) exp{i ajσ
j} by

−1, the action of which then is the one (and so finite) difference between SU(2) and
exp{i ajσ

j}.
Together, 1 ⊂ exp{i ajσ

j} and this omitted element, −1, form a multiplicative finite
subgroup of SU(2), denoted Z2 = {1,−1} ⊂ SU(2). The representations of the group
SU(2) that are eigenspaces of the exp{iπ1} element of this subgroup Z2 ⊂ SU(2) and
have the eigenvalue +1 are called tensorial, while the ones with the eigenspace −1 are
spinors. Notice that the choice a = (0, 0, φ) represents the rotation about the third axis;
by writing the standard generator as 1

2 σ3, we find this to represent a rotation by the angle
1
2φ – as befits, e.g., a 2-component spin- 1

2 wave-function, and which is why it changes sign
upon a 2π-rotation.

Whereas every algebra A gives rise to a group G by means of “exponentiating,” i.e., by
defining that g := exp{a} ∈ G for every a ∈ A, not infrequently the algebra A also contains a
multiplicative group A× with the algebra “multiplication” as the binary operation in A×. We thus
have the formal relation of these three structures A× ⊂ A

exp−−→ G.

Example A.2 Note that the {1, i,−1,−i}-multiples of the 2 × 2 identity matrix and the
Pauli matrices also form a multiplicative group of 16 elements:{

1, σ1, σ2, σ3, i1, iσ1, iσ2, iσ3,

− 1, −σ1, −σ2,−σ3, −i1, −iσ1, −iσ2, −iσ3}. (A.13)

Indeed, the Pauli matrices satisfy two relations:[
σ j , σk ] = 2i εjk

� σ�, as well as
{

σ j , σk } = 2 δjk 1, (A.14)

where {A, B} := A B + B A is the anticommutator. Thus, the formula

σ j σk = δjk 1 + iεjk
� σ� (A.15)

has, for each j, k = 1, 2, 3, precisely one element on the right-hand side. Thus, multiplying
Pauli matrices, one produces the identity matrix and i-multiples of the Pauli matrices, and
these must be added to the list of elements of the group. Multiplying in that extended
collection, one obtains the (−1)- and (−i)-multiples of the Pauli matrices as well as

5 The standard choice of using the halves of the Pauli matrices makes the structure constants equal to i-fold multiples
of the Levi-Civita symbol, the same algebra as the rotation generators, Lx := i(y ∂

∂z − z ∂
∂y ), etc. cyclically, so that

[L j, Lk ] = iεjk
�L�. Using the Pauli matrices instead, we have that [σ j, σk ] = 2i εjk

� σ�.
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(−1) and (i1), which also must be added to the list of elements. Multiplication within
that again-extended collection also yields the (−i1), and this completes the procedure
of closing the set: The 16 elements (A.13) form a group with respect to the familiar
matrix-multiplication.

For all semisimple Lie algebras,6 the Killing form

gjl := − f jk
m flm

k (A.16)

is positive-definite, and serves as a metric tensor, and defines

f jkl := f jk
m gml , (A.17)

which may be shown to be a totally antisymmetric tensor.

Digression A.1 It is worth noting that the relation (A.11a) determines only the antisym-
metric product of the generators. The symmetric product, the so-called anticommutator,
remains free to be specified separately:{

T j , Tk
}

= N δjk1 + 1
2 djk

m Tm, if the set
{

1, T1, . . . , Tn
}

is complete. (A.18a)

In any given representation, the vector space (representation) V of dimension r :=
dim(V) is given, upon which the operators T j act as r × r matrices, and the normalization
constant N depends on r. Also, these r × r matrices that play the role of the generators T j
typically satisfy certain additional conditions: they may be symmetric, Hermitian, trace-
less, etc. If the collection of matrix representatives {1, T1, . . . , Tn} is complete for the
specified type of matrices, the relation (A.18a) follows automatically. Otherwise, one ex-
pects that the anticommutators {T j, Tk} include matrices that cannot be represented as
the linear combination 1 and T j. Thus, both the existence of the relation (A.18a) and
then also the constants djk

m strongly depend on the representation of the generators T j.
If the additional relation (A.18a) exists, its combination with the relation (A.11a)

reduces
T j Tk = N δjk1 + (i f jk

m + 1
2 djk

m) Tm (A.18b)
to a linear combination of the identity 1 and algebra generators T j – which provides more
information than the abstract defining requirement of the Lie algebra (A.11a). Thus,
abstract Lie algebras include less structure than what their applications in physics not
infrequently have [☞ Section A.1.4].

A.1.3 Groups in (fundamental) physics
Every model of every physical system uses some collection of variables7 that quantify the system,
and imposes relations between those variables in the form of systems of equations and conditions
for those variables, appropriate for the physical system being described. That system of equa-
tions, together with all conditions on the domain of variables and the operators used to write

6 A Lie algebra A is semisimple if it has no abelian (commutative) direct summand, i.e., no abelian subalgebra that
commutes with the whole algebra A; for the precise statement, see Refs. [581, 256].

7 In this general description, “variables” includes every mathematical symbol that may have a value, thus, variables
include both arguments of some functions, as well as those functions, and various additional parameters.
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out the specified equations forms the mathematical model, M, of the physical system. In lieu of
experimental results against the model, one regards the model as adequately representing the
considered physical system, and one often identifies experimental results in routine conversation.
However, it is very important not to confuse in principle the components in this description of the
physical system [☞ Figure A.1].

( )

Mathematical model
of the physical system

Physical
system

observables

Physical system

Solution space of the
mathematical model

Figure A.1 Relations between the physical system and its observables, as well as the mathematical
model and its space of solutions. The smoothness of the mathematical side of this image indicates the
fundamental idealizations.

Symmetries of physics systems and symmetry breaking
The situation is actually more complicated than shown in Figure A.1. Namely, the observables in
realistic physical systems are usually not specified “once and for all,” and their improved definition
is an iterative process. In turn, in realistic cases, only some of the theoretically definable observ-
ables can be measured in practice, and this subset must be marked. Besides, real physical systems
often contain details that are either included in the mathematical model or neglected from it in
an iterative or layered fashion. The situation in realistic cases then looks more like the diagram in
Figure A.2.

( )
Solution space of the
mathematical model

Mathematical model
of the physical system

Measurable
results of the

model
M

Physical
system

observables

Physical system

E

Ma
of th

MMMM

tem

Figure A.2 Relations between the physical system and its observables, as well as the mathematical
model, its space of solutions, and their comparisons via experiments.

The collection and domain of variables and operators needed for the description of the
physical system usually permits certain changes of those variables and operators, without such
re-definitions affecting any concrete, measurable result for the physical system, and obtained by
means of this model. Alternatively, the model may be viewed as a mathematical system of equations
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and conditions, which defines the space of solutions of the system, i.e., the space of solutions of
the model, X (M) – regardless whether those solutions can be computed.

The procedure of changing those variables in a way that changes no measurable aspect of the
model is called a symmetry transformation of the model of the physical system, and the property
of the system that permits such a change is called a symmetry of the model, i.e., of the system
represented by the model. Similarly, instead of the physical system one may consider any system
of equations where the “aspect of measurability” need not have a specific meaning. A symmetry
is then by definition a transformation that does not change the space of solutions of the specified
mathematical model, i.e., the system of equations that represents a physical system. It is impor-
tant to conceptually distinguish the physical criterion for symmetries (the non-changing of the
collection of all measurable results) from the mathematical one (the non-changing of the space of
solutions to the given system). It is also important to note that both criteria are hard:

1. One cannot a priori know which physically measurable results may possibly exist in a
given model, even when these “observables” are “well defined” in general; for example,
in classical physics these are “all real Ck-functions over the phase space.”8

2. Most mathematical systems are insoluble. Indeed, for a randomly chosen system of (dif-
ferential and algebraic equation) one knows neither how to find or determine the exact
solution (“in closed form”), nor of an algorithm of an iterative method for obtaining such
a solution, and sometimes even all the known approximations do not suffice for a concrete
application. Moreover, it may well be the case that many mathematical systems are not
soluble even in principle.

In spite of that – in practice, and so in models that have so far been considered – it is not infre-
quently possible to definitively determine if a particular transformation is a symmetry of the system
or not. In addition, the models used in practice of course form an “infinitesimally” teeny subset of
all possible models, and they are chosen precisely so that – besides adequately representing the
interesting physical systems – they are “sufficiently soluble” so as to be of practical use.

Comment A.2 In addition, note that the concrete solutions often do not possess all the sym-
metries of the system that they solve. In that case, however, the symmetry of the system
transforms one concrete solution into another.

Symmetry transformations evidently satisfy the group axioms (A.1) when the binary opera-
tion of two transformations implies their successive application, and one thus speaks of symmetry
groups, in this mathematical sense. Also, because of this nature of application of group theory,
groups are always regarded as groups of concrete transformations within a concrete model, and
not as an abstract structure.

That also implies that by the “symmetry of a physical system” one in fact understands the sym-
metry of the model of that system, conditioned also by the approximations that have been applied
in the model by way of neglecting details of the physical system, and mathematical idealizations
in the model. As improvements to the model often add details that lessen the number and domain
of symmetries, improvements to the model reduce the symmetry group to a subgroup G1 of the
original group G0. One says that the additional details break the original group into its subgroup,
G1 ⊂ G0. Although only G1 is then the “real” symmetry group, the extended structure G1 ⊂ G0
provides useful additional information about the model. Not infrequently, the improvements to the

8 The choice of k and the type of functions (C0-functions are continuous, C1-functions are smooth, etc.) depends on the
requirements in a concrete application. In classical physics, one usually restricts to C2-functions, as the equations of
motion are differential equations of second order, and at least the second derivatives need to be well defined. However,
more detailed requirements in the analysis of deformations require higher derivatives, so the required function type
must be adapted.
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model may be organized iteratively, corresponding to a chain G2 ⊂ G1 ⊂ G0 of subgroups, which
may have an alternative G2 ⊂ G′

1 ⊂ G0. The entire web of such chains of subgroups provides a
hierarchy of model improvements, which corresponds to a hierarchy of physical phenomena and
corresponding corrections to measurable results of the model, such as energy.

A simple example
As an illustration of the ideas and concepts depicted in Figure A.2 on p. 457, consider the very
familiar example:

F = m a = m
d2x
dt2 , with the conditions x|t=t0 = x0,

dx
dt

∣∣∣
t=t0

= v0. (A.19)

In the familiar application of these equations, F and m are parameters in the problem; respectively,
the force that acts upon a given body and the mass (measure of inertia) of that body. The function
of time, x = x(t), is the position of the body, and x0, v0 are boundary (initial) conditions.

The physical system of all bodies of mass m under the action of a force F is thus represented by
the model M, which is the abstraction and simplification of the physical system and which consists
of the differential equation (A.19) together with the conditions x0, v0 that specify the concrete
conditions of a concrete body in a concrete situation to which the model may be applied.9

The mathematical solution of this model (assuming that F and m are independent of time) is
the function

x = x(t) = x0 + v0 (t−t0) +
F

2m
(t−t0)2, (A.20)

so the space of mathematical solutions is the abstract space X (M ), of the four-parameter family of
functions x = x(t; F, m, x0, v0). Since the t-dependence is determined by the equation (A.20), this
space of mathematical solutions has four dimensions, with the coordinates F, m, x0, v0. The phase
diagram is the partitioning of this 4-dimensional space into regions where the model behaves
uniformly, and where the passage from one region into another – through some interface region –
represents a phase transition in the system.

Similarly named, but something entirely different, is the phase space, Φ. For this system,
this is the 2-dimensional space parametrized by the values of the pair of functions

(
x(t), p(t)

)
,

where p(t) := m dx
dt . The motion of the body sweeps a path in Φ, parametrized by time. The space

of physical observables is then the infinite-dimensional space of all (continuous, and if desired
perhaps also analytic and/or square-integrable, etc.) real functions M (Φ) over the 2-dimensional
phase space Φ.

Finally, the space of measurable model results, R(M ), is – in principle – a subspace of the
space M (Φ); see Figure A.3. In this simple model, however, every element of the space M (Φ)
in fact may be represented as a model result, the question is only whether it is experimentally
possible to directly measure that result: Namely, it may be that the result must be “factored” into
factors and/or summands, which one measures directly and which are then “put together” into
the indirectly “measured” complex result – but our goal here is not to delve into the details of
experimental methods.10 For the model (A.19), in fact, R(M ) = M (Φ), i.e., every observable
of this physical system may in fact be represented by an (in principle measurable) result of the
model (A.19).
Some symmetries: Assuming that the mass of the body is an absolute constant, the differential
equation (A.19) has (among others, also) two independent symmetries:

P :
{x

F
→
→

−x,
−F; (A.21a)

9 Model (A.19) neglects whatever friction may exist, the resistance of the medium through which the body may be
moving, etc.

10 For example, even a relatively simple observable such as speed is usually not measured directly, but one measures
independently the observables of “traversed distance” and “elapsed time,” and speed is then computed as their ratio.
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( )

( )

( )
F

E

Physical system

Figure A.3 Relations between the physical system (a body of mass m under the influence of the force F)
and its observables, its mathematical model, the space of solutions thereof and the measurable results
of this model, as well as their comparisons via experiments. The reason for the relation R(M ) �M (Φ)
is evident: there exist real functions over the phase space Φ = {x, px} which are therefore observables
in the formal sense, but for which no one knows how such a function in fact might be measured,
whereupon they do not belong to R(M ).

