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TOPOLOGICAL COMPLETENESS OF FUNCTION SPACES 
ARISING IN THE HAUSDORFF APPROXIMATION 

OF FUNCTIONS 

(Dedicated to Professor Bl. Sendov) 

GERALD BEER 

ABSTRACT. Let X be a complete metric space. Viewing continuous real functions on 
X as closed subsets of X x R, equipped with Hausdorff distance, we show that C(X, R) is 
completely metrizable provided X is complete and sigma compact. Following the Bul­
garian school of constructive approximation theory, a bounded discontinuous function 
may be identified with its completed graph, the set of points between the upper and 
lower envelopes of the function. We show that the space of completed graphs, too, is 
completely metrizable, provided X is locally connected as well as sigma compact and 
complete. In the process, when X is a Polish space, we provide a simple answer to the 
following foundational question: which subsets of X x R arise as completed graphs? 

1. Introduction. The recent publication by Kluwer Publishers of the English edi­
tion of Hausdorff Approximations by Bl. Sendov [Se] marks roughly thirty years of re­
search by the Bulgarian school on the approximation of bounded real functions, both 
continuous and discontinuous, with respect to Hausdorff distance. Let (X, d) be a metric 
space and let C(X, R) be the continuous real functions on X. In classical approximation 
theory, one normally works with uniform distance between continuous functions, where 
the distance between functions is the "maximal'Vertical gap between their graphs. In the 
Hausdorff approximation of functions, this vertical bias is removed, and functions are 
viewed as closed sets in X x R, equipped with Hausdorff distance induced by the box 
metric ponXxR. Precisely, for/, g bounded continuous real valued functions on X, the 
Hausdorff distance Hp(f, g) between them is given by the formula 

Hp(f>g) = m a x I SUPinf max{J(x,z), \f(x) - g(z)\}> 
1 xex ^x 

sup inf max{d(x, z), |g(x) - f(z) |}}. 
x£X ^X J 

For bounded possibly discontinuous functions/ and g, the distance between them is 
computed in terms of the Hausdorff distance between two auxiliary sets/ and g, called 
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the completed graphs of the respective functions. The completed graph of a function is 
simply the set of points in X x R lying between its upper and lower envelopes. 

One characteristic of the Hausdorff distance, even in the nicest spaces, is that a se­
quence of bounded continuous functions can converge in Hausdorff distance to a set that 
is not only not the graph of a continuous function, but is also not even the completed 
graph of a bounded function. For example, for n > 3, let/n G C([0,1], R) be the piece-
wise linear function whose graph connects the following points in succession: 

(0,0), (1/*,1), ( 2 / n , - l ) , (3/n,0), and (1,0) 

Then (fn) converges in Hausdorff distance in [0,1] x R to the T-shaped set 

A = {(jt,0) : 0 < x < 1} U {(0,y) : - 1 < y < 1}. 

Evidently, A cannot be the completed graph of any function/: [0,1] —> R because we 
would have to have/(;c) = 0 for each x > 0. 

The above example shows that neither the space of bounded continuous functions on 
[0,1 ] nor the space of completed graphs, equipped with Hausdorff distance, is a complete 
metric space. In this paper we show, much more generally, that these spaces are, how­
ever, completely metrizable. In the process we are forced to address the following basic 
question: exactly what subsets of X x R are completed graphs of bounded functions? 
When X is a Polish space, we provide a simple but nontrivial characterization. 

2. Preliminaries. Let (X, d) be a metric space. If A is a closed subset of X and 
x G X, we write d(x, A) for inf{d(x, a) : a G A}. 

We denote the nonempty closed subsets of (X, d) by CL(X). For A G CL(X) and s > 0, 
we denote by S£[A] the e-parallel body of A, {x G X : d{x, A) < e}. We may now define 
Hausdorff distance in CL(X) as follows (see, e.g., [Ha, CV, KT, Se]): 

Hd(A,B) — max{sup d(a,B), sup d(b, A)} 
aeA b£B 

= inf{£ > 0 : A C S£[B] and B C S£[A]}. 

