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Nilpotent Orbits and Whittaker Functions
for Derived Functor Modules of Sp(2,R)

Takuya Miyazaki

Abstract. We study the moderate growth generalized Whittaker functions, associated to a unitary char-
acterψ of a unipotent subgroup, for the non-tempered cohomological representation of G = Sp(2,R).
Through an explicit calculation of a holonomic system which characterizes these functions we observe
that their existence is determined by the including relation between the real nilpotent coadjoint G-orbit
of ψ in g∗R and the asymptotic support of the cohomological representation.

Introduction

In this paper we study the generalized Whittaker functions for non-tempered Zuck-
erman’s derived functor modules of G = Sp(2,R) which denotes the real symplectic
group of degree 2. Fix a proper parabolic subgroup of G and denote its unipotent
radical by N . For a unitary non-degenerate character ψ of N we will consider the re-
duced generalized Gelfand-Graev representation [Y1] of G. Then we study the space
of G-equivariant maps from an irreducible admissible representation, in particular a
derived functor module, π of G into this G-module, which we call (N, ψ)-Whittaker
embeddings of π. We are especially interested in such an embedding whose image
consists of moderate growth functions on G. Conjecturally its existence and prop-
erties might be related to a nature of a closed union of nilpotent coadjoint G-orbits
in g∗R, which was introduced by Barbasch and Vogan [B-V] for a given π as follows.
The global distribution character of π lifts to an invariant eigendistribution on a
neighborhood of the origin in gR by the exponential map. The lift has an asymptotic
expansion near the origin. Then its leading term is given by a linear sum of tempered
distributions, and the Fourier transform gives a combination of invariant measures
supported on nilpotent coadjoint G-orbits in g∗R. We take the union of those orbits
and call it the asymptotic support of π. We will explain in Section 6 a relation oc-
curring in our several examples between the nilpotent orbit and the existence of a
moderate growth Whittaker embedding, which supports a part of conjectures found
in [K], [Ma].

Our main technique to investigate the Whittaker embedding for a derived functor
module is to use a set of differential operators which acts on the space of smooth
sections of a vector bundle on G/K. Here K denotes a maximal compact subgroup of
G. Such an operator was introduced by Schmid to realize the discrete series represen-
tations of a semisimple Lie group, and then generalized to characterize the derived
functor modules by Wong [W], Barchini [Ba]. We will apply these differential opera-
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tors on the image of a Whittaker embedding of a derived functor module Aq(λ), then
analyze its kernel space explicitly.

1 The Zuckerman-Vogan Derived Functor Modules Aq(λ)

1.1

Let gR be a real semisimple Lie algebra, g its complexification. In the following we
omit the subscript R to express the complexification of real algebras. Denote by G a
connected real semisimple Lie group with Lie algebra gR. We fix a G-invariant non-
degenerate quadratic form on g by which we identify g with its dual g∗. Fix a Cartan
involution θ, then we have the Cartan decomposition: gR = kR ⊕ pR, where kR, or
pR, is the +1, or−1, eigenspace of θ respectively. Denote by K the compact Lie group
of G with Lie algebra kR. We assume that rank G = rank K, so there exist the discrete
series of G. We fix a compact Cartan subalgebra tR of gR. Given an elliptic element
X ∈

√
−1tR, we define algebras u = u(X), l = l(X) and ū = ū(X) to be the sum

of eigenspaces of ad(X) in g with positive, 0, and negative eigenvalues, respectively.
Then q = q(X) = l + u is said to be a θ-stable parabolic subalgebra of g. The algebra
l, which contains t, is the Lie algebra of LC = ZGC (X), the centralizer of X in GC. It
is defined over R, so we can write l = lR ⊗ C. Denote by Q the θ-stable parabolic
subgroup of GC corresponding to q. The real G-orbit G/L determines an open sub-
manifold in the flag variety GC/Q; thus it has an invariant complex structure. For
λ ∈

√
−1t∗R we define a character of L; then we can define a line bundle on GC/Q.