Tτ : t → t + τ, τ ∈ R. (A.21b)

The operation P is the mirror reflection of one of the spatial coordinates, which is in 3-dimensional
space equivalent to the reflection of all three coordinates through the coordinate original. Its phys-
ical meaning is that one is free to pick the direction of measuring the position x either to the right
or to the left, from some initially specified point identified as the coordinate origin. Of course, a
change of this convention requires the sign of the force to also be changed simultaneously and cor-
respondingly. The other symmetry, Tτ, is the time-translation. The solution (A.20) is also invariant
with respect to the first of these two symmetries if the parameters (the integration constants) x0, v0
simultaneously satisfy

P :
{ x0 → −x0,

v0 → −v0,
(A.22)

which is in agreement with the definition x0, v0 as the position and speed in the t = t0 moment:
if the convention of measuring positions is changed from right-ward to left-ward, all quantities
x(t), x0, v0, F evidently change signs. With respect to the simultaneous action of the operation P,
specified by the relations (A.21)–(A.22), both the system (A.19) and its solutions (A.20) – each a
solution by itself! – are invariant with respect to P, i.e., this transformation is a symmetry in the
most direct sense.

On the other hand, the physical interpretation of the time-translation is that the behavior
of the system does not depend on when we begin to measure time, and this is a symmetry in a
slightly indirect sense. Namely, from the fact that the function (A.20) remains a solution of the
system (A.19) although it is not invariant under the action of T,11 it follows that the solutions of a

11 The constant t0 does not change under the action of the operation T – indeed, t0 is chosen so as to be an absolute
constant that specifies the beginning of time measurements for the purposes of the applications of the model to a
concrete physical model.
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system need not possess all the symmetries of the system [☞ Comment A.2 on p. 458]. However,
with t0 as a fixed constant, we have

Tτ : t0 → t′0 := t0 + τ, (A.23)

x(t; t0) = x0 + v0(t−t0) +
F

2m
(t−t0)2

→ x(t; t′0) =
(

x0−v0τ+
F

2m
τ2︸ ︷︷ ︸

x′0

)
+

(
v0− F

m
τ︸ ︷︷ ︸

v′0

)
(t−t0) +

F
2m

(t−t0)2. (A.24)

Indeed, the symmetry transformation of the system (A.19) changes the integration constants and
turns the solution where the time measurement began at t0, into the solution where the time
measurement began at t′0. Thereby, the symmetry Tτ of the system (A.19) is not a symmetry of
a concrete solution (A.20), but transforms one concrete solution into another concrete solution.
Thus, the transformation (A.19) is a symmetry of the entire space of solutions, X (M ).

Symmetries and conservation laws In classical physics, the implications of such symmetries are the
content of the (Amalie Emmy) Noether theorem, whereby in classical physics and briefly:

Theorem A.1 (Amalie Emmy Noether) Every continuous symmetry has a corresponding cur-
rent 4-vector, jμ, which satisfies the continuity equation, ∂μ jμ = 0, and

∫
d3�r j0 is the

corresponding “charge,” conserved in time.

Generally, additive symmetries (such as Tτ) have additive conserved charges, and for Tτ, this is the
total energy of the system:

dx
dt

·(A.19) ⇒ m
dx
dt

d2x
dt2 − dx

dt
F = 0, (A.25)

⇒ dE
dt

= 0, where E :=
m
2

(dx
dt

)2 − xF. (A.26)

The energy E therefore does not change in time, and the Noether theorem connects this property to
the symmetry Tτ : t → t + τ of the differential equation (A.19), owing to the fact that d

d(t+τ) = d
dt .

The additivity of energy means that the energy of a combined system is the sum of energies of the
individual sub-systems.

Similarly, the multiplicative symmetries (such as P ), have multiplicative conserved “charges”;
for P, this is the parity of the system.12 P : f (x) = f (−x) = p f (x), p = ±1. The multiplicativity of
parity means that the parity of a combined system is the product of the parities of the individual
sub-systems.

— ❦ —

In quantum physics, the relation between symmetries and conserved quantities is even more direct:

Conclusion A.1 Let P and Q be two canonically conjugate variables in the sense of the
classical description of a system, and P and Q the respectively corresponding operators so
[P, Q] = ih̄. Then the operator 1

h̄ P generates translations of the eigenvalues of the operator
Q and vice versa:

eiq0P/h̄ Q e−iq0P/h̄ = Q + q0. (A.27)

12 Of course, the eigenvalue of parity may be written eiπp̃, with p̃ = 0 or 1, and this p̃ would then be a conserved mod-2
additive quantity. The “multiplicative” practice followed herein is, however, the generally accepted one.
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If the translation of eigenvalues of Q is a symmetry of the system and H the Hamil-
tonian of the quantum description of this system, then P is a conserved quantity, and vice
versa . More precisely, if Q " Q + q0 then

dP

dt
=

1
ih̄

[
H , P

]
+
∂P

∂t
= 0, (A.28)

and conversely: if [H, P ] = 0 and P does not explicitly depend on time, the eigenvalues of P
are conserved quantities and Q → Q + q0 is a symmetry of the system; the unitary operators
Uq0 := exp{ i

h̄ q0P} realize this symmetry.

For a proof and a detailed discussion, see standard textbooks of quantum mechanics, such as [407,
471, 328, 480, 472, 242, 360, 29, 339, 324].

The best known example of this relation is provided by the canonically conjugate pair (posi-
tion, momentum). In coordinate representation, the operator 1

h̄ px = −i d
dx is indeed the generator

of translation in the x-coordinate:

eiapx/h̄ f (x) = e a d
dx f (x) =

∞

∑
k=0

ak

k!
dk

dxk f (x) =
∞

∑
k=0

ak

k!
f (k)(x) = f (x + a). (A.29)

Since p does not explicitly depend on time, the condition that p is a conserved quantity reduces
to the condition that p commutes with the Hamiltonian. Since evidently [p, 1

2m p2] = 0 this con-
dition becomes [p, V(x)] = 0 = h̄

i [
d
dx , V(x)], i.e., that the potential is a constant. Indeed, for

a constant potential, x → x + x0 is a manifest symmetry. Table A.1 lists several examples of
often used symmetries and the corresponding conserved quantities. Absolutely essential is the
fact that conserved quantities are eigenvalues of operators that generate corresponding transfor-
mations. So, for example, the unitary operator U�a = exp{i�a·�p } produces translation in space
�r → �r +�a, and the operator U�ξ = exp{i�ξ·�r } produces translation in the momentum space:

�p → �p +�ξ.

Table A.1 Some examples of continuous symmetries and corresponding conserved quantities. For
various transformations, “charge” denotes various physical quantities; for translation of the phase of
complex wave-functions, “charge” is indeed the electric charge.

Symmetry Conserved quantity

Time translation t → t + t0 ↔ Energy E
Space translation �r →�r +�r0 ↔ Linear momentum �p
Rotation (about the z-axis) φ→ φ+ φ0 ↔ Angular momentum Lz
Gauge transformation (general) Phase shift ↔ Charge (general) q

Reflection (through coordinate origin) �r → −�r ↔ Parity P

A.1.4 Matrix groups and bilinear invariants
Application of group theory in physics always implies concrete action of the group elements upon
concrete physical objects, i.e., upon the mathematical variables that represent those objects in the
particular model of the physical system. The linear group action is then always in the form of a
linear transformation of a vector space that those mathematical variables span, so these are always
matrix groups.
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The most often used matrix groups for n, p, q ∈ N are defined as follows [581, 260]:

GL(n;k) is the group of invertible n×n matrices with k-elements, where k = Q, R, C, H denotes
the base field of rational, real, complex and quaternion numbers, respectively.

SL(n;k) is the subgroup of GL(n;k), the elements, A, of which have unit determinant, and so
preserve the volume element: dn(A x) = dnx for x ∈ kn.

O(p, q;k) is the subgroup GL(p+q;k) the elements of which are η(p,q)-orthogonal,

LLLLT η(p,q) LLLL = η(p,q), η(p,q) := diag(1, . . . , 1︸ ︷︷ ︸
p times

,−1, . . . ,−1︸ ︷︷ ︸
q times

) (A.30)

and preserve the pseudo-Riemannian scalar product:

(x, y)(p,q) := xμ ημν yν =
p

∑
μ=1

xμ yμ −
p+q

∑
μ=p+1

xμ yμ, x, y ∈ kp,q. (A.31)

SO(p, q;k) is the subgroup of O(p, q;k), the elements of which have unit determinant.
Sp(2n;k), for k = R or C, is the subgroup of SL(2n;k), the elements of which preserve the

symplectic quadratic form

x∧y := 2
2n

∑
μ=1

xμ∧xμ+n = xμ Ωμν xν, [Ωμν] =
[

O 1

−1 O

]
, (A.32)

and where the 2n×2n matrix [Ωμν] is called the “symplectic identity.”
U(p, q) is the subgroup of GL(p+q; C), the elements of which are unitary and preserve the

Hermitian scalar product

〈x|y〉(p,q) :=
p

∑
μ=1

(xμ)∗ yμ −
p+q

∑
μ=p+1

(xμ)∗ yμ, x, y ∈ Cp,q. (A.33)

Sp(p, q) = U(p, q; H) is the subgroup of GL(2p+2q; H), the elements of which are quaternion-
unitary and preserve the quaternion–Hermitian scalar product

〈z|w〉(p,q) := zμ ημν wν =
p

∑
i=μ

zμ wμ −
p+q

∑
μ=p+1

zμ wμ, z, w ∈ Hp,q, (A.34)

where xμ denotes the quaternion-conjugate of xμ. This group in fact is not symplectic, in
the sense that it does not preserve any symplectic quadratic form. Because of this, for the
previous group, Sp(2n;k), the base field is always denoted, and for Sp(p, q) never, and by
convention Sp(n) ≡ Sp(n, 0).

SU(p, q) is the subgroup of U(p, q), the elements of which have unit determinant.

Quaternion (also known as hyper-complex) numbers and algebra were invented by William
Rowan Hamilton, in 1843. Quaternion numbers may be defined as the formal sum q = x0 + ix1 +
jx2 + kx3, where i,j,k are the formal quaternion units that satisfy i2 = j2 = k2 = ik = −1. The
quaternion-conjugate number is then equal to z = z0 − iz1 − jz2 − kz3. Quaternions do not com-
mute, and ij = k but ji = −k, etc. Quaternion “units” may be represented by the complex matrices

1 → [
1 0
0 1

]
, i → [ i 0

0 −i

]
, j → [ 0 1

−1 0
]

, k → [
0 i
i 0

]
, (A.35)

so the definitions that use quaternions may be rewritten as complex-matrix definitions.
Owing to frequent use, the base field R is not written for orthogonal groups so that “SO(1, 3)”

means SO(1, 3; R), the base field C is not written for unitary groups so that “SU(3)” means
SU(3; C).
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A.1.5 Exercises for Section A.1

✎ A.1.1 Prove relation (A.10) by explicit expansion of exponential functions.

✎ A.1.2 Prove that the collection {1, (iσσσσ1), (iσσσσ2), (iσσσσ3),−1, (−iσσσσ1), (−iσσσσ2), (−iσσσσ3)} forms a
group, which is a subgroup of the group (A.13).

✎ A.1.3 Show that scaling operations {Rρ : x → ρx, ρ ∈ (−∞, +∞)} form a group if the
binary operation is consecutive application. For Rρ to be a symmetry of the system (A.19),
one must require that simultaneously Rρ : F → ρF. Determine the action that is con-
sistent with (a) the group structure, and (b) physical meaning of all symbols in the
expressions (A.19)–(A.20).

✎ A.1.4 Show that {1, P} forms a subgroup of {Rρ : x → ρx, ρ ∈ (−∞, +∞)}.

✎ A.1.5 Show that {1, T : t → −t} forms a group.

✎ A.1.6 Show that {1, T, P, (PT)} forms a group. Show that [T, P ] = 0.

A.2 The U(1) group

The multiplicative group of unitary complex numbers, U(1) = {eiϕ, ·} where ϕ ∈ R1 and ϕ "
ϕ + 2π, is one of the best known in theoretical physics. Representations of the group U(1) are
complex functions upon which the group acts by phase transformation: f → eiq f ϕ f , f ∈ C. In the
general case, the real number q f is called the “charge” of the particle represented by the function
f , and the representation is unambiguously specified by the charge. In the case of the application
in electromagnetism, the charge is the electric charge. The U(1) charges are simply additive:

U(1) : f → eiq f ϕ f , g → eiqgϕg, ⇒ ( f g) → ei(q f +qg)ϕ( f g). (A.36)

It is possible – although it is rarely so denoted – to define the U(1) group elements as

U(1) =
{

eiϕQ , ϕ " ϕ+ 2π
}

, (A.37)

where the operator Q is the generator of the group, and q f the eigenvalue of the eigenfunction:
Q f = q f f . Thus, eiϕQ f = eiϕ q f f = eiq f ϕ f . In complex analysis, q f is called the winding number of
the complex function f , and in the physical application of complex analysis the product (q f ϕ) is
called the phase of the function f . This relationship between complex analysis and its application
in gauge models is of special importance in string models from the worldsheet perspective [☞ Sec-
tion 11.2.3], where one easily switches to the complex coordinate system (τ, σ) → z = σ+ iτ, and
so also to complex analysis.

A.2.1 Exercises for Section A.2

✎ A.2.1 Given two mutually commuting U(1) groups, generated respectively by the mutually
commuting Hermitian operators A and B, show that the two-parameter family of elements
ga,b := exp{i(aA + bB)} form the abelian group U(1)A × U(1)B for a, b ∈ R with respect to
the usual multiplication.
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✎ A.2.2 Show that any two linearly independent linear combinations of A and B from the
previous exercise can serve as generators for the group U(1)A × U(1)B. The particular
choice C+ := A+B generates the diagonal subgroup U(1)+ ⊂ U(1)A × U(1)B, while the
combination C− := A−B generates the complementary U(1)− ⊂ U(1)A × U(1)B.

✎ A.2.3 Show that U(1)+ and U(1)− as defined in the previous problem commute with each
other and that, as groups, U(1)+ × U(1)− = U(1)A × U(1)B.