As is well-known, if a sequence (An) is convergent in Hausdorff distance to A, then 
A = LiAn = LsArt, where LiAn (resp. LsAn) consists of all points x G Xeach neighbor­
hood of which meets all but finitely many (resp. meets infinitely many) of the sets An. 
Conversely, when X is compact, then A = Li An = LsAn implies Hindoo Hd{An,A) = 0 
[Ha, §28]. 

Hausdorff distance so defined yields an infinite valued metric on CL(X), which is 
complete provided (X, d) is complete [CV, KT]. Uniformly equivalent metrics give rise 
to uniformly equivalent Hausdorff metrics; thus, for the purposes of completeness ques­
tions, if the reader is bothered by infinite values, the distance Hd(A, B) may be replaced 
by the finite distance min{Hd(A, B), 1}. We denote the topology on CL(X) induced by 
Hausdorff distance by rHd in the sequel. 
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If (X, dx) and (Y, dY) are metric spaces, the box metric p on X x F will be understood: 

pUxuy\),(x2,y2)\ = max{dx(xux2),dY(yuy2)]. 

In view of the remarks just made, using any other standard matrix onX x Y gives rise 
to a uniformly equivalent Hausdorff metric on CL(X x Y). We denote the continuous 
functions from X to Y by C(X, Y). Since elements of C(X, Y) are closed subsets of X x Y, 
we may speak of the Hausdorff distance between them with respect to the box metric. In 
particular, if Y = R with the usual metric, the Hausdorff distance between two real con­
tinuous functions/ and g is given by the formula of § 1. As is well known, the topology of 
uniform convergence is finer than the Hp-topology on C(X, Y), and provided Y has some 
nontrivial path, the topologies agree if and only if each element of C(X, R) is uniformly 
continuous [Be3]. Spaces on which real continuous functions are uniformly continuous 
properly contain the compact spaces; they are called UC-spaces or Atsuji spaces in the 
literature, and admit a number of beautiful characterizations [At, To, Ra, Wa, Be3, Be5, 
RZ]. As noted in the introduction, if (X, dx) and (Y, dy) are complete metric spaces, then 
(C(X, Y),rHp) need not be a complete metric space, unlike C(X, Y) equipped with the 
uniform metric. Completeness criteria for subfamilies of (C(X, Y),THP) are explored in 
[Be6]. For other work on continuous functions and Hausdorff distance in the context of 
metric spaces, the reader may consult [Bo, HN, Ho, Na]. 

If A G CL(X x F), we write A(x) for the slice {y G Y : (jc,y) G A}, and A*(JC) for the 
stalk {(JC, v) : y G A(x)}. Evidently, A(x) is a closed, but possibly empty, subset of Y. We 
write CL0(X x Y) for {A G CL(X x Y) : VJC G X, A(x) ± 0}. 

By a multifunction or correspondence T from X to 7, we mean a function that assigns 
to each x G X a closed, but perhaps empty, subset T(x) of Y. By the graph of F we mean 
this subset of X x Y: 

{(*, v) : JC G X and v G T(x)}. 

Excluding the empty multifunction, there is a one-to-one correspondence between 
CL(X x Y) and the multifunctions with closed graph from X to F, given by A <-* Y A 
where TA(X) = A(x). We call a multifunction T w/?/?er semicontinuous (u.s.c) [Kt, En] 
provided for each open subset V of F, {JC G X : T(JC) C V} is open in X. Upper semicon­
tinuous multifunctions have closed graphs, and a multifunction with closed graph with 
values in a compact target space is automatically u.s.c. [KT, p. 78]. As a counterexample 
in/?2, 

A = {(jc,y):jc^Oandy= 1 / JC}U{(0 ,0 )} 

is closed, but JC —• A(JC) is not an upper semicontinuous multifunction. We call a multi­
function r bounded provided \Jxex H*) is a bounded subset of Y. 