Then it is known that the derived functor module Aq(λ) has a geometric realization

Aq(λ) � HdimC(u∩k)
∂̄

(G/L, C̃λ+2ρu
)K ,

by the underlying Harish-Chandra module of the Dolbeault cohomology group of
G/L, [W]. Here 2ρu = det(AdL |u) and the holomorphic line bundle C̃λ+2ρu

is defined
as the pull back of GC ×Q Cλ+2ρu

on GC/Q. A linear form λ ∈
√
−1t∗R is said to be

good, if
Re〈λ + ρu − ρl, α〉 ≥ 0 for all α ∈ ∆(u, t),

where 2ρl is the sum of positive roots of t on l, and ∆(u, t) is the set of roots of
t on g whose root vectors are in u. Define 2ρu∩p (resp. 2ρu∩k) to be the sum of
roots of t on g whose root vectors are in u ∩ p (resp. u ∩ k). We call that λ ∈√
−1t∗R is integral, if λ + 2ρu∩p determines the highest weight of an irreducible finite

dimensional representation of KC.
Let π be an irreducible admissible (g,KC)-module. We denote by Ass(π) its associ-

ated variety [V1]. It is a closed union of nilpotent coadjoint KC-orbits in N∗∩(g/k)∗,
where N∗ is the set of nilpotent elements of g∗ and (g/k)∗ denotes the set of linear
forms on g which vanish on k.

We recall some facts regarding derived functor modules.

Proposition 1.2

(i) If λ ∈
√
−1t∗R is integral and good, then the Harish-Chandra module Aq(λ) is

non-zero, irreducible and infinitesimally unitary.
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(ii) Suppose λ is integral and good. Then each of the K-types occurring in Aq(λ)|K has
the highest weight

λ + 2ρu∩p +
∑

β∈∆(u,t)

nββ, nβ ∈ N.

The K-type with the highest weight λ + 2ρu∩p occurs in Aq(λ) with multiplicity
one, and is called the minimal K-type of Aq(λ).

(iii) Suppose λ is integral and good, then the associated variety Ass
(

Aq(λ)
)

, under
identification g � g∗, is given by

Ass
(

Aq(λ)
)
= Ad(KC)(ū ∩ p).

2 The Symplectic Lie Group and Algebra, and Its Derived Functor
Modules

2.1

Let G = Sp(2,R) be the real symplectic Lie group of degree 2; G =

{
g ∈ SL4(R) |

t g Jg = J, J =

(
0 12

−12 0

)}
. Denote by gR its real Lie algebra, and set g = gR ⊗ C.

It has a Cartan decomposition gR = kR ⊕ pR with a Cartan involution θ(X) = −t X
for X ∈ gR; denote by g = k ⊕ p its complexification. Here kR is the Lie algebra of a
maximal compact subgroup K of G which is isomorphic to u(2)R and explicitly given

by kR =

{(
A B
−B A

)
∈ gR | A,B ∈ M2(R),A = −t A,B = t B

}
. Note that the real

ranks coincide for G and K, which is equal to 2. Take a compact Cartan subalgebra
tR of gR, then the set of roots∆(g, t) of t = tR ⊗ C on g is of type C2. It is written as
∆(g, t) = {±e1 ± e2,±2e1,±2e2} with bases e1 and e2 of

√
−1t∗R. Denote by Xα the

root vector for α ∈ ∆(g, t).
We give a parameterization of KC-conjugacy classes of the θ-stable parabolic sub-

algebras of g. This parameterization corresponds to the subsets of
√
−1t∗R under

certain partition given below. Writing ξ = ξ1e1 + ξ2e2, we define the subsets Ξk,
1 ≤ k ≤ 10, of the linear forms

√
−1t∗R by

Ξ1 := {ξ | ξ2 < ξ1, ξ1 > 0, ξ2 > 0}; Ξ2 := {ξ | −ξ1 < ξ2, ξ1 > 0, ξ2 < 0};

Ξ3 := {ξ | ξ2 < −ξ1, ξ1 > 0, ξ2 < 0}; Ξ4 := {ξ | ξ2 < ξ1, ξ1 < 0, ξ2 < 0};

Ξ5 := {ξ | ξ1 = ξ2, ξ1 > 0}; Ξ6 := {ξ | ξ2 = 0, ξ1 > 0};

Ξ7 := {ξ | ξ1 = −ξ2, ξ1 > 0}; Ξ8 := {ξ | ξ1 = 0, ξ2 < 0};