A.3 The SU(2) group
This group is familiar from the quantum-mechanical formalism of spin and orbital angular
momentum. The group is generated by any three operators that satisfy the relations[

J j , J k
]

= i ε jkl δ
lm J m := i ε jk

m J m. (A.38a)

The SU(2) group elements are then operators of the form U�a := exp{iajJ j}. Conversely, the
generators may be formally defined by the relation

J k :=
1
i

[∂g(�a )
∂ ak

]
�a=�0

. (A.38b)

It follows that the quadratic J 2 operator commutes with all three J j:[
J 2 , J j

]
= 0, j = 1, 2, 3, where J 2 := J 2

1 + J 2
2 + J 2

3 , (A.38c)

so the operators13 J 2 and J 3 have a simultaneous (common) basis of eigenfunctions |j, m〉:
J 2|j, m〉 = j(j+1)|j, m〉, J 3|j, m〉 = m|j, m〉, (A.38d)

where
�m ∈ Z, j := max(m) ⇒ −j � m � +j. (A.38e)

It follows that j and m are both either integral (tensorial) or half-integral (spinorial), and that

J± := (J 1 ± iJ 2), J±|j, m〉 =
√

j(j+1) − m(m±1) |j, m±1〉. (A.38f)

Note that
J+|j, j〉 ≡ 0, as well as J−|j,−j〉 ≡ 0 (A.39)

by virtue of relations (A.38f), as derived in Digression A.2.

Digression A.2 (Proof of equation (A.38), following Ref. [18]) As no two operators from
the collection {J1, J 2, J 3} commute, there is no subsystem of mutually commuting oper-
ators that would have a simultaneous eigenbasis. One thus chooses one, usually J 3, to
find its eigenstates. Then, one proves by direct computation that

[J i, J 2] = 0, J 2 := J 2
1 + J 2

2 + J 2
3 , i = 1, 2, 3. (A.40a)

13 The choice of J 3 is arbitrary, and is called the quantization axis choice for angular momentum in quantum mechanics.
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Since J 3 and J 2 commute, they have a simultaneous (common) eigenbasis:

J 2|λ, m〉 = λ|λ, m〉, J 3|λ, m〉 = m|λ, m〉, (A.40b)

which may always be ortho-normalized via the Gram–Schmidt procedure:

〈λ′, m′|λ, m〉 = δλ′,λ δm′,m. (A.40c)

Using the remaining two operators, J 1, J 2, we define

J± := J 1 ± iJ 2, (J±)† = J∓, (A.40d)

so that
J±J∓ = J 2

1 + J 2
2 ± J 3, J 2 = J+J− + J−J+ + J 2

3 , (A.40e)

[J 3, J±] = ±J± and [J±, J∓] = ±2J 3. (A.40f)

Next, check how J± act upon |λ, m〉:
J 3

(
J±|λ, m〉) =

(
J±J 3 ± J±

)|λ, m〉 = (m ± 1)
(
J±|λ, m〉), (A.40g)

so it must be that
J±|λ, m〉 = N±(m) |λ, m±1〉. (A.40h)

Thus, the operators J± raise/lower the second eigenvalue, m, but do not change the
first, λ.

Since J 3 and J 2 are Hermitian operators, λ, m must be real numbers. Also,

λ = 〈J 2〉 = 〈J+J−〉 + 〈J−J+〉 + 〈J 2
3 〉

=
∥∥J−|λ, m〉∥∥2 +

∥∥J+|λ, m〉∥∥2 + m2 � m2. (A.40i)

Thus m2, and so also m, has a maximum; let j := max(m). Then J+|λ, +j〉 would have to
be proportional to |λ, j+1〉. However, since (j+1) > j = max(m), |λ, j+1〉 cannot exist.
It follows that

J+|λ, j〉 = 0. (A.40j)
Applying 〈λ, m|J− to this result, we have that

0 = 〈λ, j|J−J+|λ, j〉 = 〈λ, j|(J 2
1 + J 2

2 − J 3)|λ, j〉 = 〈λ, j|(J 2 − J 2
3 − J 3)|λ, j〉

= λ− j(j+1), ⇒ λ = j(j+1). (A.40k)

Following the analogous reasoning for J+ ↔ J−, we obtain that

min(m) = −j, J−|λ,−j〉 = 0. (A.40l)

Renaming the basis |λ, m〉 �→ |j, m〉, we have that

J 2|j, m〉 = j(j+1)|j, m〉, J 3|j, m〉 = m|j, m〉. (A.40m)

In addition, the operators J i, J 2, J± can change m only in unit increments. It follows that

�m ∈ Z, |m| � j := max(m), ⇒
{ j ∈ Z�0, tensors;

j ∈ Z�0 + 1
2 , spinors.

(A.40n)
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Similarly, we have that

|N±(m)|2 = 〈j, m|J±J∓|j, m〉 = j(j+1) − m(m±1), (A.40o)

so
N±(m) =

√
j(j+1) − m(m±1). (A.40p)

A.3.1 Representations of SU(2)
The relations (A.38d)–(A.38f) imply that

U�ϕ|j, m〉 = eiϕkJ k |j, m〉 = exp
{

i
(
ϕ+J+ + ϕ−J− + ϕ3J 3

)}|j, m〉
= ∑

|m′ |�j

cm,m′ |j, m′〉. (A.41)

That is, the action of the unitary operator U�ϕ does not change j in |j, m〉 upon which it acts, but –
for a general choice of �ϕ – transforms any one |j, m〉 into a linear combination of all |j, m′〉 with all
the permitted values of m′. The abstract vector space

Vj :=

⎧⎨⎩ ∑
|m|�j

cm|j, m〉, (c−j, . . . , cj) ∈ k2j+1 and equation (A.41)

⎫⎬⎭ ∼= k2j+1, (A.42a)

U�ϕ : Vj → Vj, Vj is a
{ tensorial

spinorial
}

representation if j
{ integral

half-integral
}

(A.42b)

is a (2j+1)-dimensional (unitary) representation of the SU(2) group, i.e., the SU(2) group maps
the vector space Vj into itself, and SU(2) is a group of symmetries of the vector space Vj, for every
2j ∈ Z�0. Correspondingly, the same partitioning of representations into these two subclasses is
also obtained by partitioning into the eigen-representations of the element exp{iπ1} ∈ Z2 ⊂
SU(2) [☞ Example A.1 on p. 454].

Table A.2 on p. 469 lists the first several such representations. It is important to keep in mind
that the spaces Vj are not simply copies of k2j+1 (where k = Q, R, C or H, as required), but imply
the SU(2) action (A.41). It follows that no SU(2) representation Vj contains a strictly smaller
representation Vj′ , with j′ < j. One says that every representation Vj is irreducible.

Digression A.3 The results (A.40m)–(A.40n) give a complete list of irreducible represen-
tations of the SU(2) group and its algebra (A.38a):

1. tensorial representations, of which the most familiar are:
(a) scalars, i.e., invariants, represented by |0, 0〉;
(b) 3-vectors, represented by the basis {|1,−1〉, |1, 0〉, |1, +1〉};
(c) (spin-2) quadrupoles, represented by {|2,−2〉, |2,−1〉, |2, 0〉, |2, +1〉, |2, +2〉};

etc.
2. spinorial representations, of which the most familiar are:

(a) spin- 1
2 systems, represented by the basis {| 1

2 ,− 1
2 〉, | 1

2 , + 1
2 〉};

(b) spin- 3
2 systems, represented by the basis {| 3

2 ,− 3
2 〉, | 3

2 ,− 1
2 〉, | 3

2 , + 1
2 〉, | 3

2 , + 3
2 〉};

etc.
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Note that the bases of formal vectors {|j, m〉, |m| � j} are just a formal notation for bases
of spherical harmonics {Ym

j (θ, φ), |m| � j}, which are the coordinate representation of
the formal |j, m〉. For example,

|1, +1〉 ↔ Y+1
1 (θ, φ) = −

√
3

8π
sin θ e+iφ, (A.43a)

|1, 0〉 ↔ Y0
1 (θ, φ) = +

√
3

4π
cos θ, (A.43b)

|1,−1〉 ↔ Y−1
1 (θ, φ) = −

√
3

8π
sin θ e−iφ, (A.43c)

from which it follows that Cartesian coordinates may be expressed as

x = r sin θ cos φ = −r

√
2π
3

(
Y1

1 (θ, φ) + Y−1
1 (θ, φ)

)
↔ |1, +1〉 + |1,−1〉, (A.43d)

y = r sin θ sin φ = i r

√
2π
3

(
Y1

1 (θ, φ) − Y−1
1 (θ, φ)

)
↔ |1, +1〉 − |1,−1〉, (A.43e)

z = r sin φ = r

√
4π
3

Y0
1 (θ, φ) ↔ |1, 0〉. (A.43f)

Similar relations exist for all bases {|j, m〉, |m| � j} for j ∈ Z. The other half of
representations, the spinors {|j, m〉, |m| � j} for (j+ 1

2 ) ∈ Z also have an analogous
representation in terms of spherical and Cartesian coordinates, but are less well known,
and are double-valued and so are not determined unambiguously.

Table A.2 lists several well-known irreducible representations of the SU(2) group, denoted
in several alternative and oft-used forms, and Table A.3 on p. 470 lists the first few spherical
harmonics Ym

j (θ, φ), which are the functional representation14 (in spherical coordinates) of the
abstract elements |j, m〉. Of course, the abstract operators J±, J 3 and J 2 also have a corresponding
functional representation:

J± = ±e±iφ
[ ∂
∂θ

± i cot(θ)
∂

∂φ

]
, (A.44a)

J 3 = −i
∂

∂φ
, (A.44b)

J 2 = −
[ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1
sin2(θ)

∂2

∂φ2

]
. (A.44c)

Evidently and except for J 3, computations with the abstract operators and eigenstates of the SU(2)
group are simpler than with the functional representation of these.

— ❦ —

Other than the formal (|j, m〉) and the functional (Ym
j (θ, φ)) notation, the matrix notation is also

widely used. It is well known that halves of the Pauli matrices (A.147)

J
(1/2)
1 = 1

2

[
0 1
1 0

]
, J

(1/2)
2 = 1

2

[ 0 −i
i 0

]
, J

(1/2)
3 = 1

2

[ 1 0
0 −1

]
, (A.45a)

14 Unfortunately, the word “representation” is used in two slightly different senses: here, it is in the sense of “realization,”
in distinction from the technical sense of an “SU(2) group representation,” according to the definition (A.42).
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Table A.2 Several smallest representations of the SU(2) group; formal ket-notation precisely corre-
sponds to spherical harmonics |j, m〉 ↔ Ym

j (θ, φ) when j ∈ Z.

Dim. Formal ket-notation Indexa Matrix

V0 1
{|0, 0〉} t [x]

V1
2

2
{
| 1

2 ,− 1
2 〉, | 1

2 , + 1
2 〉
}

ta
[

x1

x2

]

V1 3
{|1,−1〉, |1, 0〉, |1, +1〉} t(ab)

⎡⎣x = t(11)

y = t(12)

z = t(22)

⎤⎦

V3
2

4
{
| 3

2 ,− 3
2 〉, | 3

2 ,− 1
2 〉, | 3

2 , + 1
2 〉, | 3

2 , + 3
2 〉
}

t(abc)

⎡⎢⎣x1 = t(111)

...
x4 = t(222)

⎤⎥⎦

V2 5
{|2,−2〉, |2,−1〉, |2, 0〉, |2, +1〉, |2, +2〉} t(abcd)

⎡⎢⎣x1 = t(1111)

...
x5 = t(2222)

⎤⎥⎦
...

...
...

...

Vj 2j+1
{|j,−j〉, |j, 1−j〉 · · · , |j, j−1〉, |j, +j〉} t(a1···a2j)

⎡⎢⎣ x1 = t(1···1)

...
x2j+1 = t(2···2)

⎤⎥⎦
a The indices are a, b, c . . . ∈ {1, 2}; round parentheses denote symmetrization: t(ab) = +t(ba).

satisfy the relations (A.38a), which identifies the eigenvectors of the J
(1/2)
3 -matrix with the

eigenvectors of the abstract operator J 3:[
1
0

] ↔ | 1
2 , + 1

2 〉 and
[

0
1

] ↔ | 1
2 ,− 1

2 〉. (A.45b)

In a fully identical fashion, the matrices

J
(1)
1 = 1√

2

[ 0 1 0
1 0 1
0 1 0

]
, J

(1)
2 = 1√

2

[
0 −i 0
i 0 −i
0 i 0

]
, J

(1)
3 =

[ 1 0 0
0 0 0
0 0 −1

]
, (A.46a)

also satisfy the relations (A.38a), which identifies the eigenvectors of the J
(1)
3 -matrix with the

eigenvectors of the abstract operator J 3:[ 1
0
0

]
↔ |1, +1〉,

[ 0
1
0

]
↔ |1, 0〉 and

[ 0
0
1

]
↔ |1,−1〉, (A.46b)

and,

J
(3/2)
1 = 1

2

⎡⎣ 0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤⎦ , J
(3/2)
2 = 1

2

⎡⎣ 0 −√
3i 0 0√

3i 0 −2i 0
0 2i 0 −√

3i
0 0

√
3i 0

⎤⎦ , J
(3/2)
3 = 1

2

[
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

]
, (A.46c)
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Table A.3 The first few spherical harmonics

Y0
0 = 1√

4π
= 1√

4π

Y1
1 =−

√
3

8π sin θ eiφ =−
√

3
8π

x+iy
r

Y0
1 = +

√
3

4π cos θ =
√

3
4π

z
r

Y2
2 =

√
15

32π sin2 θ e2iφ =
√

3
8π

(x+iy)2

r

Y1
2 =

√
15
8π sin θ cos θ eiφ =

√
3

4π
(x+iy)z

r

Y0
2 =

√
15

16π (3 cos2 θ−1) =
√

5
16π

3z2−r2

r2

Y3
3 =−

√
35

64π sin3 θ e3iφ =−
√

35
64π

(x+iy)3

r3

Y2
3 =

√
105
32π sin2 θ cos θ e2iφ =

√
105
32π

(x+iy)2z
r3

Y1
3 =

√
21

64π sin θ(1−5 cos2 θ)eiφ =−
√

21
64π

(x+iy)(5z2−r2)
r3

Y0
3 =

√
7

16π (5 cos2 θ − 3) cos θ =
√

7
16π

z(5z2−3r2)
r3

similarly provide a 4-dimensional realization for spin- 3
2 systems. An analogous matrix realization

of the operators �J and eigenvectors |j, m〉 is of course possible for all j.
Finally, in the tensor notation, we have

t1 ↔ | 1
2 , + 1

2 〉 and t2 ↔ | 1
2 ,− 1

2 〉, (A.47a)

which, with the definition (u, v) := (t1, t2), implies the definitions

J
(1/2)
1 := 1

2

(
v
∂

∂u
+ u

∂

∂v

)
, J

(1/2)
2 := i

2

(
v
∂

∂u
− u

∂

∂v

)
, J

(1/2)
3 := 1

2

(
u
∂

∂u
− v

∂

∂v

)
. (A.47b)

For j = 1, one typically identifies the formal tensor variables t(11), t(12), t(22) with the Cartesian
x, y, z, respectively, and we have the well-known

J
(1)
1 := i

(
x
∂

∂y
− y

∂

∂x

)
, J

(1)
2 := i

(
y
∂

∂z
− z

∂

∂y

)
, J

(1)
3 := i

(
z
∂

∂x
− x

∂

∂z

)
. (A.47c)

As each of these notations and representations is convenient in some but not all computa-
tions, it behooves the Reader to practice “translating” from any one of these representations into
any other one.