In the sequel, we will freely identify a multifunction with closed graph with its graph. 
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3. Topological completeness of C(X, Y) with the Hausdorff metric topology. Let 
(X,dx) and (Y,dy) be complete metric spaces. In this section, we obtain sufficient con­
ditions for the complete metrizability of (C(X, Y),rHp) where, as usual, p is the box 
matrix on X x Y. Since (X x 7, p) is a complete metric space, so is the hyperspace 
(CL(X x Y),rHp) [KT, Theorem 4.3.8]. Thus, by the celebrated theorem of Alexandroff 
(see, e.g., [En, p. 342]), complete metrizability of (C(X, Y),rHp) holds provided we can 
show that C(X, Y) is a G^-subset of (CL(X x Y),rHp). This will be accomplished for X 
a-compact, and Y either compact or a Euclidean space. We obtain these results through 
a series of lemmas, some of which will be used in the next section where we consider 
completed graphs. 

LEMMA 3.1. Let (X, dx) be a metric space and let (Y,dy) be a metric space in which 
closed and bounded sets are compact. Let (An) be a sequence of bounded multifunctions 
in CL0(X x Y) H ̂ convergent to A G CL(X x Y). Then A G CL0(X x Y). 

PROOF. Evidently, the multifunctions are uniformly bounded. Fix x G X. For each 
n G Z+, choose yn G An(x). By the compactness of closed and bounded subsets of F, 
some subsequence of (yn) is convergent to a point y G Y. This means that (x, y) G Ls A„, 
and by Hausdorff metric convergence, LsAn = A. Thus, y G A(x) and A G CL0(Xx Y), m 

EXAMPLE. In the plane, A = {(JC, y) : y = l/x and x ^ 0} is the Hausdorff metric 
limit of (An), where An = {(JC, y) : y = 1 /JC and JC ^ 0} U {(0, n)}. 

COROLLARY 3.2. Lef (X, dx) be a metric space and let (Y,dy) be a compact metric 
space. Then CLo(X x Y) is a closed subset of (CL(X x F),r//p). 

A standard proof [En, p. 344] of the Lebesgue covering lemma for a compact metric 
space yields something a little stronger, that we require in Lemma 3.3 below. 

EXTENDED LEBESGUE COVERING LEMMA. Let (X, d) be a metric space and let K be 
a compact subset of X Let {V/ : / G /} be a family open subsets of X with K C \JieI V/. 
Then there exists 6 > 0 such that for each subset A of X of diameter less that è that meets 
K, there exists / G / with A C Vt. 

LEMMA 3.3. Let (X, dx) be a sigma compact metric space and let (Y,dy) be a com­
pact metric space. Then C(X, Y) is a G^-sub set of (CLo(X x Y),THP). 

PROOF. Write X = U ^ i Kn with each Kn compact. Let Q.n be the following set of 
relations: 

Çln = {Ae CL0(X x Y) : VJC G Kn A{x) is a singleton}. 

The set of functions with closed graph from X to Y is clearly f|£Li ^n, and since each such 
function determines an upper semicontinuous multifunction [KT, Theorem 7.1.16], each 
such function is necessarily continuous. Thus, to establish the assertion of the lemma, it 
suffices to show that each Qn is a G^-subset of CL0(X x Y). 

To this end, fix n G Z \ Let Ank = {A G CL0(X x Y) : Vx G Kn,dmmA(x) < 1/Jfc}. 
Now if A G An, for each x in Kn there exists an open subset Vx of Y containing A(x) with 

https://doi.org/10.4153/CMB-1992-058-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-058-1


COMPLETENESS OF FUNCTION SPACES 443 

diam Vx < 1 /k. By the upper semicontinuity of x —*• A(JC), there exists {x\, JC2,..., xm} C 
£"„ and positive numbers {ei, £2» • • • > £m} such that T̂n C U5=i S^M, and whenever 
x G 5e.[x/], we have A(x) C Vx.. Choose 6 > 0 such that each subset of X of diameter 
less than 6 that meets £"„ is contained in S£.[xi] for some /. Let A be this positive number 

- — max{diam Vx. : 1 < i < m} \. 

Now suppose B G CLQ(X X Y) and //P(A, 5) < min{ \, §}. We claim that B e Ank. 
To see this, fix JC G ^ n and v G #(*), and choose / < m such that 5^2W C S£|-M. 

There exists (XA,VA) G A with p[(*,y), ( X ^ A ) ] < min{|, | } . Since JCA G S£i[xt], we 
have ^ G VXi. Thus, y G 5A/2(VX/), so that B(x) C 5A/2(^,-)» a s e t w i m diameter at most 
diam Vx. +À < 1 /k. This proves that B G A^ so that Ank is open in the relative Hausdorff 
metric topology. 