Ξ9 := {ξ | ξ1 = ξ2, ξ1 < 0}; Ξ10 := {ξ | ξ1 = ξ2 = 0}.
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2e2

e1 − e2

Figure 1: C2 root system

To each ξ ∈ Ξk, we attach a θ-stable parabolic subalgebra q(ξ) = l(ξ) + u(ξ);

for ξ ∈ Ξ1, l(ξ) = t, u(ξ) = CX2e2 + CXe1+e2 + CX2e1 + CXe1−e2 ;

for ξ ∈ Ξ2, l(ξ) = t, u(ξ) = CXe1+e2 + CX2e1 + CXe1−e2 + CX−2e2 ;

for ξ ∈ Ξ3, l(ξ) = t, u(ξ) = CX2e1 + CXe1−e2 + CX−2e2 + CX−e1−e2 ;

for ξ ∈ Ξ4, l(ξ) = t, u(ξ) = CXe1−e2 + CX−2e2 + CX−e1−e2 + CX−2e1 ;

for ξ ∈ Ξ5, l(ξ) = t + CX−e1+e2 + CXe1−e2 , u(ξ) = CX2e2 + CXe1+e2 + CX2e1 ;

for ξ ∈ Ξ6, l(ξ) = t + CX2e2 + CX−2e2 , u(ξ) = CXe1+e2 + CX2e1 + CXe1−e2 ;

for ξ ∈ Ξ7, l(ξ) = t + CXe1+e2 + CX−e1−e2 , u(ξ) = CX2e1 + CXe1−e2 + CX−2e2 ;

for ξ ∈ Ξ8, l(ξ) = t + CX2e1 + CX−2e1 , u(ξ) = CXe1−e2 + CX−2e2 + CX−e1−e2 ;

for ξ ∈ Ξ9, l(ξ) = t + CXe1−e2 + CX−e1+e2 , u(ξ) = CX−2e2 + CX−e1−e2 + CX−2e1 ;

for ξ ∈ Ξ10, q(ξ) = l(ξ) = g.

The θ-stable parabolic subalgebra q(ξ) depends only on the class Ξk which contains
ξ; so we will denote by qk, 1 ≤ k ≤ 10, the KC-conjugacy classes of θ-stable parabolic
subalgebras of g. We say that a derived functor module Aq(λ) is of the class k, if q =
qk. Note that a derived functor module of the class 2, or 3, is, indeed, a large discrete
series representation, and that the one of the class 10 is the trivial representation, etc.

2.2

We will parameterize the associated varieties of the derived functor modules of each
class above. The nilpotent KC-orbits in (g/k)∗ are indexed by the signed Young
tableaux, [C-M], Chapter 9. In our case, g = sp(2), the corresponding signed Young
tableaux are given in Figure 2.

Here the lines connecting two tableaux suggest the closure relations among the
linked nilpotent orbits, [D]; more precisely, the closure of the nilpotent orbit indexed
by the upper tableau contains the orbits in the lower layer orbit linked to it. Denote
by OY the orbit to each signed tableau Y ; for example, O , etc. The numbers
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0

Figure 2: The signed Young tableaux for sp(2)

Ass
(

Aq1 (λ)
)
= Cl

(
O

)
= O � O � O ;

Ass
(

Aq2 (λ)
)
= Cl

(
O

)
;

Ass
(

Aq3 (λ)
)
= Cl

(
O

)
; Ass

(
Aq4 (λ)

)
= Cl

(
O

)
;

Ass
(

Aq5 (λ)
)
= Cl

(
O

)
; Ass

(
Aq6 (λ)

)
= Cl

(
O

)
;

Ass
(

Aq7 (λ)
)
= Cl

(
O

)
; Ass

(
Aq8 (λ)

)
= Cl

(
O

)
;

Ass
(

Aq9 (λ)
)
= Cl

(
O

)
; Ass

(
Aq10 (λ)

)
= Cl

(
O
)
= {0}.

Figure 3: Table of the associated varieties

written in the right side of Figure 2 mean the complex dimensions of the nilpotent
KC-orbits OY in the layer; for example, dimC O = dimC O = 4, etc.

The associated varieties Ass
(

Aqk (λ)
)

of the derived functor modules of the class k

are given in Figure 3, at least when λ is good and integral. In Figure 3, Cl
(
O
)

denotes
the closure of the orbit O. We remark that it depends only on the class of a θ-stable
parabolic subalgebra, but not on each λ.

3 The Generalized Whittaker Functions and Differential Equations

3.1

We use the notation defined in Section 2. Let P be a parabolic subgroup of G and
P = MAN its Langlands decomposition, where N is the unipotent radical and M is
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semisimple. Fix a non-degenerate unitary character ψ : N → C∗. The subgroup M of
P normalizes N , and acts naturally on the set of characters of N . Define M(ψ) to be
the identity component of the subgroup of M which stabilizes the character ψ under
this action. As we will see below case by case, it is always abelian in our studies. So
taking a unitary character χ of M(ψ), we can determine a character η = χ · ψ of the
semi-direct product R := M(ψ) � N obtained by multiplying both values. Then we
consider the representation of G induced from η in C∞-context:

C∞- IndG
R (η) := { f : G→ C | smooth, f (rg) = η(r) f (g), (r, g) ∈ R× G},

on which G acts by the right translation. It has also a compatible Harish-Chandra
module structure. We use the same symbols ψ, χ, and η for the representations of
the corresponding Lie algebras nR, m(ψ)R , and rR = m(ψ)R + nR.