It is useful to note that the Levi-Civita symbol,

εab : ε12 = 1 = −ε21, ε11 = 0 = ε22 , (A.48)

is invariant with respect to SU(2) transformations, since, using relations (B.38) and after the
computation (B.37), it follows that the change of basis ta → τa produces

d2t := 1
2 εab dtadtb = det

[
∂(t1,t2)
∂(τ1,τ2)

]
1
2 εab dτadτb = d2τ, (A.49)

since the determinant of SU(2) transformations equals det
[ ∂(t1,t2)
∂(τ1,τ2)

]
= 1 by definition. The anal-

ogous situation holds by definition for all SU(n) groups, but for SU(2), exceptionally, εab is a
rank-2 tensor, and so may also serve as an (antisymmetric!) metric tensor, which is appropriate for
anticommuting variables that are used in supersymmetry [☞ Chapter 10].

A.3.2 The SU (2) and SO (3) groups
Rotations in real, 3-dimensional space may be represented as real, orthogonal 3×3 matrices with
unit determinant. Their successive application may be identified with matrix multiplication, which
does not commute, and this multiplicative group is denoted SO(3). Its algebra, so(3), is identical
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to the su(2) algebra. However, although so(3) = su(2), the groups SO(3) and SU(2) differ: the
SU(2) action upon all representations Vj = {|j, m〉, |m| � j} is single-valued.

In distinction, the group SO(3) action is single-valued upon integral (tensorial) represen-
tations Vj = {|j, m〉, |m| � j ∈ Z}, but not upon half-integral (spinorial) representations,
Vj = {|j, m〉, |m| � j, (j+ 1

2 ) ∈ Z}. Since a ϕ-rotation about the x3-axis acts by exp{i ϕ J 3}
and eigenvalues of J 3 on elements of spinorial representations Vj are half-integral, spinors are
“double-valued functions” under SO(3) rotations. By an appropriate change of basis, it is easy to
show that the eigenvalues of any one component �J, in any direction, are equal to their J 3 eigen-
values. Thus, the conclusion about double-valuedness of the elements of spinorial representations
Vj holds for rotations about any axis. Thus, spinors change their sign upon any 360◦-rotation; only
720◦-rotations act upon them as the identity.

Since the algebras are identical, so(3) = su(2), the elements of both algebras – and so also
both the SU(2) and the SO(3) generators – are rightfully called angular momenta. Understanding
this 2–1 relationship between these groups, SU(2) is the two-fold covering of the SO(3) group, and
the elements of the SU(2) group are also frequently called rotations. Pedantically, the SU(2) group
is the double covering of the SO(3) group of rotations.

A.3.3 Addition of angular momenta
In the concrete application of the SU(2) group in elementary particle physics, it is important to
keep in mind that angular momentum is not a directly measurable quantity.

This is partly true also in classical physics of macroscopic bodies: for an ice-skater in a pirou-
ette or a spinning top, the angular momentum cannot be measured directly. Instead, usually, one
identifies a “marking” on the spinning object (the ice-skater’s face or a pattern on the top), and the
angular velocity is determined by following the motion of this marking. Independently, one deter-
mines the moment of inertia for the same object in some way,15 and then computes the angular
momentum from the so-obtained values of the moment of inertia and the angular velocity. That is,
there’s no such thing as an “angularmomentumometer.”

With elementary particles, the situation is even more indirect: by definition, elementary par-
ticles cannot have a “marking” the motion of which one could follow even in principle, so as to
measure the angular velocity, compute the moment of inertia, etc. Instead, the angular momentum
is even defined indirectly. For example, the intrinsic angular moment of an electron – the so-called
spin – is in fact a fictive rotation [☞ Digression 4.1 on p. 132] which one computes, by way of
relation (4.24a), from the measured magnetic dipole momentum.

In the situation when we have several magnetic fields, it is perfectly logical to compute their
vectorial sum. Conversely, since the dipole momenta of these magnetic fields define spins and
orbital angular momenta,16 to the sum of magnetic fields then corresponds a sum of angular
momenta, both intrinsic (“spins”) and relative (“orbital”).

— ❦ —

The technique of adding angular momenta in quantum theory differs from “ordinary vectorial
addition” which is expected in classical physics, and this is discussed in great detail in standard
textbooks of quantum mechanics. We recall here the basic relations.

15 In principle, this is possible by approximating the geometry of the object and its mass distribution, whereupon one
computes the moment of inertia by integrating, or by physically applying a force, and the moment of inertia is computed
as the ratio of the applied torque and the produced change in its angular velocity.

16 Although Bohr’s model of the atom depicts the electron as a point-particle that rotates about a point-like proton, so that
the rotation of the electron’s charge forms a current that produces an “orbiting magnetic field,” experiments actually
only measure this magnetic field, from which then – in turn – one concludes about the rotating of the mental image of
the point-like electron in Bohr’s atom.
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Let {L1, L2, L3} and {S1, S2, S3} be two triples of operators, of which each independently
satisfies the relations (A.38a) – regardless of their physical meaning – and let

[L j, Sk] = 0 for every pair of indices j, k = 1, 2, 3. (A.50)

These two triples then generate two separate copies of the SU(2) group, where elements of one
commute with the elements of the other, and we have SU(2)L × SU(2)S. One then defines

J j := L j + S j ⇒ [J j, J k] = iε jk
mJ m, (A.51)

and the triple J i generates the diagonal subgroup SU(2)J ⊂ SU(2)L × SU(2)S. For each triple, one
defines operators such as J 2 and J±, yielding results akin to (A.38), repeating the computations in
Digression A.2 on p. 465:

L2|�, m�〉 = �(�+1)|�, m�〉, L3|�, m�〉 = m�|�, m�〉; (A.52a)

S2|s, ms〉 = s(s+1)|s, ms〉, S3|s, ms〉 = ms|s, ms〉; (A.52b)

J 2|j, mj〉 = j(j+1)|j, mj〉, J 3|j, mj〉 = mj|j, mj〉. (A.52c)

The relation (A.50) implies that L2, L3, S2, S3 all mutually commute, so that the tensor
product of the eigenbases (A.52a) and (A.52b),

|�, s; m�, ms〉 := |�, m�〉 ⊗ |s, ms〉, (A.53a)

is a simultaneous eigenbasis of all four operators:

L2|�, s; m�, ms〉 = �(�+1)|�, s; m�, ms〉, S2|�, s; m�, ms〉 = s(s+1)|�, s; m�, ms〉, (A.53b)

L3|�, s; m�, ms〉 = m�|�, s; m�, ms〉, S3|�, s; m�, ms〉 = ms|�, s; m�, ms〉. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|�, s; m�, ms〉 = (m�+ms)|�, s; m�, ms〉. (A.53d)

In turn,
[J 2, L3] = 2i εjk

3L jSk = 2i(L1S2 − L2S1) = −[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus, the 4-plet
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting operators.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3 do not
commute with J 2, this second operator quartet is also a maximal collection of linearly independent
mutually commuting operators. Thus, they too have a simultaneous eigenbasis:

J 2|j, �, s; mj〉 = j(j+1)|j, �, s; mj〉, L2|j, �, s; mj〉 = �(�+1)|j, �, s; mj〉, (A.55a)

J 3|j, �, s; mj〉 = mj|j, �, s; mj〉, S2|j, �, s; mj〉 = s(s+1)|j, �, s; mj〉. (A.55b)

In textbooks of quantum mechanics, L are identified with the orbital angular momentum, S
with the spin and J with the “total” angular momentum, (e.g., of an electron in a hydrogen atom).
Ignoring the fact that J does not include the nuclear spin, and so in reality is not the total angular
momentum, there exist many situations where there are more than two triples of operators each
of which satisfies the relations such as do L and S, and where at least some of such operators have
no relation with rotations, even if fictitious. For example, there is no obstruction to add – akin to
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equations (A.51) – the angular momentum of a nucleon in one nucleus, say, with the isospin of
that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,” and J
and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|�, s; m�, ms〉 =
�+s

∑
j=|�−s|

C
j,mj
�,s;m�,ms

|j, �, s; mj〉, (A.56a)

|j, �, s; mj〉 =
�

∑
m�=−�

|ms |=|mj−m� |�s

(
C

j,mj
�,s;m�,ms

)∗|�, s; m�, ms〉, (A.56b)

where

C
j,mj
�,s;m�,ms

:= 〈j, �, s; mj|�, s; m�, ms〉 ≡ 〈j, mj|�, s; m�, ms〉 (A.56c)

are the Clebsch–Gordan coefficients, which by standard convention all have real values. In
addition, we have:

Theorem A.2 For the sum of two triples of operators, Li + Si = J i, each of which satisfies
relations (A.38) and (A.50), the relations (A.52) follow, as well as:

|� − s| � j � (� + s), |j − �| � s � (j + �), |j − s| � � � (j + s), (A.57)

mj = m� + ms, |mj| � j, |m�| � �, |ms| � s, (A.58)

where j, � and s assume precisely once all the integrally separated values within the
indicated limits.

Thus, using the notation from the left-most two columns of Table A.2 on p. 469, we have that

V� ⊗ Vs = ⊕(�+s)
j=|�−s|Vj ⇔ (2�+1)⊗ (2s+1) = ⊕(�+s)

j=|�−s|(2j+1). (A.59)

For example:

V� ⊗ Vs = Vj ⇔ (2�+1)⊗ (2s+1) = (2j+1)

V1/2 ⊗V1/2 = V1 ⊕ V0 ⇔ 2 ⊗ 2 = 3 ⊕ 1
V1 ⊗V1/2 = V3/2 ⊕ V1/2 ⇔ 3 ⊗ 2 = 4 ⊕ 2
V1 ⊗ V1 = V2 ⊕ V1 ⊕ V0 ⇔ 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1
V2 ⊗ V1 = V3 ⊕ V2 ⊕ V2 ⇔ 5 ⊗ 3 = 7 ⊕ 5 ⊕ 3

(A.60)

and so on. The first row here corresponds to the detailed relations

V1/2 =
{

c+| 1
2 , + 1

2 〉 + c−| 1
2 ,− 1

2 〉
}

, (A.61){
c+| 1

2 , + 1
2 〉 + c−| 1

2 ,− 1
2 〉
}⊗ {

c′+| 1
2 , + 1

2 〉′ + c′−| 1
2 ,− 1

2 〉′
}

=
{

c1|1, +1〉 + c0|1, 0〉 + c−1|1,−1〉}⊕ {
c′0|0, 0〉} (A.62)

where {c+, c−}, {c′+c′−} and {c1, c0, c−1; c′0} are coefficients in the linear combinations appropriate
for the vector spaces V1/2, V′

1/2, V1 and V0, and where

|1, +1〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉′, (A.63a)

V1 :

⎧⎪⎪⎨⎪⎪⎩ |1, 0〉 = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉′ + | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉′

)
, (A.63b)

|1,−1〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉′, (A.63c)
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V0 : |0, 0〉 = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉′ − | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉′

)
. (A.63d)

For bigger groups this detailed representation is also possible, but the notation becomes more
complicated, so statements expressed in the “dimensional” notation, in the right-hand side of
tabulation (A.60), are more often found in the physics literature.

Corollary A.1 Every representation Vj may be assigned a parity, π(Vj) := 2j (mod 2), so
π(Vj) = 0 for tensors, and π(Vj) = 1 for spinors [☞ definition (A.42)]. Then it follows that
parity is mod-2 additive: π(V�⊗Vs) ≡ 2(�+s) mod 2.

Finally, the tensor/index-notation is also used, especially for larger groups, and in that
notation the relations (A.63) become

2 ⊗ 2 = 3 ⊕ 1 ↔ tα ⊗ uβ = v(αβ)︸︷︷︸
3 comps.