Finally, for each n, we have Qn = f|j£i Anfc, completing the proof. • 
Putting together the last two results, we have in view of Alexandroff 's Theorem 

THEOREM 3.4. Let (X,dx) be a sigma compact complete metric space and let 
(Y,dy) be a compact metric space. Then (C(X, F), TJJP ) is a G^-subset of(CL(X x F), THP ) 
and is thus completely metrizable. 

We next wish to show the last result is valid with a Euclidean target space in lieu of a 
compact one. We need one more lemma. 

LEMMA 3.5. Let (X, d) be a sigma compact metric space and let (Y, d) be a metric 
space. Suppose K is a nonempty compact subset of Y and £ = {A G CL(X x Y) : 
A H (X x K) = 0}. Then Z is a Gh-subset of (CL(X x Y),rHp). 

PROOF. Write X = \J™=1 Kn with each Kn compact. Evidently, 

00 

Z = f| {A G CL(X x Y) : A H (Kn x K) = 0}. 
n=\ 

Since the set of closed sets that miss a fixed compact set is open in the Hausdorff metric 
topology and Kn x K is compact for each «, the result follows. • 

THEOREM 3.6. Let (X,dx) be a complete sigma compact metric space. Then 
(C(X, Rn), THP ) is completely metrizable. 

PROOF. Let U be the closed unit ball of Rn, equipped with the usual metric. For each 
A G CL(X x Rn\ let A be this subset of CL(X x U): 

A = c l { ( x , J ) : T ^ M G A W } . 

The map A —» A is nonexpansive (Lipschitz with constant one) with respect to Haus­
dorff distance and is thus continuous. Moreover, its restriction to C(X,Rn) is 1-1 onto 
C(X, int U). By Lemma 3.5 and Theorem 3.4, C(X, int U) is a G^-subset of CL(X x U). 
Hence, the inverse image of C(X, int U), namely C(X,Rn), is a G^-subset of a complete 
metric space. • 

A = 2 
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COROLLARY 3.7. Let (X, dx) be a complete sigma compact metric space. Then the 
bounded continuous real functions from X to Rn, equipped with THP, are completely 
metrizable. 

PROOF. The bounded multifunctionsform an open and closed subset of CL(X xRn), 
so that the bounded continuous functions are the intersection of two G^-subsets of a 
completely metrizable space. • 

4. Topological completeness of the space of completed graphs of Sendov. Fol­
lowing Sendov [Se, §1.3], we first introduce the concept of the completed graph of a 
bounded real function. Let (X, d) be a metric space, and let/: X —> R be a bounded func­
tion with no assumed continuity properties whatsoever. Recall that the upper envelope 
of such a function is the infimum of the upper semicontinuous functions that majorize/, 
and the lower envelope of such a function is the supremum of the lower semicontinuous 
functions that/ majorizes. We denote the upper and lower envelopes of/ by u(f\ •) and 
/(/"; •), respectively. At each x G X, we have 

u(f\ x) — inf sup f(w) and /(/"; x) = sup inf f(w) 

Of course, for each x, /(/"; x) < f(x) < uif\ x), and u(f; •) (resp. /(/; •)) is a bounded upper 
(resp. lower) semicontinuous function. This means that both 

hypo w(/; •) = {(*, y) : x G X,y G R, and y < u(f;x)} 

and 

epi /(ft •) = {(x9y) : JC G X,y G R, and y > l(f\x)} 

are closed subsets of X x R [Au, p. 106]. As a resuit, 

/ = hypo «(/;•) H epi /(/;•) 

belongs to CLo(X x /?) and moreover, has convex slices. We call/ the completed graph of 
/ . We remark that the completed graph of/ is the minimal (with respect to set inclusion) 
upper semicontinuous convex valued multifunction that contains the graph of/. 

We denote by CG(X) those multifunctions from X to R that arise as the completed 
graph of some bounded single valued function from X to R. A necessary condition for a 
nonempty closed subset A of X x R to be in CG(X) is that A determines a bounded convex 
valued multifunction. But this is not sufficient, as we noted in the introduction. 