We recall a definition of Schmid operator. For an irreducible finite dimensional
KC-module (τ ,V ), we define C∞(G,V ) the space of V -valued smooth functions ϕ
on G satisfying

ϕ(gk) = τ (k)−1ϕ(g), (r, k) ∈ R× K.

Take an orthonormal basis (X j)1≤ j≤dim pC of pC with respect to the restriction of the
complexified Killing form on gC. Then we define

∇ϕ(g) :=
∑

1≤ j≤dim pC

RX jϕ(g)⊗ X̄ j

for ϕ ∈ C∞(G,V ), where RX jϕ(g) := d
dtϕ
(

g · exp(tX(1)
j )
) ∣∣

t=0
+

√
−1 d

dtϕ
(

g · exp(tX(2)
j )
) ∣∣

t=0
, with X j = X(1)

j +
√
−1X(2)

j ; X(1)
j , X(2)

j ∈ pR. It de-
termines an operator ∇ : C∞(G,V ) → C∞(G ⊗ pC), where pC is regarded as a KC-
module by the adjoint representation. We call it Schmid operator.

Every irreducible finite dimensional KC-module has the highest weight which oc-
curs with multiplicity one and characterizes the KC-module. As KC � GL(2,C),
those highest weights can be parameterized by pairs of integers (�1, �2) with �1 ≥ �2.
Denote by τ�1,�2 the irreducible finite dimensional KC-module of the highest weight

(�1, �2) on the space V�1,�2 . Indeed, we have a realization τ�1,�2 = det�2 ⊗S�1−�2 (C2),
where Sk(V ) is the k-th symmetric product of a representation on V . Let us set
d = �1 − �2. Then we have dimC V�1,�2 = d + 1. As a KC-module, pC is decom-
posed into irreducible ones pC = p+⊕p− which corresponds to the hermitian struc-
ture on G/K, where p+ � V(2,0) and p− � V(0,−2), and both are 3 dimensional.
This decomposition allows us to write the operator ∇ into a sum ∇ = ∇+ + ∇−,
∇± : C∞(G,V ) → C∞(G,V ⊗ p±). We also have the irreducible decomposition
of V ⊗ p± for V = V�2,�2 by V�1,�2 ⊗ p+ � V�1+2,�2 ⊕ m1V�1+1,�2+1 ⊕ m2V�1,�2+2, or
V ⊗ p− � V�1,�2−2 ⊕m1V�1−1,�2−1 ⊕m2V�1−2,�2 , where (m1,m2) equals (1, 1) except
the following cases: (m1,m2) = (0, 0), if �1 = �2; and = (1, 0), if �1 = �2 + 1. We
consider the projection onto each irreducible component; denote, for example, by
P�1+2,�2 the projection onto V�1+2,�2 .

For a character η of R and a KC-module (τ ,V ), denote by C∞(G,Cη ⊗ V ) the
space of Cη ⊗V -valued functions ϕ on G satisfying

ϕ(rgk) = η(r)τ (k)−1ϕ(g), (r, k) ∈ R× K.

https://doi.org/10.4153/CJM-2002-030-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-030-8


Nilpotent Orbits and Whittaker Functions 775

We use the same explicit realization of τ�1,�2 as in [O] Section 3, p. 268 (also in [M]

Lemma 3.1); we denote by {v�1,�2
j | 0 ≤ j ≤ d} the basis of V�1,�2 in this real-

ization. We will express an element ϕ(g) of C∞(G,Cη ⊗ V�1,�2 ) by a sum ϕ(g) =∑d
j=0 b j(g)v�1 ,�2

j with Cη-valued functions b j on GC.

3.2

There are 3 conjugacy classes of parabolic subgroups in G = Sp(2,R); let us de-
note by P0 the minimal parabolic, P1 the Siegel maximal parabolic, and P2 the other
maximal one. In this paper we consider the spaces C∞-IndG

R (η) for characters ψ of
N = N1 and N2. For the N0-case there is a study by Oda [O].