⊕
(

v[αβ] = v εαβ
)

︸ ︷︷ ︸
1 component

, (A.64)

where

V0 =
{

c0|0, 0〉} =
{

b0 t
}

, (A.65a)

V1/2 =
{

c+| 1
2 , + 1

2 〉 + c−| 1
2 ,− 1

2 〉
}

=
{

b1 t1 + b2 t2}, (A.65b)

V1 =
{

c1|1, +1〉 + c0|1, 0〉 + c−1|1,−1〉} =
{

b11 t(11) + b12 t(12) + b22 t(22)}, (A.65c)

and so on. The formal variables t for V0, {t1, t2} for V1/2, {t(11), t(12), t(22)} for V1, etc., play the
role of basis vectors in the tensor notation. Also, the Levi-Civita symbol εαβ is an SU(2)-invariant
antisymmetric 2-form, so the antisymmetric rank-2 tensor may be identified with the invariant:
v[αβ] �→ v = ( 1

2 εαβv[αβ]). Similarly, we have the projections

V1 ⊗ V1/2 ⊃ V1/2 ⇔ t(αβ)uγ �→ vα := (εβγt(αβ)uγ), (A.66a)

V3/2 ⊗ V1/2 ⊃ V1 ⇔ t(αβγ)uδ �→ v(αβ) := (εγδt(αβγ)uδ), (A.66b)

V1 ⊗ V1 ⊃ V1 ⇔ t(αβ)u(γδ) �→ v(αγ) := (εβδt(αβ)u(γδ)), (A.66c)

V1 ⊗ V1 ⊃ V0 ⇔ t(αβ)u(γδ) �→ v := (εαγεβδt(αβ)u(γδ)), (A.66d)

and so on.

A.3.4 SU(2)-covariant operators and the Wigner–Eckart theorem
Relations (A.38d) and (A.38f) have a very simple generalization from eigen-vectors to cova-
riant/eigen-operators: If a (2r+1)-tuple of operators {T

(r)
ρ , |ρ| � r} satisfies the relations

[
J 2 , T

(r)
ρ

]
= r(r+1)T

(r)
ρ ,

[
J 3 , T

(r)
ρ

]
= ρT

(r)
ρ , (A.67a)

then also [
J± , T

(r)
ρ

]
=

√
r(r+1) − ρ(ρ+1)T

(r)
ρ±1, (A.67b)

and the formal vector space {∑r
ρ=−r cρT

(r)
ρ , cρ ∈ R} ∼= R2r+1 is also an SU(2) group representation.

Then we have [362, 363, 471, 328, 480, 134, 391, 407, 472, 360, 29, 339, 242, 3, 110, 324, for
example]:
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Theorem A.3 (Wigner–Eckart) For the (2r+1)-tuple of operators {T
(r)
ρ , |ρ| � r} that sat-

isfy relations (A.67), for vectors |j, mj; α〉 that satisfy relations (A.38d) and if α represents
additional eigenvalues of operators independent of J , we have

〈j′m′
j; α

′|T(r)
ρ |j, mj; α〉 = 〈j′, m′

j|r, j; ρ, mj〉 〈j′; α′‖T(r)‖j; α〉, (A.68)

where 〈j′; α′‖T(r)‖j; α〉 is the so-called reduced matrix element (amplitude) that does not
depend on mj, ρ, m′

j, and 〈j′, m′
j|r, j; ρ, mj〉 is a Clebsch–Gordan coefficient.

This theorem is most often used when ratios of matrix elements are needed where the reduced
matrix elements are equal and cancel in the ratio.

— ❦ —

For a practical use of relations (A.56) and the Wigner–Eckart theorem A.3, one needs the nu-
merical values of the Clebsch–Gordan coefficients. To this end one most often uses tables [242,
105] [☞ also [294]], although there is a “closed formula” [328]:

C
j,mj
�,s;m�,ms

= δmj ,m�+ms Aj
�,s B

j,mj
�,s;m�,ms

D
j,mj
�,s;m�,ms

, (A.69a)

δmj,m�+ms =
{

1 if mj = m� + ms,
0 if mj �= m� + ms;

(A.69b)

Aj
�,s :=

√
(�+s−j)! (j+�−s)! (s+j−�)! (2j+1)

(�+s+j+1)!
, (A.69c)

B
j,mj
�,s;m�,ms

:=
√

(j+mj)! (j−mj)! (�+m�)! (�−m�)! (s+ms)! (s−ms)! , (A.69d)

D
j,mj
�,s;m�,ms

:= ∑
r

(−1)r

(�−m�−r)! (s+ms−r)! (j−s+m�+r)! (j−�−ms+r)! (�+s−j−r)! r!
, (A.69e)

where the sum over r is limited by the facts that division by factors in the denominator produces a
zero when

r > (�−m�), (s+ms), (�+s−j), r < 0, (s−j−m�), (�+ms−j), (A.69f)

which makes the sum finite. Evidently, formula (A.69) is not best suited for quick computations
“by heart,” but is appropriate for machine computation.

— ❦ —

In view of these well-known results for the SU(2) group and its algebra, we have:

Conclusion A.2 For applications of any group in physics, it is desired to have, in order of
importance (and technical demand):

1. the complete list of finite-dimensional unitary representations, such as (A.42),
2. the complete list of decompositions of products, such as (A.59),
3. the complete list of Clebsch–Gordan coefficients, such as (A.69), or at least a

method/algorithm for their computation.

It is fascinating that for off-shell representations of supersymmetry not even the first task is solved ☞ ,
not even in N-extended supersymmetric quantum mechanics [☞ Section 10.4].
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A.3.5 Exercises for Section A.3

✎ A.3.1 Using the differential representation (A.44) of J 2, J 3 and J± as well as the func-
tional representations (A.43a)–(A.43c), verify the general results (A.40m), and (A.40h)
with (A.40p) for the cases j = 1, m = ±1, 0.

✎ A.3.2 Verify by explicit computation that the matrices (A.46a) satisfy the su(2) algebra
relations (A.38a). Construct the 3× 3 matrix representative of (

(1)
)2.

✎ A.3.3 Given two separate triples of Hermitian operators, �L and �S, satisfying the su(2) alge-
bra (A.38a) and commuting mutually (A.50), prove that equation (A.51) defines the one
and only nontrivial linear combination that also satisfies the su(2) algebra (A.38a).

A.4 The SU (3) group
The SU(3) group is defined as the group of 3 × 3 unitary matrices with unit determinant.

Digression A.4 Corollary A.1 on p. 474 defines parity for representations of the SU(2)
group, which is additive for products of representations. Similarly, the SU(3) group has
a triality: representations are either real with triality 0, or a conjugate pair of complex
representations with triality 1 and −1∼= 2. The triality of a product of two representations
with trialities t1 and t2, respectively, is (t1+t2) (mod 3). Similarly, one defines a mod-n
additive “n-ality” of representations of the SU(n) group for every n.

A.4.1 The su (3) algebra
As a generalization of the relations (A.38a) for the SU(2) group generators and a special case of
the general relation for all Lie algebras (A.11a), the SU(3) group is generated by eight operators
Qa that satisfy the relations [

Qa , Qb
]

= i fab
c Qc. (A.70)

It is useful to note the SU(3) analogue of the generator matrices (A.45a), i.e., the standard
choice among the matrix realizations (of the doubles17) of the SU(3) generators in the smallest,
3-dimensional and fundamental representation are the so-called Gell-Mann matrices:

λλλλ1 =
[ 0 1 0

1 0 0
0 0 0

]
, λλλλ2 =

[ 0 −i 0
i 0 0
0 0 0

]
, λλλλ3 =

[ 1 0 0
0 −1 0
0 0 0

]
, λλλλ4 =

[ 0 0 1
0 0 0
1 0 0

]
, (A.71a)

λλλλ5 =
[ 0 0 −i

0 0 0
i 0 0

]
, λλλλ6 =

[ 0 0 0
0 0 1
0 1 0

]
, λλλλ7 =

[ 0 0 0
0 0 −i
0 i 0

]
, λλλλ8 = 1√

3

[ 1 0 0
0 1 0
0 0 −2

]
. (A.71b)

The first three matrices evidently generate one of continuously many SU(2) ⊂ SU(3) sub-
groups. This choice of matrix representations of generators shows that the structure constants
fabc = fab

d gdc are totally antisymmetric, fabc = − fbac = − facb = − fcba, and we have

f123 = 1, f458 = f678 =
√

3
2 , f147 = − f156 = f246 = f257 = f345 = − f367 = 1

2 . (A.71c)

It is useful to know that
Tr(λλλλaλλλλb) = 2δab. (A.72)

17 Just as halves of Pauli matrices close the su(2) algebra, halves of the Gell-Mann matrices close the su(3) algebra.
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A.4.2 Representations of SU(3)
One may define the ket-notation as well as the matrix notation for every Lie group, but only the
dimensional and the tensor/index notation are shown here:

1 " t, 3 " tα, 3∗ " tα = 1
2 εαβγt[βγ], α, β,γ, . . . = 1, 2, 3, (A.73)

6 " t(αβ), 6∗ " t(αβ), 8 " tαβ, tαα ≡ 0, 10 " t(αβγ), etc. (A.74)

Here, e.g., t(αβ) is the symmetric 3×3 matrix, t[αβ] is the antisymmetric 3×3 matrix, tαβ is the
Hermitian 3×3 matrix the trace of which vanishes, etc. It is important to recall the identities:

εαβγε
δεφ = δδαδ

ε
βδ
φ
γ − δδαδ

φ
βδ
ε
γ + δ

φ
α δ
δ
βδ
ε
γ − δ

φ
α δ
ε
βδ
δ
γ + δεαδ

φ
βδ
δ
γ − δεαδ

δ
βδ
φ
γ , (A.75a)

⇒ εαβγε
δεγ = δδαδ

ε
β − δεαδ

δ
β, εαβγε

δβγ = 2δδα, εαβγε
αβγ = 6. (A.75b)

Then,

3 ⊗ 3 = 6S ⊕ 3∗A ⇔ tα sβ = t(αsβ) + t[αsβ],
{

t(αsβ) := 1
2

(
tαsβ + tβsα

)
,

t[αsβ] := 1
2

(
tαsβ − tβsα

)
;

(A.76a)

where subscripts S and A, respectively, denote the symmetric and antisymmetric parts of a product.
Next,

6 ⊗ 3 = 10 ⊕ 8 ⇔ t(αβ) sγ = t(αβsγ) + 4
3 t(α[b)sγ],

t(αβsγ) := 1
3

(
t(αβ)sγ + t(βγ)sα + t(γα)sβ

)
,

t(α[β)sγ] := 1
4

(
(t(αβ)sγ − t(αγ)sβ) + (t(βα)sγ − t(βγ)sα)

)
= 1

4

(
2t(αβ)sγ − t(αγ)sβ − t(βγ)sα

) (A.76b)

where it follows that t(α[β)sγ] εαβγ ≡ 0;

3∗ ⊗ 3 = 8 ⊕ 1 ⇔ tα sβ =
(

tαsβ − 1
3δ
β
α (tγsγ)

)
+ 1

3δ
β
α (tγsγ). (A.76c)

Besides, we also have that

4
3 t(α[β)sγ] εβγδ = t(αβ)sγ εβγδ =: (t(··)s·)αδ : δα

δ (t(··)s·)αδ ≡ 0, (A.76d)

so that (t(··)s·)αδ is a Hermitian matrix with vanishing trace. Since εβγδεεφδ = δ
β
ε δ
γ
φ−δγε δβφ, we have

also the “converse” relations:

(t(··)s·)αδ εβγδ = t(αβ)sγ − t(αγ)sβ, 2
3 (t(··)s·)(α

δ ε
β)γδ = 4

3 t(α[β)sγ]. (A.76e)

Finally, we also need the combination (A.76a), (A.76b) and (A.76c):

3 ⊗ 3 ⊗ 3 =
(
6S ⊕ 3∗A

)⊗ 3 =
(
10S ⊕ 8

)⊕ (
8 ⊕ 1A

)
, (A.76f)

where the subscripts S and A, respectively, denote the totally symmetric and totally antisymmetric
product, and two 8-plets have a mixed symmetry:

(3 ⊗ 3 ⊗ 3)S ↔ t(αuβvγ), (3 ⊗ 3 ⊗ 3)A ↔ t[αuβvγ]. (A.76g)
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For the cubic expressions with mixed symmetry, there exist many possible choices, one of which
follows from the iterative procedure (A.76f):

(3 ⊗ 3 ⊗ 3)8(1) =
(

(3 ⊗ 3)S︸ ︷︷ ︸
6

⊗3
)

8(1)

↔ (t(αuβ))vγεβγδ, (A.76h)

(3 ⊗ 3 ⊗ 3)8(2) =
(

(3 ⊗ 3)A︸ ︷︷ ︸
3∗

⊗3
)

8(2)

↔ (tαuβεαβδ)vγ
(
δδεδ

φ
γ − 1

3δ
δ
γδ
φ
ε

)
. (A.76i)

These two expressions provide two linearly independent 3× 3 Hermitian matrices with a vanishing
trace.

These results indicate that the answer to Exercises A.3.1 and A.3.2 on 476, is given by Weyl’s
general construction:

Construction A.1 (Weyl) All finitely dimensional unitary representations of every Lie group
may be constructed projecting n-fold tensor products of the fundamental (spinorial for
Spin groups) representation, V⊗n, by means of the so-called Young symmetrizer.

The computations (A.76a)–(A.76f) provide concrete examples of this construction:

0. For the SU(3) group, the fundamental (defining) representation is the complex
3-dimensional, denoted 3, also denoted in the tensor representation as 3 = {tα, α = 1, 2, 3}.

1. The product 3 ⊗ 3 may be projected to:
(a) the symmetric part of the product, 6: t(αuβ) = +t(βuα), and
(b) the antisymmetric part of the product, 3∗: t[αuβ] = −t[βuα], which is isomorphic to the

conjugate 3-dimensional representation: t[αuβ]εαβγ = (t.u.)γ.
2. The product 6 ⊗ 3 may be projected to:

(a) the totally symmetric part of the product, 10: t(αβuγ) = +t(βαuγ) = +t(γβuα) =
+t(αγuβ), and

(b) the part of the product with mixed symmetry, 8: t(α[β)uγ] = +t(β[α)uγ], but the β ↔ γ

antisymmetrization in t(α[β)uγ] is broken by imposing the α↔ β symmetrization.