To see what in addition is required, we find it convenient to introduce some more 
notation. If A G CLo(X x R) and A determines a convex valued bounded multifunction, 
we now write UA(X) for max{v : y G A(x)} and IA(X) for rmn{y : y G A(JC)}. By up­
per semicontinuity of x —• A(x) it is clear that u\ (resp. lA) is an upper (resp. lower) 
semicontinuous real function. 
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THEOREM 4.1. Let (X,d) be a Polish space, i.e. X is separable and completely 

metrizable. Let A G CLo(X x R). The following are equivalent: 

(i) A is bounded with convex slices and for each x G X with UA(X) ^ IA(X\ either 

(x, UA(JC)) or (JC, IA(X)) belongs to cl(A — A*(x)); 

(ii) A is the completed graph of a bounded function from X to R. 

PROOF, (ii) => (i). We only check the last condition in (i). Suppose A = / for some 

bounded function/, and x is a point at which uA(x) ^ IA(X). NOW A —f implies UA — 

u(f; •) and IA — l(f\ •)• Suppose that neither (JC, UA(JC)) nor (JC, U (*)) belongs to cl(A — 

A*(x)). In view of the semicontinuity of UA and v^, this means that there exists 8 > 0 

such that 

UA(X) > SUP{UA(W) : 0 < d(w,x) < 6} and lA(x) < inf{lA(w) : 0 < d(w,x) < <5}, 

so that 

u(f\x) > sup{/(w) : 0 < d(w9x) < 6} and l(f\x) < M{f(w) : 0 < d(w,x) < 6}. 

Since u(f; x) = inf^o sup{f(w) : d(w, x) < 6}, we must have u(f; x) = f(x), and simi­

larly, l(f;x) —f{x). This implies that UA(X) = /^(i), a contradiction. 

(i) => (ii). Let us call a stalk A*(x) singular if either (JC, UA(X)) or (JC,/^(JC)) fails to 

belong to cl(A —A* (*)). By hypothesis, this cannot be the case for both points if UA (X) ^ 

IA(X). Moreover, since the product topology for X x R has a countable base, it is easy to 

see that there can be at most countably many singular stalks. 

We first produce a countable subset of the union of the graphs of UA and I A , whose 

ordered pairs have different first coordinates, that is dense in the union. Let V\, V2» V3, . . . 

be those basic open sets in a fixed countable base for the topology of X x R that meet 

the union of the graphs. For each n we inductively produce a finite sequence (x\, y\ ) , . . . , 

(xn, yn) of points (not necessarily distinct) in X x R such that 

(a) (Xi.yd e Vf, 
(b) (xi9yi) ^ (xk,yk) implies x, ^ xk\ 

(c) for each i,yt = uA(xi) ory, = lA{xt)\ 

(d) if A(xt) is a singular stalk, then (jc,,y/) ^ cl(A — A*(JC)). 

To describe this procedure, suppose (jci,yi), . . . ,(xn ,yn) have already been chosen. 

Choose x G X such that either (JC, UA (JC)) G Vn+\ or (JC, / A W ) G Vn+\. We consider only 

the first case; the second is similar and is left to the reader. 

If (JC, UA (JC)) ^ cl(A — A*(JC)), set (xn+i,yn+\) — (JC, UA (JC)). This choice satisfies (a) for 

/ = n + 1, (c) and (d), and by (i) it also satisfies (b). Otherwise, choose e > 0 such that 

S2£[x] x {uA(x) - 2e, uA(x) + 2e) C Vn+\. 

Choose by upper semicontinuity <5 < e such that UA(W) < UA(X)+S whenever d(x, w) < 6. 