Let P1 = M1A1N1 be the Siegel parabolic subgroup of G with abelian unipotent

radical N1 =

{
n(x) =

(
12 x
0 12

) ∣∣∣∣ x = t x

}
. A non-degenerate unitary character of

N1 is given by
ψ
(

n(x)
)
= exp

(
2π
√
−1 tr(hx)

)

with a nonsingular symmetric matrix h =

(
h1 h3

h3 h2

)
∈ M2(R). Then the group

M1(ψ) is isomorphic to SO(2) or SO(1, 1) depending on the signature of h. We fix a

generator c of m1(ψ)R by c :=

(
bψ 0
0 −t bψ

)
, bψ = h−1

(
0 1
−1 0

)
. Define a maxi-

mal split torus A0 in G by A0 = {a = (a1, a2) := diag(a1, a2, a
−1
1 , a−1

2 ) | a1 > 0, a2 >
0}. We recall a Cartan-Iwasawa type decomposition of g; g = Ad(a−1)

(
m1(ψ) +

n1

)
+ a0 + k, a ∈ A0. By the restriction map, it enables us to define an inclu-

sion of C∞(G,Cη ⊗V ) into the space of Cη ⊗V -valued functions C∞(A0,Cη ⊗V )
on A0. Then, as in [M] Section 5, we can consider the A0-radial part Rη(∇±�1,�2

):

C∞(A0,Cη ⊗V ) → C∞
(

A0,Cη ⊗ (V ⊗ p±)
)

of the operator∇±�1,�2
: C∞(G,V ) →

C∞(G,V ⊗ p±) for V = V�1,�2 .
Now we give explicit formulas of the A0-radial parts of Schmid operators. In the

formulas below, we assume h1 �= 0, h2 �= 0, and h3 = 0 for the character ψ of N1.
Concerning with this assumption, see a remark in the end of 3.6.

Proposition 3.3 ([M] Section 5, Proposition 5.3) Let us set some symbols:

∂i = ai
∂

∂ai
, L±i = ∂i ± 4πhia

2
i (i = 1, 2);

D = h1a2
1 − h2a2

2 and S1 = χ(c)
h1a1h2a2

D
,

with c ∈ m1(ψ)R defined in 3.2. Consider the operators ∇±�1,�2
: C∞(G,V�1,�2 ) →

C∞(G,V�1,�2 ⊗p±) for an irreducible KC-module τ�1,�2 . In the situation of 3.2, then, for
the A0-radial parts Rη(∇±�1,�2

) considered on the restriction to A0 of ϕ ∈ C∞(G,V�1,�2 )

we have the following formulas: writing ϕ(a) =
∑d

j=0 b j(a)v�1,�2
j with d = �1 − �2,

then
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for P�1+2,�2 Rη(∇+
�1 ,�2

)ϕ(a) =
∑d+2

j=0 b̃ j(a)v�1+2,�2
j , we have

b̃ j(a) = j( j − 1)
(

L+
1 + j − 2 + �2 − 2(d + 2− j)

h2a2
2

D

)
b j−2(a)

− 2 j(d + 2− j)S1 · b j−1(a)

+ (d + 1− j)(d + 2− j)
(

L+
2 − j + �1 + 2 j

h1a2
1

D

)
b j(a),

(3.1)

for P�1+1,�2+1Rη(∇+
�1,�2

)ϕ(a) =
∑d

j=0 b̃ j(a)v�1+1,�2+1
j , we have

b̃ j(a) = j
(

L+
1 + j − 1 + �2 − (d − 2 j)

h2a2
2

D

)
b j−1(a)

− (d − 2 j)S1 · b j(a)

− (d − j)
(

L+
2 − j − 1 + �1 − (d − 2 j)

h1a2
1

D

)
b j+1(a),

(3.2)

for P�1,�2+2Rη(∇+
�1 ,�2

)ϕ(a) =
∑d−2

j=0 b̃ j(a)v�1,�2+2
j , we have

b̃ j(a) =
(

L+
1 + j + �2 + 2( j + 1)

h2a2
2

D

)
b j(a)

+ 2S1 · b j+1(a) +
(

L+
2 − j − 2 + �1 − 2(d− j − 1)

h1a2
1

D

)
b j+2(a),

(3.3)

for P�1,�2−2Rη(∇−�1 ,�2
)ϕ(a) =

∑d+2
j=0 b̃ j(a)v�1,�2−2

j , we have

b̃ j(a) = j( j − 1)
(

L−2 + j − 2− �1 + 2(d + 2− j)
h1a2

1

D

)
b j−2(a)

+ 2 j(d + 2− j)S1 · b j−1(a)