Projecting may be understood also as a linear mapping of vector spaces:

Sym : 3 ⊗ 3 → 6 and 3∗ = ker
(
Sym(3 ⊗ 3)

)
, (A.77)

that is, 3∗ is the part of the product 3 ⊗ 3 that is annihilated by symmetrization. A consistent and
iterative application of this procedure is called “Young symmetrization.”

To decompose the triple tensor product, we may use the table of coefficients:

αβγ αγβ γαβ γβα βγα βαγ

10 t(αβγ) +1 +1 +1 +1 +1 +1
8 t(α[β)γ] +2 −1 −1 −1 −1 +2
8 t[α(β]γ) +2 +1 −1 +1 −1 −2
1 t[αβγ] +1 −1 +1 −1 +1 −1

(A.78)

so that, e.g.:

t(α[β)γ] ∝ (+2tαβγ − tαγβ − tγαβ − tγβα − tβγα + 2tβαγ) ∝ (2t(αβ)γ − t(αγ)β − t(γβ)α)

∝
[(

t(αβ)γ − t(αγ)β) +
(
t(αβ)γ − t(βγ)α)] ∝

(
tα[βγ] + tβ[αγ]), (A.79)
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which agrees with the result (A.76b). However, table (A.78) also provides the identity

tαβγ = t(αβγ) + t(α[β)γ] + t[α(β]γ) + t[αβγ], (A.80)

which reproduces the decomposition (A.76f).
To simplify decompositions such as (A.76), we use (Alfred) Young tableaux, which provide

yet another alternative notation for representations of Lie groups [581, 168] and for the Young
symmetrization mentioned in Construction A.1.

Construction A.2 (Young) The fundamental, complex n-dimensional SU(n) group represen-
tation is depicted by a box, 
. A symmetric product Sym(n ⊗ n) is depicted by placing two
boxes next to each other: 

. An antisymmetric product ker(Sym (n ⊗ n)) is depicted by
placing two boxes one under the other: 

. Therefore,


⊗
 = 

⊕

. (A.81)

A Young tableau is no more than n vertically stacked horizontal series of boxes, where:

1. all horizontal series being from the same position on the left,
2. no horizontal series has more boxes than the one above it;
3. a column of n boxes depicts the SU(n)-invariant tensor εα1···αn ,

and may be deleted from the tableau.

Example A.3 Decomposition (A.76f), i.e., (A.80) is then depicted as


⊗
⊗
 =
(


⊕



)
⊗
 =

(



⊕




)
⊕

(



 ⊕




)
, (A.82)

where multiplication and decomposition are performed iteratively, by attaching the right-
hand box to the left-hand tableau in all possible and permitted ways.

For complete rules for multiplying arbitrary tableaux – and for all Lie groups – the interested
Reader is directed to the literature [581, 168].

Example A.4 May it suffice here to list the following four examples:




⊗
 = 



⊕



 , 


 ⊗
 = 



 ⊕



⊕



 , (A.83a)




⊗
 =




 ⊕






, 



⊗
 = 




 ⊕




 , (A.83b)

where it is understood that tableaux that have more than n vertically stacked boxes are
discarded for the SU(n) group. Thus, in the third example, only the first tableau remains
for SU(3), but both summands remain for SU(n), n > 3.
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When the SU(3) group structure is applied to the “flavor” of hadrons, the 3-dimensional
representation, 3, which is spanned by u-, d- and s-quarks, in the Young tableau notation, the
quarks are depicted by a box and antiquarks with a column of two boxes. Then, it is clear that:

1. Mesons (bound states of a quark and an antiquark) are depicted by Young tableaux from the
product 

⊗
, i.e., 3∗ ⊗ 3 = 1 ⊕ 8.

2. Baryons (bound states of tri quarks) are depicted by Young tableaux (A.82).
3. Other SU(3) f group representations can appear only in “exotic” bound states such as di-

mesons (q q q q), di-baryons (q q q q q q), etc.

There exist two useful combinatorial formulae, for which we first need a function that asso-
ciates to every box one more than the total number of boxes to the right and below a given box.
Because of the geometric shape of the union of the counted boxes, this function is called the “hook
number.” In Young tableaux (A.84) the values of the “hook numbers” are inscribed into the boxes:

(A.84)

Then, the representation depicted by the tableau YT appears

nYT :=
N!

product of “hook numbers”
(A.85)

times in the tensor product V⊗N.

Example A.5 For the examples in the series (A.84) this formula yields:

3!
1·3·1 = 2,

4!
1·2·4·1 = 3,

6!
1·3·5·1·3·1 = 16. (A.86)

This number is also the dimension of the representation of the permutation group SN repre-
sented by this Young tableau, so that N! = ∑(nYT)2, with the sum extending over all the tableaux
with N boxes.

Example A.6 For baryons represented as 3-quark bound states, we cited the fact that
3⊗ 3⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10; see the discussion around equation (2.40) and also in
Section 4.4. The formula (A.85) then proves that there are two separately counted,
2-dimensional representations of permutation symmetries S3:

(A.87a)

3! =
( 3!

3·2·1 = 1
)2 +

( 3!
3·1·1 = 2

)2 +
( 3!

3·2·1 = 1
)2 = 1 + 4 + 1, (A.87b)

where the “hook numbers” are inserted into the respective boxes on the right, to aid the
computation. These two separately counted identical representations in the middle of the

expansion, depicted as , have mixed symmetry and correspond to the baryon octets,
8. In turn, the totally antisymmetric and the totally symmetric representations occur at
the beginning and the end of the expansion, respectively; these are both 1-dimensional
(unique) and occur once in the expansion.
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For the second formula, for the SU(n) group, inscribe into every row of boxes the ascending
series of integers, starting with n in the top row, with (n−1) in the second row and so on; these
are called the “box numbers.” The dimension of the SU(n) representation depicted by the tableau
YT is then given by the formula

dYT =
product of “box numbers”

product of “hook numbers”
. (A.88)

Example A.7 For the examples (A.84) and the SU(4) group, we have the dimensions

(4·5)(3)
1·3·1 = 20,

(4·5·6)(3)
1·2·4·1 = 45,

(4·5·6)(3·4)(2)
1·3·5·1·3·1 = 64, (A.89)

while for the SU(3) group, the same tableaux have the dimensions

(3·4)(2)
1·3·1 = 8,

(3·4·5)(2)
1·2·4·1 = 15,

(3·4·5)(2·3)(1)
1·3·5·1·3·1 = 8. (A.90)

Note that the formula for dimensions of SU(n) tableaux (A.88) automatically returns
zero if the tableau contains a column of more than n boxes: for SU(2), the third tableau
in the sequence (A.84) yields (2·3·4)(1·2)(0)

1·3·5·1·3·1 = 0.

— ❦ —

The notational systems presented have their advantages but also their shortcomings:

1. The dimensional notation is unambiguous only for the SU(2) group, and one must use addi-
tional “decorations” to distinguish the distinct representations that happen to have the same
dimension.

2. The ket-notation is unambiguous, but requires specifying some complete collection of
mutually commuting (Casimir) operators – such as J 2 and J 3 for SU(2) – and their
eigenvalues [☞ [488] for a list of Casimir operators].

3. The tensor/index notation is unambiguous, but the specification of the various symmetriza-
tion patterns using round parentheses and square brackets quickly becomes unwieldy and
confusing.

4. The matrix notation requires ever bigger matrices.
5. Young tableaux are unambiguous and very compact, but products of arbitrary representations

for some of the Lie groups may well require very complex rules [168].

Thus, in practice, one typically uses a combination of at least two notational systems, and so it is
very important to know all the notational systems and how to successfully “translate” from any
one into any other one of them.

A.4.3 Exercises for Section A.4

✎ A.4.1 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.81) and verify agreement for n = 3, 4, 5.
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✎ A.4.2 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.82) and verify agreement for n = 3, 4, 5.

✎ A.4.3 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.83) and verify agreement for n = 3, 4, 5.

A.5 Orthogonal and Spin groups
We have already encountered the rotation group SO(3), and the Lorentz group SO(1, 3). In the
general case, the group SO(p, q) is the group of linear transformations of real (p+q)-dimensional
vectors (x1, . . . , xp+q), which preserve the bilinear scalar product [581, 260, 334]:

(x · y)p,q := x1y1 + · · · xpyp − xp+1yp+1 − · · · xp+qyp+q. (A.91)

This definition is equivalent to the statement that elements of the SO(p, q) group may be repre-
sented as (p+q)×(p+q) matrices LLLL, which satisfy the requirement of the generalized orthogonality

LLLLT ηηηη(p,q) LLLL != ηηηη(p,q) ⇔ ηηηη(p,q) LLLLT ηηηη(p,q)
!= LLLL−1, (A.92)

where ηηηη(p,q) is the diagonal matrix with the first p diagonal elements equal to +1, and the remaining
q elements equal to −1. In the usual case (p, q) = (1, 3) and ηηηη := ηηηη(1,3).

A.5.1 Spinors
Just as Dirac constructed the spinorial representation {êaΨa}, starting from the 4-vector p = êμpμ
of the Lorentz group SO(1, 3), this can also be done for every SO(p, q), and the SO(p, q) trans-
formation of those spinors is just as two-valued. Analogously to the double covering of the
SO(3) group one also defines the double covering of every SO(p, q) group, denoted Spin(p, q).
As representations of the Spin(p, q) group, both tensors and spinors are single-valued func-
tions. The algebra of the Spin(p, q) group is denoted spin(p, q), and it is worth knowing that
spin(p, q) = spin(p+q, 0) = spin(p+q). In other words, for a fixed p+q, different Spin(p, q)
groups differ only in the “finite part” [☞ Definition A.1 on p. 454, and Comment A.1 on
p. 454] and their algebras are identical. For p+q � 6, there exist additional identities among
algebras:

spin(3) = su(2), spin(4) = su(2) ⊕ su(2), spin(5) = sp(4), spin(6) = su(4), (A.93)

Table A.4 Some low-dimensional (p+q � 6) spin groups; Spin(p, q) = Spin(q, p) [☞ Section A.1.4]

Spin(1) ∼= O(1) ∼= Z2 Spin(2, 2) ∼= SU(1, 1)× SU(1, 1)
Spin(2) ∼= U(1) ∼= SO(2) Spin(5) ∼= Sp(2)
Spin(1, 1) ∼= GL(1; R) Spin(1, 4) ∼= Sp(1, 1)
Spin(3) ∼= SU(2) ∼= Sp(1) ∼= SL(1; H) Spin(2, 3) ∼= Sp(2; R)
Spin(1, 2) ∼= SU(1, 1) Spin(6) ∼= SU(4)
Spin(4) ∼= SU(2)× SU(2) Spin(1, 5) ∼= SL(2; H)
Spin(1, 3) ∼= SL(2; C) ∼= Spin(3; C) Spin(2, 4) ∼= SU(2, 2)
SO↑(1, 3) ∼= SO(3; C) Spin(3, 3) ∼= SL(4; R)

Spin(p, q) groups for p+q > 6 are not isomorphic to other Lie groups.
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which imply identities between the corresponding groups. Spin groups are defined as double
coverings of orthogonal groups, i.e., the general relation

SO(p, q) = Spin(p, q)/Z2. (A.94)

For physics applications, the practical meaning of this relation is that the multiplicative group
Z2 = {1,−1} is a subgroup of Spin(p, q). Tensorial representations do not transform under this
Z2-action, while spinorial ones change their sign under the action of −1 ∈ Z2. This sign equals
(−1)F, where F is the so-called “fermion number” defined in the text leading to equations (10.44):
F = 0 for bosons and F = 1 for fermions. Thus, spinorial representations of the Spin(p, q) group
are double-valued with respect to the SO(p, q)-action, and are not “true” functions; tensorial repre-
sentations are single-valued under both the Spin(p, q)- as well as the SO(p, q)-action. May it suffice
here to quote without proof [565, 258, 581, 256, 80, 260, 333, 447]:

Theorem A.4 If for two groups, G1 and G2, it is true that G1 = G2/H, then H ⊂ G2 is a
subgroup of G2, and elements of G1 are obtained by identifying those elements from G2 that
differ only by the action of the subgroup H ⊂ G2. Besides, the representations of G1 are
H-invariant representations of G2.

The relation SO(p, q) = Spin(p, q)/Z2 then implies that the SO(p, q) representations are Z2-
invariant Spin(p, q) representations – and those are the tensors, the fermion number of which is
F = 0.

Spinors are, however, the Spin(p, q) representations that are not invariant with respect to the
action of the subgroup Z2 ⊂ Spin(p, q) – the spinors’ fermion number is F = 1 and they change
their sign pod under the action of the nontrivial Z2 element. Let g+, g− ∈ Spin(p, q) be group
elements that differ only by the Z2-action, so g+ does not change its sign while g− does. Since the
relation SO(p, q) = Spin(p, q)/Z2 implies that the group elements g ∈ SO(p, q) are obtained by
identifying g := [g+ " g−], it is clear that the SO(p, q)-action upon spinors is double-valued.

A.5.2 Spin(1, 3)
In relativistic physics, what is physically relevant is not the Euclidean length in spacetime, but the
interval, of the form

√
(x0)2 − (x1)2 − · · · . Thus, for relativistic physics purposes, we are most

often interested in Lorentz groups SO(1, n) and their double coverings, Spin(1, n), where n is the
number of spatial dimensions. The algebras of these groups are the same as for their Euclidean
counterparts, so the identities (A.93) may be used, but it is important to keep in mind that the
group Spin(1, n) differ from Spin(1+n); see Table A.4 on p. 482.