Since we are now assuming that (JC, UA(X)) G cl(A — A*(JC)), the set 

E= [weX: 0<d(x,w) <6 andA(w)H (WA(JC) - e,uA(x) + e) ^ 0} 
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is nonempty. We consider two possibilities for E: E is not dense in itself, or E is dense 
in itself. In the first case, E has an isolated point w, and since (w, WA(WO) £ S$[x] x 
(MAW — £, "AW + e), we must have (w, WA(W)) ^ cl(A — A*(w)y We may safely set 
(xn+\9yn+\) = (w, MA(W)), consistent with the inductive procedure as before. Otherwise, 
the set cl E is a perfect subset of the complete metric space X, and is thus uncountable. 
Since the set of singular stalks is countable, there exists w e c\E such that w ^ xt for 
/ = 1,2,3,... , n and A*(w) is nonsingular. Since A is a closed set, we see that A(w) Pi 
[UA(X) — e, UA(x)+e] T̂  0 and by the choice of 8, we have UA(W) < ua(x) + e. We conclude 
that 

(w, uA(w)) e S2dx] x (wA(x) - 2e, wA(x) + 2e) C V„+i. 

We now set (xn+i,yn+\) = (w, MA(W)), and conditions (a)-(d) also hold for this choice. 
This verifies the validity of induction procedure as claimed. 

We are now ready to define f:X —• R for which/ = A. Let X0 = {xt : i e Z+}. 
For each i e Z+, let/(x/) = v, and for each x $ XQ, let/(jt) = uA{x). By (b) in the 
induction procedure, / is a function. By (c) in the induction procedure, for each x, we 
have lA(x) <f(x) < uA{x)\ so by the lower (resp. upper) semicontinuity of lA (resp. uA), 
we have 

IA(X) < l(f\x) and u(f\x) < UA(X). 

On the other hand, the density of the graph of f\Xo in the union of the graphs of I A and 
UA as guaranteed by (a) and (c) in the induction procedure yields 

l(f\x) < IA(X) and uA(x) < u(f\x). 

Together these yield / = A. • 
We are able to establish the completeness of the space of completed graphs when X is 

sigma compact, complete, and locally connected. Local connectedness may seem out of 
place here, but it has reared its head in a number of function space questions (see, e.g., 
[Be4, Po, MH]). We will use the following result that is a special case of Theorem 8 of 
[Be2]. Example 2 of [Be2] and Example 3 of [Bel] show that this result fails if (i) locally 
connected is replaced by connected; (ii) R is replaced by R2. 

THEOREM. Let (X,d) be a locally connected metric space. Let (An) be a sequence 
in CLo(X x R) such that for each n, An is a convex valued upper-semicontinuous mul­
tifunction. If A = Hp — limAn, then A is also a convex valued upper semicontinuous 
multifunction. 

Let CVB(X) = {A G CLo(X x R) : A determines a bounded convex valued multi­
function from X to R}. 

LEMMA 4.2. Let (X, d) be a locally connected metric space. Then C VB(X) is a closed 
subset of (CL(X x R\rHp). 

PROOF. Evidently, the bounded multifunctions form a closed (and open) subset of 
CL(XxR). Furthermore, by Lemma 3.1 the limit of a sequence of bounded multifunctions 
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(An) where for each n, An G CL0(X x R), must also be in CLo(X x R). Since bounded 
multifunctions into R are automatically upper semicontinuous, the result now follows 
from the previous cited theorem from [Be2]. • 

THEOREM 4.3. Let (X, d) be sigma compact, complete, and locally connected. Then 
the completed graph space CG(X) is G$-subset of(CL(XxR), THP ) and is thus completely 
metrizable. 

PROOF. Note that X is a Polish space, so that we may use the description of relations 
that are completed graphs furnished by Theorem 4.1. By Lemma 4.2, it suffices to show 
that CG(X) is a G^-subset of CVB(X). We show that the complètement is an /v-subset. 
As usual write, X = |J£Li Kn with each Kn compact. For positive integers nj and k with 
k > 2/, define A(n,j, k) c CVB(X) as follows: 

A(nJ,k) — [A : there exists x G Kn and pointsy\ and y2 inA(;c) with^i + \/j < j2, 

{Si/kW x (~oo, vi + 1/kj) H (A-A*(xj) = 0, and 

(Sl/k[x] x(y2- l / t ,oo)) H (A -A*(x)) = 0}. 

It is routine to show that A(n,y, /:) is closed in CVB(X). Since condition (i) of Theorem 4.1 
is satisfied if and only if A g |J£Li U~i U^27 A(n,y, ife), the result follows. • 
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