+ (d + 1− j)(d + 2− j)
(

L−1 − j − �2 − 2 j
h2a2

2

D

)
b j(a),

(3.4)

for P�1−1,�2−1Rη(∇−�1,�2
)ϕ(a) =

∑d
j=0 b̃ j(a)v�1−1,�2−1

j , we have

b̃ j(a) = j
(

L−2 + j − 1− �1 + (d − 2 j)
h1a2

1

D

)
b j−1(a)

+ (d− 2 j)S1 · b j(a)

− (d − j)
(

L−1 − j − 1− �2 + (d − 2 j)
h2a2

2

D

)
b j+1(a),

(3.5)

for P�1−2,�2 Rη(∇−�1 ,�2
)ϕ(a) =

∑d−2
j=0 b̃ j(a)v�1−2,�2

j , we have

b̃ j(a) =
(

L−2 + j − �1 − 2( j + 1)
h1a2

1

D

)
b j(a)

− 2S1 · b j+1(a) +
(

L−1 − j − 2− �2 + 2(d− j − 1)
h2a2

2

D

)
b j+2(a).

(3.6)
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Proof We take an orthonormal basis {X j} of pC as in [M], 5.1, p. 250. Then∇±�1,�2
are

given by (5.1) and (5.2) of [M], and for the A0-radial parts we get the formulas (5.4)

and (5.5) in [M] Proposition 5.3. We input the expression ϕ(a) =
∑d

j=0 b j(a)v�1 ,�2
j

to the formulas. By [M] Lemma 3.1 and Lemmas 3.3, 3.4, and 3.5, we calculate the
action of the elements in k and the projection onto each irreducible component of
V�1,�2 ⊗p±. Then we obtain the coefficient b̃ j(a) for the each base of the components
as shown.

3.4

Let P2 = M2A2N2 be the other maximal parabolic subgroup of G where

M2 =




m(a, b, c, d; ε) =



ε

a b
ε

c d



∣∣∣∣∣
(

a b
c d

)
∈ SL2(R), ε ∈ {±1}



,

N2 =




n(x1, x2, z) =




1 x1

1
1
−x1 1






1 z x2

1 x2

1
1



∣∣∣∣∣ x1, x2, z ∈ R



.

A non degenerate unitary character ψ of Heisenberg group N2 is given by

ψ
(

n(x1, x2, z)
)
= exp

(
2π
√
−1(h1x1 + h2x2)

)

with h1, h2 ∈ R, which is trivial on the center {n(0, 0, z) ∈ N2 | z ∈ R}. Con-
sidering the action of M2 on N̂2, we can change ψ into its conjugate which satisfies
h2 = 0. In the following discussion we replace ψ with this conjugate in the nor-
mal position (see a remark at the end of 3.6), and call it ψ again. Then we get
M2(ψ) = {m(1, s, 0, 1; 1) ∈ M2 | s ∈ R}. Define c ∈ m2(ψ)R by c = E2,4 the
elementary matrix with the (2, 4)-coefficient to be 1; then m2(ψ)R � R · c. We have
Iwasawa decomposition of g by g = Ad(a−1)(m2(ψ) + n2) + a0 + k, a ∈ A0. Indeed,
we remark that m2(ψ) + n2 coincides with the nilpotent radical n0 of the minimal
parabolic subalgebra of g; thus the space C∞-IndG

M2(ψ)N2
(η) can be identified with

the space considered in [O], p. 261. Then, as in [O] Section 6, we can consider the
A0-radial parts for the Schmid operators.

Proposition 3.5 ([O] Proposition 6.1 and Section 7) Let us set some symbols:

∂i = ai
∂

∂ai
, i = 1, 2; S2 = 2π

√
−1h1

a1

a2
.

Consider the operators∇±�1,�2
: C∞(G,V�1,�2 )→ C∞(G,V�1,�2 ⊗ p±) for a KC-module.

In the situation of 3.4, then, we have the following formulas for the A0-radial parts

Rη(∇±�1,�2
) of the Schmid operators: writing ϕ(a) =

∑d
j=0 b j(a)v�1,�2

j with d = �1 − �2

for ϕ ∈ C∞(G,V�1,�2 ), then
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for P�1+2,�2 Rη(∇+
�1 ,�2

)ϕ(a) =
∑d+2

j=0 b̃ j(a)v�1+2,�2
j , we have

b̃ j(a) = j( j − 1)
(
∂1 + �1 + d− j + 2

)
b j−2(a) + 2 j(d + 2− j)S2 · b j−1(a)