From Table A.4 on p. 482, we have that

Spin(1, 3) = SL(2, C), (A.95)

where SL(2, C) denotes the group of complex 2×2 matrices of unit determinant. This group is
generated by

ττττ j := 1
2σσσσ

j and τ̃τττ j := i
2σσσσ

j, j = 1, 2, 3, (A.96)

the nonzero commutation relations of which are

[ττττ j,ττττk] = iε jk
m ττττm, [ττττ j, τ̃τττk] = iε jk

m τ̃τττm, [τ̃τττ j, τ̃τττk] = −iε jk
m ττττm. (A.97)

On the other hand, starting from relation (5.45):[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (A.98)
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This shows that J j := 1
2i ε jklγγγγ

kl with j, k, l = 1, 2, 3 satisfy the su(2) = so(3) subalgebra:[
J 1 , J 2

]
=

[
(−iγγγγ23) , (−iγγγγ31)

]
= −η23γγγγ31 + η21γγγγ33 − η31γγγγ23 + η33γγγγ21 = (−1)(−iJ3)

= iJ 3, (A.99)

and so forth, for the remaining two permutations, [J 2, J 3] and [J 3, J 1]. Denote the remaining
elements K j := iγγγγ0j, and find[

K1 , K2
]

=
[

iγγγγ01 , iγγγγ02 ] = −η00γγγγ12 + η02γγγγ10 − η12γγγγ00 + η10γγγγ02 = −(+1)(+iJ3)
= −iJ 3, (A.100)

and so forth, for the remaining two permutations, [K2, K3] and [K3, K1]. Finally, the mixed
commutators yield[

J 1 , K1
]

=
[
(−iγγγγ23) , iγγγγ01 ] = η20γγγγ31 − η21γγγγ30 + η31γγγγ20 − η30γγγγ21 = 0, (A.101)[

J 1 , K2
]

=
[
(−iγγγγ23) , iγγγγ02 ] = +η20γγγγ32 − η22γγγγ30 + η32γγγγ20 − η30γγγγ22 = −(−1)(iK3)

= iK3, (A.102)

and so forth, for the remaining two permutations, [K2, K3] and [K3, K1]. We thus have the general
structure of commutators:[

J j , J k
]

= iε jk
mJ m,

[
J j , Kk

]
= iε jk

mKm,
[

K j , Kk
]

= −iε jk
mJ m, (A.103)

which are identical in form to the relations (A.97). This shows that the groups SL(2, C) and
Spin(1, 3), and thus also SO(1, 3) ∼= Spin(1, 3)/Z2, have identical algebras.

Finally, define
M j := 1

2 J j + i
2 K j and M j := 1

2 J j − i
2 K j, (A.104)

and find [
M j , Mk

]
= iε jk

mMm,
[

M j , Mk
]

= iε jk
mMm,

[
M j , Mk

]
= 0, (A.105)

which demonstrates that

alg
(

SL(2; C)
)

= alg
(

Spin(1, 3)
)

= alg
(

Spin(3; C)
)

= alg
(

SO(1, 3)
)

= su(2)L ⊕ su(2)R. (A.106)

In the physics literature one sometimes comes across the statement that the Lorentz group is iso-
morphic (or even equals) the product SU(2)L × SU(2)R, which is false. Luckily, the precise details
of the Lorentz group Spin(1, 3) and its precise relationship with the groups SU(2)L and SU(2)R

generated by the operators M j and M j are usually not relevant, and the relation (A.5.2) for the
corresponding algebras suffices.

Note that the discrete operations P and T generate the “finite part” of the O(1, 3) group,
the group of real 4×4-matrix transformations of spacetime 4-vectors that preserve the relativistic
interval. The action of the P and T transformations may then also be represented in the form of
4×4-matrices:18

P =

[ 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
and T =

[ −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, so PT = −1. (A.107)

18 Caution: the matrix representation of the operations P and T evidently describes linear operations. However, in quantum
theory the operation T is anti-linear and its action cannot be represented this way.
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The definition of the O(1, 3) group does not include the requirement of a unit determinant,
but orthogonality implies that the determinant of O(1, 3)-matrices equals ±1. Elements with
the determinant −1 do not form a group, as they exclude the identity element, while the
elements with determinant +1 do form the SO(1, 3) group, which then is evidently a subgroup
of O(1, 3).

The physical meaning of Lorentz transformations requires that the direction of the flow of
time remains unchanged. Such transformations form a subgroup of SO(1, 3), which is called the
orthochronous Lorentz group,19 denoted L↑ ≡ SO↑(1, 3). It may be shown that this is a connected
group, i.e., every element of the orthochronous Lorentz group may be continuously “shrunk” to
the identity element: Every Lorentz transformation may be factorized into the product of three
rotations and three Lorentz boosts, akin to the well-known factorization of every rotation into
three Euler angle rotations. Each of those six parameters, three angles and three components of
velocity, may be continuously shrunk to 0, whereby every orthochronous Lorentz transformation
may be continuously shrunk to 1.

Denote by TL↑ the collection of all products of elements from L↑ with the element T; since
L↑ is continuously connected, so is TL↑. The analogy holds for PL↑ and for PTL↑. It should be
evident that the TL↑, PL↑ and PTL↑ components cannot be continuously turned into 1, nor can
an element of one of these three components be continuously turned into an element of another
component. It then follows that the O(1, 3) group is a disconnected union of four components:
L↑, TL↑, PL↑ and PTL↑, and that the disconnected unions L↑ and PTL↑ form a subgroup SO(1, 3)
⊂ O(1, 3).

A.5.3 The Poincaré algebra and group in 1+3-dimensional spacetime
Transformations of the tangent space of 1+3-dimensional spacetime are linear transformations of
the space R1,3, of the form

xμ → yμ = Lμν xν + ξμ, (A.108)

where the matrix LLLL = [Lμν] provides the Lorentz transformations of 4-vectors in (flat) spacetime,
and the 4-vector ξμ parametrizes translations in spacetime. These transformations have an induced
action of functions of spacetime, by means of the differential operators

xμ → xμ + ξμ ⇒ f (x) → f (x + ξ) = exp
{
ξμ∂μ

}
f (x); (A.109)

xμ → Lμν xν ⇒ f (x) → f (LLLLx) = exp
{
λμ

νLμν
}

f (x). (A.110)

The translation generators are then differential operators ∂μ, and the Lorentz transformation
generators are

Lμν = xμ∂ν − ημρηνσxσ∂ρ, (A.111a)

so that:

boost L0
i = x0∂i − η00ηijx

j∂0 = ct ∂
∂xi + δijx

j 1
c
∂
∂t , (A.111b)

Li
0 = xi∂0 − ηijη00x0∂j = xi 1

c
∂
∂t + δij ct ∂

∂xj = δij(ct ∂
∂xj + δjkxk 1

c
∂
∂t

)
= δij L0

j, (A.111c)

rot. Li
j = xi∂j − ηikηj�x�∂k = ηik(ηknxn ∂

∂xj − ηjnxn ∂
∂xk

)
i = εi jk ε

k�
n xn ∂

∂x� . (A.111d)

19 The nomenclature here is not quite standard: some Authors call the full O(1, 3) group the Lorentz group while others
reserve this name only for the orthochronous component, SO↑(1, 3), of the SO(1, 3) group.
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For example,

exp
{
ξμ∂μ

}
f (x) =

∞

∑
k=0

1
k!

([ k

∏
i=1

ξμi
∂

∂yμi

]
f (y)

)
y→x

=
1
0!

f (x) +
1
1!
ξμ

(∂ f (y)
∂yμ

)
y→x

+
1
2!
ξμξν

( ∂2 f (y)
∂yμ∂yν

)
y→x

+ · · ·
= f (x + ξ). (A.112)

Translations in 1+3-dimensional space R1,3 commute and are parametrized by the 4-vector
ξμ ∈ R1,3. As the operators ∂

∂xμ also span the vector space R1,3, we may write that tr(R
1,3
x ) ∼= R

1,3
∂ ,

where tr(X ) denotes “the algebra of translations in space X .” It is not hard to verify that[
λ·L , λ′·L ]

= λ′′·L,
[
λ·L , ξ·∂ ] = ξ ′·∂,

[
ξ·∂ , ξ ′·∂ ] = 0, (A.113a)

λ·L := λμ
νLμν, ξ·∂ := ξμ∂μ, (A.113b)

so that the Poincaré algebra is po(1, 3) = spin(1, 3) :+ tr(R1,3), and the Poincaré group is Po(1, 3) =
Spin(1, 3)�R1,3, where the asymmetric binary symbol :+ (�) denotes the semidirect sum (product)
and recalls the fact that the left-hand summand (factor) acts upon the right-hand one [☞ the
lexicon entry, in Appendix B.1].

A.5.4 Exercises for Section A.5

✎ A.5.1 Verify equations (A.103) by explicit computation, using however only the defini-
tions (5.45).

✎ A.5.2 Verify equations (A.105), using the definitions (A.104) and the previous results.

✎ A.5.3 Verify equations (A.113) by explicit computation, using however only the defini-
tions (A.111).

✎ A.5.4 Using the definitions (A.111) and your results in the above problems, reconstruct the
differential operator representation of the operators M j and Mk.

A.6 Spinors and Dirac γγγγ-matrices
SO(p, q) denotes the group of homogeneous and linear transformations of (p, q)-vectors �v that
preserve the bilinear product

�v·�u :=
p

∑
i=1

viui −
p+q

∑
i=p+1

viui
!=

p+q

∑
i=1

(
Mi

kuk
)·ηij(Mj

�u�

)
, (A.114)

where the (p+q)×(p+q) matrices M have a unit determinant and where

[ηij] = ηηηη(p,q) = diag
(
+1, . . . , +1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

)
. (A.115)

The vectors �v form the defining vector space Vv. One also writes SO(p, q) = SO(Vv;ηηηη(p,q)), where
the latter notation quite literally stands for “the group of unimodular orthogonal transformations
of the vector space Vv that preserve the bilinear product obtained using the matrix ηηηη(p,q).”
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Every (unimodular orthogonal) group SO(p, q) has a double covering (that is also a group),
denoted Spin(p, q) [333], the single-valued spinorial representations of which are double-valued
representations of the SO(p, q) group. Every Spin(p, q) group has the (Dirac) spinor representation
VΨ as well as its formally dual representation (VΨ)∗ = VΨ, for which the relation

VΨ ⊗ VΨ ⊃ Vv, (A.116)

holds, where Vv (p, q) is the defining vector representation of SO(p, q). For any chosen bases,

êA ∈ VΨ, êA ∈ VΨ, and êμ ∈ Vv, (A.117)

and the Dirac γγγγ-matrices are arrays of the coefficients in the projection (A.116):

êA(γγγγμ)A
B êB = êμ. (A.118)

A.6.1 Dirac matrices in (3+1) dimensional spacetime
The elements γγγγμ, μ = 0, 1, 2, 3, which satisfy{

γγγγμ , γγγγν
}

= 2ημν, with [ημν] = diag(+1,−1,−1,−1), (A.119)

form the Clifford algebra Cl(1, 3). Following Feynman, one defines

/p := γγγγμpμ for each 4-vector p. (A.120)

This implies the following definitions and results:

γ̂γγγ := iγγγγ0γγγγ1γγγγ2γγγγ3 := i
4! εμνρσγγγγ

μγγγγνγγγγργγγγσ,
{
γ̂γγγ , γγγγμ

}
= 0, (γ̂γγγ)2 = 1; (A.121a)

γγγγ± := 1
2 [1 ± γ̂γγγ],

[
γγγγ+ , γγγγ−

]
= 0, γγγγ+ + γγγγ− = 1, (γγγγ±)2 = γγγγ±, (A.121b)

γγγγμν :=
i
4
[γγγγμ,γγγγν],

[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (A.121c)

γγγγμγγγγμ = 4 1, γγγγμγγγγνγγγγργγγγμ = 4γγγγνγγγγρ, (A.122a)

γγγγμγγγγνγγγγμ = −2γγγγν, γγγγμγγγγνγγγγργγγγσγγγγμ = −2γγγγνγγγγργγγγσ, (A.122b)

γγγγμγγγγνγγγγρ = ημνγγγγρ − ημργγγγν + ηνργγγγμ + iεμνρσγγγγσγ̂γγγ . (A.122c)

Theorem A.5 Owing to the relations (A.119), (A.121a) and (A.122c), it follows that every
γγγγ-matrix polynomial may be reduced to the quadratic polynomial

C01 + Cμγγγγμ + 1
2 Cμνγγγγμν + Ĉμγγγγμγ̂γγγ+ Ĉ0γ̂γγγ. (A.123)

That is, the basis
1, γγγγμ, γγγγμν, γγγγμγ̂γγγ, γ̂γγγ (A.124)

for the Dirac algebra (A.119) is complete.

We also have

Tr[γγγγμ] = 0, Tr[γγγγμγγγγνγγγγρ] = 0, Tr[γγγγμγγγγνγγγγργγγγσγγγγλ] = 0, etc. (A.125a)

Tr[γγγγμγγγγν] = 4ημν, Tr[γγγγμγγγγνγγγγργγγγσ] = 4(ημνηρσ − ημρηνσ + ημσηνρ), (A.125b)

Tr[γ̂γγγ] = 0, Tr[γγγγμγγγγνγ̂γγγ] = 0, Tr[γγγγμγγγγμγγγγργγγγσγ̂γγγ] = −4iεμνρσ. (A.125c)
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These relations imply

/p/p = p2 1, /p/q = (p·q − 2ipμγμνqν)1; (A.126a)

/p/q + /q/p = 2(p·q) 1, /p/q − /q/p = −4i(pμγμνqν)1; (A.126b)

Tr[/p/q] = 4p·q 1, Tr[/p/q/r /s ] = 4[(p·q)(r·s) − (p·r)(q·s) + (p·s)(q·r)]; (A.126c)

Tr[/p] = 0 = Tr[/p/q/r ], Tr[γ̂γγγ/p/q/r /s ] = 4iεμνρσpμ qν rρ sσ; (A.126d)

γγγγμ /p/qγγγγμ = 4p·q 1, γγγγμ /pγγγγμ = −2 /p, γγγγμ /p/q/rγγγγμ = −2 /r/q/p. (A.126e)

In physics applications, besides the relations (A.119) that define the Clifford algebra, one
additionally requires the matrices γγγγμ to satisfy

(γγγγ0)† = γγγγ0, and (γγγγi)† = −γγγγi, i = 1, 2, 3, ⇔ (γγγγμ)† = γγγγ0γγγγμγγγγ0. (A.127)

This requirement is not an integral part of the definition and structure of Clifford algebras, which
one must keep in mind when using mathematical results about Clifford algebras. The use of the
algebra (A.119) in the physics literature always assumes the additional conditions (A.127) – as
well as their consequences.

Corresponding to Dirac conjugation of spin- 1
2 fermions (5.49), we have

Ψ := Ψ†γγγγ0 ⇔ γγγγμ := γγγγ0(γγγγμ)†γγγγ0 (A.127)= γγγγμ. (A.128)

Therefore,

γ̂γγγ := γγγγ0(iγγγγ0γγγγ1γγγγ2γγγγ3)†γγγγ0 = −iγγγγ0(γγγγ3)†γγγγ0γγγγ0(γγγγ2)†γγγγ0γγγγ0(γγγγ1)†γγγγ0γγγγ0(γγγγ0)†γγγγ0 = −iγγγγ3 γγγγ2 γγγγ1 γγγγ0

(A.127)= −iγγγγ3γγγγ2γγγγ1γγγγ0 (A.119)= −iγγγγ0γγγγ1γγγγ2γγγγ3 = −γ̂γγγ, (A.129)

and so
γγγγ± = γγγγ∓, whereby Ψ± = Ψ∓. (A.130)

Besides the Dirac basis:

γγγγ0 =
[

1 O
O −1

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, γ̂γγγ =

[
O 1

1 O

]
, (A.131)

the most often used choices are the Weyl basis:

γγγγ0 =
[

O −1

−1 O

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, γ̂γγγ =

[
1 O
O −1

]
, ΨDirac =

[
Ψ+
Ψ−

]
; (A.132)

and the Majorana basis:

γγγγ0 =
[

O σσσσ2

σσσσ2 O

]
, γγγγ1 =

[
iσσσσ3 O
O iσσσσ3

]
, γγγγ2 =

[
O −σσσσ2

σσσσ2 O

]
, γγγγ3 =

[−iσσσσ1 O
O −iσσσσ1

]
,

γ̂γγγ =
[
σσσσ2 O
O σσσσ2

]
, (A.133)

in which all components of the Dirac spinor Ψ are real, while the Dirac matrices themselves are all
imaginary in the Majorana basis.
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A.6.2 Weyl’s notation for spinors
The literature about supersymmetry [☞ [189, 562, 560, 129, 76, 308], to list only textbooks] is
unfortunately replete with differences in notation and conventions. For consistency, the conven-
tions of Ref. [76] are adopted herein, and the Reader is left to compare with other sources and
correctly translate the notation and conventions.

Left and right spinors
The result (5.58) indicates the fact that the Dirac 4-component spinor may, in a Lorentz-invariant
way, be separated into a pair of two-component spinors, Ψ = (Ψ+, Ψ−), where Ψ± are de-
fined by the projections γγγγ± (5.57). This separation reflects the fact that the Lorentz group
in 1+3-dimensional spacetime is Spin(1, 3) ∼= Spin(3; C) ∼= SL(2; C), and that the Lorentz
algebra is

spin(1, 3) = su(2)L ⊕ su(2)R. (A.134)

That is, Ψ+ transforms under the su(2)L-action and is invariant under the su(2)R-action, while Ψ−
transforms the other way around:

Ψ+ ∼ ( 1
2 , 0), Ψ− ∼ (0, 1

2 ) with respect to spin(1, 3) = su(2)L ⊕ su(2)R. (A.135)

In physics literature one often encounters the statement “Spin(1, 3) ∼= SU(2)L × SU(2)R,” which
does not hold for the group. For most all of physics purposes, however, the relation (A.135) suffices,
which is true of the algebra; the Reader is directed to the literature [565, 258, 581, 256, 80, 260,
333, 447] for the precise details about these groups, their representations and differences.

For the Weyl spinors (5.58), one uses the 2-component notation:

Ψ+ := γγγγ+Ψ �→ ψα, ψα → ψ′
a = Mα

β ψβ, (A.136a)

Ψ− := γγγγ−Ψ �→ χ.
α, χ.

α → χ′.α = χ .
β
(M−1)

.
β.
α. (A.136b)

Here, Mα
β and M

.
β.
α are matrix elements of SL(2; C)-matrices M = exp{mL} with mL ∈ su(2)L

and M = exp{mR} with mR ∈ su(2)R; the matrices M and M are independent, and one refers to
independent “left” and “right” action.

The spin- 1
2 wave-functions ψ and χ are used to represent fermionic wave-functions, so that

the components ψα and χ.
α are anticommuting functions.20 Thus the Levi-Civita symbols εαβ and

ε
.
α
.
β serve as (antisymmetric!) metric tensors for “left” and “right” Weyl spinors, ψ,χ and ψ,χ:

(ψ·χ) := ψαε
αβχβ = ψ1χ2 − ψ2χ1 = −χβεαβψα = χβε

βαψα = (χ·ψ), (A.137)

(ψ·χ) := ψ.
αε

.
α
.
βχ .

β
= ψ1χ2 − ψ2χ1 = −χ .

β
ε
.
α
.
βψ.

α = χ .
β
ε
.
β
.
αψ.

α = (χ·ψ), (A.138)

where we must pay attention to detail:

εαγεβγ = δαβ, but εαγεγβ = −δαβ; ε
.
α
.
γε .
β
.
γ

= δ
.
α.
β
, but ε

.
α
.
γε .
γ
.
β

= −δ
.
α.
β
. (A.139)

By convention, we set ε12 = 1 = ε
.
α
.
β.

20 To be precise, every component of the field ψα and χα may be identified with a spacetime-dependent linear combination
of anticommuting operators, such as b and b† in Section 10.1, where creation operators act upon a vacuum state and
create states with appropriate fermionic excitations.
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Products of 2-component Weyl spinors satisfy the following identities:

ψαχβ = 1
2 εαβ(ψ·χ) − 1

2σ
μν
αβ (ψσσσσμν χ), (A.140)

ψ.
αχ

.
β

= 1
2 ε.α .β(ψ·χ) − 1

2σ
μν.
α
.
β
(ψσσσσμν χ), (A.141)

ψ2 := 1
2 ε
αβψαψβ, ψaχ.

α = − 1
2σ
μ

α
.
α
(ψσσσσμ χ), (A.142)

(ψ1·ψ2)(ψ3·ψ4) = −(ψ1·ψ3)(ψ2·ψ4) − (ψ1·ψ4)(ψ2·ψ3), (A.143)

(ψ1·ψ2)(ψ3·ψ4) = − 1
2 (ψ1σσσσ

μψ4)(ψ2σσσσμψ3). (A.144)

Comment A.3 Since fermionic wave-functions are anticommuting, they must also be nilpo-
tent: {

ψα(x) , ψβ(x)
}

= 0 ⇒ (
ψα(x)

)2 ≡ 0. (A.145)

The notation “ψ2” is then free for the definition:

ψ2(x) := ψ1(x)ψ2(x) = 1
2 ε
αβψα(x)ψβ(x). (A.146)

4-Vectors and Pauli’s matrices
4-vectors such as the spacetime 4-vector x transform as the ( 1

2 , 1
2 ) representation of the spin(1, 3) =

su(2)L ⊕ su(2)R algebra, i.e., of the Spin(1, 3) ∼= SL(2; C) group. The SL(2; C) group action on the
4-vector xμ is easiest represented using Pauli matrices:

[σσσσμ]α.α : σσσσ0 :=
[

1 0
0 1

]
, σσσσ1 :=

[
0 1
1 0

]
, σσσσ2 :=

[ 0 −i
i 0

]
, σσσσ3 :=

[ 1 0
0 −1

]
, (A.147)

which are identified with the index notation σμ
α
.
α

so that, e.g., σ2
12 = −i. Using εαβ and ε

.
α
.
β to “raise”

spinor indices and ημν to “lower” the vector index, we have

σ
.
αα
μ := ε

.
α
.
βεαβημνσ

ν

β
.
β

: [σσσσμ] =
(
[1], [σσσσ1], [σσσσ2], [σσσσ3]

)
= [σσσσμ]. (A.148)

That is, the matrices σσσσμ and σσσσμ look alike. However, the matrices

σσσσμ := ημνσσσσ
ν and σσσσμ := ημνσσσσν (A.149)

have a differing sign: [σσσσ1] = −[σσσσ1], [σσσσ2] = −[σσσσ2], [σσσσ3] = −[σσσσ3], as well as [σσσσ1] = −[σσσσ1], [σσσσ2] =
−[σσσσ2], [σσσσ3] = −[σσσσ3].

One therefore writes

xxxx := xμσσσσμ, xxxx → xxxx′ = M xxxx M−1, M, M ∈ SL(2; C), (A.150)

where the matrices M = exp{iωμσσσσμ} and M = exp{iπμσσσσμ} are independent, and represent the
independent “left” and “right” action, so that

(χ′·xxxx′·ψ′) = (χM−1 ·M xxxx M−1 ·Mψ) = (χ·xxxx·ψ) (A.151)

is an SL(2; C)-invariant. In the index notation,

(χ.
α x

.
αα ψα) → (χ′.α x′

.
αα ψ′

α) = χ .
β
(M

−1)
.
β.
α M

.
α .
γ x

.
γγ (M−1)γα Mα

β ψβ

= (χ.
α x

.
αα ψα). (A.152)
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Finally, notice that

det[ xxxx ] = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xμ ημν xν (3.17)= x2, (A.153)

which is also an SL(2; C)-invariant:

det[ xxxx ] → det[ xxxx′ ] = det[ M xxxx M−1 ] = det[M] det[ xxxx ] det[M−1] = det[ xxxx ], (A.154)

since the SL(2; C) elements are unimodular, det[M] = 1 = det[M].
The Pauli matrices (A.147) and (A.148) satisfy the following useful identities:

(σσσσμσσσσν + σσσσνσσσσμ)αβ = 2ημν δ
β
α , (σσσσμσσσσν + σσσσνσσσσμ)

.
α .
β

= 2ημν δ
.
α.
β
; (A.155)

Tr
[
σσσσμσσσσν

]
= Tr

[
σσσσμσσσσν

]
= 2ημν, σ

μ

α
.
α
σ

.
ββ
μ = 2δβα δ

.
β.
α

, (A.156)

and are suitable for the conversion of Spin(1, 3)-tensors into (bi)spinor expressions:

Vα.α := σ
μ

α
.
α
Vμ ⇔ Vμ = 1

2σ
.
αα
μ Vα.α. (A.157)

It is convenient to also define the matrices

(σσσσμν)αβ := 1
4

(
σμ α.ασν

.
αβ − σν α.ασμ

.
αβ
)
, (σσσσμν)

.
α .
β

:= 1
4

(
σμ

.
αασν α

.
β − σν

.
αασμ α

.
β

)
, (A.158a)

which, σσσσμν and σσσσμν independently, close the spin(1, 3) algebra (A.121c), and for which

(σσσσμν)αβ := (σσσσμν)αγεβγ and (σσσσμν)αβ := εαγ(σσσσμν)γβ, (A.158b)

(σσσσμν)
.
α
.
β := (σσσσμν)

.
α .
γε

.
β
.
γ and (σσσσμν).α .β := ε.α .γ(σσσσμν)

.
γ .
β
. (A.158c)

For these matrices (with ε0123 = 1), it is true that

(σσσσμν)αβ(σσσσρσ)βα = 1
2 (ημρηνσ − ημσηνρ) + i

2 εμνρσ, (A.159)

(σσσσμν)
.
α .
β
(σσσσρσ)

.
β.
α = 1

2 (ημρηνσ − ημσηνρ) − i
2 εμνρσ. (A.160)

Super-derivatives
In supersymmetry research, the so-called “super-derivatives”

Dα := ∂α − iσμ
α
.
α
θ
.
α∂μ and D.

α := ∂.α − iσμ
α
.
α
θα∂μ (10.68′)

are of special importance. They anticommute with the generators of supersymmetry, Qα, Q.
α, and

so commute with the operator of the supersymmetry transformation:

DαUε,ε = Uε,εDα and D.
αUε,ε = Uε,εD.

α, Uε,ε := exp{−i(εαQα + ε
.
αQ.

α) }. (A.161)

The operators Dα, D.
α are then, in fact, literally invariant with respect to the supersymmetry action,

but their name, “(super)covariant,” stuck in the literature; herein, the shorter and more precise
term “super-derivative” is used.

The basic property of the super-derivatives,{
Dα , D.

α

}
= 2 h̄−1σ

μ

α
.
α
Pμ = −2i σμ

α
.
α
∂μ, (10.69′)

is sometimes called super-commutativity and permits simplifying higher-order super-derivatives:

DαDβ = 1
2εαβD2, D.

αD .
β

= 1
2ε.α .βD2; (A.162)

DαDβDγ = 0, D.
αD .

β
D .
γ = 0; (A.163)

[D2, D.
α] = 4iσμ

α
.
α
εαβ∂μDβ, [D2, Dα] = 4iσμ

α
.
α
ε
.
α
.
β∂μD .

β
; (A.164)

D2D2 + D2D2 − 2ε
.
α
.
βD.

αD2D .
β

= −16
, 
 := ημν∂μ∂ν. (A.165)
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A.6.3 Exercises for Section A.6

✎ A.6.1 Prove the relations (A.121) using only the anticommutation relations (A.119).

✎ A.6.2 Prove the relations (A.122) using only the anticommutation relations (A.119).

✎ A.6.3 Prove Theorem A.5 using only the anticommutation relations (A.119).

✎ A.6.4 Prove Theorem A.5 using the Cayley–Hamilton theorem.

✎ A.6.5 Prove the relations (A.125) using only the anticommutation relations (A.119).

✎ A.6.6 Prove the relations (A.126) using only the anticommutation relations (A.119).

✎ A.6.7 Prove the relations (A.162)–(A.165) using only the relations (10.69).
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