+ (d + 1− j)(d + 2− j)
(
∂2 − 2

√
−1χ(c)a2

2 + �1 − j
)

b j(a),
(3.7)

for P�1+1,�2+1Rη(∇+
�1,�2

)ϕ(a) =
∑d

j=0 b̃ j(a)v�1+1,�2+1
j , we have

b̃ j(a) = j
(
∂1 + �1 − j − 1

)
b j−1(a) + (d− 2 j)S2 · b j(a)

− (d − j)
(
∂2 − 2

√
−1χ(c)a2

2 + �1 − j − 1
)

b j+1(a),
(3.8)

for P�1,�2+2Rη(∇+
�1 ,�2

)ϕ(a) =
∑d−2

j=0 b̃ j(a)v�1,�2+2
j , we have

b̃ j(a) =
(
∂1 + �1 − d − j − 2

)
b j(a)− 2S2 · b j+1(a)

+
(
∂2 − 2

√
−1χ(c)a2

2 + �1 − j − 2
)

b j+2(a),
(3.9)

for P�1,�2−2Rη(∇−�1 ,�2
)ϕ(a) =

∑d+2
j=0 b̃ j(a)v�1,�2−2

j , we have

b̃ j(a) = j( j − 1)
(
∂2 + 2

√
−1χ(c)a2

2 − �1 + j − 2
)

b j−2(a)

− 2 j(d + 2− j)S2 · b j−1(a)

+ (d + 1− j)(d + 2− j)
(
∂1 − �1 + d + j

)
b j(a),

(3.10)

for P�1−1,�2−1Rη(∇−�1,�2
)ϕ(a) =

∑d
j=0 b̃ j(a)v�1−1,�2−1

j , we have

b̃ j(a) = j
(
∂2 + 2

√
−1χ(c)a2

2 − �1 + j − 1
)

b j−1(a)− (d − 2 j)S2 · b j(a)

− (d − j)
(
∂1 − �1 + j − 1

)
b j+1(a),

(3.11)

for P�1−2,�2 Rη(∇−�1 ,�2
)ϕ(a) =

∑d−2
j=0 b̃ j(a)v�1−2,�2

j , we have

b̃ j(a) =
(
∂2 + 2

√
−1χ(c)a2

2 − �1 + j
)

b j(a) + 2S2 · b j+1(a)

+
(
∂1 − �1 − d + j

)
b j+2(a).

(3.12)

Proof We start the formulas (i) and (ii) in [O] Proposition 6.1. And we input the
expression ϕ(a) =

∑d
j=0 b j(a)v�1,�2

j into them. Here {v�1,�2
j | 0 ≤ j ≤ d = �1 − �2}

is the basis of V�1,�2 in the realization of τ�1,�2 given in [O] Section 3, p. 268. Then,
by [O] Lemmas 3.1, 3.2, and 3.3, we calculate the action of elements in k and the
projection onto each irreducible component of V�1,�2 ⊗p±. The coefficients b̃ j(a) for
the bases of each component are given as in our statement.
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3.6

Let (π,Hπ) be an irreducible admissible Hilbert representation of G. Denote by Hπ,K

all K-finite vectors which determines a Harish-Chandra module. We will investigate
the following space of equivariant realizations:

Whη(π) := Hom(gC,KC)

(
Hπ,K ,C

∞- IndG
R (η)K

)
.

We call it the space of (N, ψ)-Whittaker embedding of π with the character χ on
M(ψ). Fixing a K-morphism ι : V�1,�2 ↪→ Hπ,K for a K-type τ�1,�2 occurring in Hπ,K ,
we consider the restriction ι∗Φ = Φ ◦ ι of a functional Φ in Whη(π). We can define
a Cη ⊗V ∗�1,�2

-valued function ϕ�1,�2 on G such that

ι∗Φ(v)(g) = 〈v, ϕ�1,�2 (g)〉

for any v ∈ V�1,�2 , g ∈ G, and the canonical dual pairing 〈 , 〉 on V�1,�2 ×
(Cη ⊗ V ∗�1,�2

) valued in Cη , where (τ∗�1,�2
,V ∗�1,�2

) is the contragredient of τ�1,�2 . Then
ϕ�1,�2 belongs to C∞(G,Cη ⊗ V ∗�1,�2

). We will investigate this vector valued function
ϕ�1,�2 for an (N, ψ)-Whittaker embedding. Theorem 10.1 and Corollary 10.2 of [Ba]
and [Y2] Section 1 tell us that it can be characterized by a solution of a set of dif-
ferential equations, which is given by use of Schmid operators, when π is a derived
functor module Aq(λ) with λ in good range. We will give the differential equations
separately in each situation below.

Here we have a remark about the twisting of (N, ψ)-Whittaker embedding Φ by
elements in M. For Φ ∈ Whη(π) and m ∈ M, define a new functional mΦ by
mΦ(v)(g) := Φ(v)(mg) for v ∈ Hπ,K , g ∈ G. Then it satisfies the property:

mΦ(v)(r ′g) = η(mr ′m−1)mΦ(v)(g)

for v ∈ Hπ,K and (r ′, g) ∈ (m−1R ·m)×G. So the functional mΦ belongs to Whmη(π)
for the character mη(r ′) = η(mr ′m−1) on m−1R ·m. This process allows us to change
a non-degenerate unitary character ψ of N into a suitable standard form, which we
have done in 3.2, 3.4.

4 The Derived Functor Modules of the Class 7

4.1

We consider a derived functor module Aq7 (λ) of the class 7 defined in 2.1, with an
integral λ in the good range. The associated variety of it is the closure of O ,

whose complex dimension is 3. So it is known that Aq7 (λ) has no (N0, ψ)-Whittaker
embedding with respect to a non-degenerate character ψ of N0 (non generic in the
usual sense), [V2], [Ko].

Write λ+ρu7 = λ1e1 +λ2e2 ∈
√
−1t∗R, then we have (λ1, λ2) = ( m

2 ,−
m
2 ), where m

is a positive odd integer. We assume that m ≥ 3, so λ is in the good range. The mod-
ule has the minimal K-type τ�,−� with � = m+1

2 , which is of 2� + 1 dimension. Each
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K-type of Aq7 (λ) has the highest weight given by (�+2n1,−�−2n2) with nonnegative
integers n1 and n2.

To begin with, we study the (N1, ψ)-Whittaker embedding for the derived functor
module Aq7 (λ). Our knowledge on its K-type decomposition tells us that the func-
tion defined in 3.6, ϕ�,−�(g) ∈ C∞(G,Cη ⊗ V�,−�), for the minimal K-type should
satisfy the following equations:

P�+1,−�+1∇+
�,−�ϕ�,−�(g) = 0, P�,−�+2∇+

�,−�ϕ�,−�(g) = 0,

P�−1,−�−1∇−�,−�ϕ�,−�(g) = 0, P�−2,−�∇−�,−�ϕ�,−�(g) = 0.

By Proposition 3.3, these are explicitly given for the restriction of ϕ�,−� to A0;

ϕ�,−�(a) =
∑2�

j=0 b j(a)v�,−�j , by

for 0 ≤ j ≤ 2�,

j
(

L+
1 + j − 1− �− 2(�− j)

h2a2
2

D

)
b j−1(a)− 2(�− j)S1 · b j(a)

(4.1a)

− (2�− j)
(

L+
2 − j − 1 + �− 2(�− j)

h1a2
1

D

)
b j+1(a) = 0,

for 1 ≤ j ≤ 2�− 1,

(
L+

1 + j − 1−� + 2 j
h2a2

2

D

)
b j−1(a) + 2S1 · b j(a)(4.1b)

+
(

L+
2 − j − 1 + �− 2(2�− j)

h1a2
1

D

)
b j+1(a) = 0,

for 0 ≤ j ≤ 2�,

j
(

L−2 + j − 1− � + 2(�− j)
h1a2

1

D

)
b j−1(a) + 2(�− j)S1 · b j(a)

(4.1c)

− (2�− j)
(

L−1 − j − 1 + � + 2(�− j)
h2a2

2

D

)
b j+1(a) = 0,

for 1 ≤ j ≤ 2�− 1,

(
L−2 + j − 1−�− 2 j

h1a2
1

D

)
b j−1(a)− 2S1 · b j(a)(4.1d)

+
(

L−1 − j − 1 + � + 2(2�− j)
h2a2

2

D

)
b j+1(a) = 0.

Here we have the first observation.

Lemma 4.2 Assume that {b j(a) | 0 ≤ j ≤ 2�} forms a solution of the system of
equations above. Then we have that b2k+1(a1, a2) = 0 for 0 ≤ k ≤ �− 1. Moreover, for
Whχ·ψ

(
Aq7 (λ)

)
�= {0} it is necessary that χ = 0 for the linear form χ on m1(ψ)R .
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Proof The equations (4.1a) and (4.1b) are equivalent to the followings:

for 0 ≤ j ≤ 2�− 1,

j
h2a2

2

D
b j−1(a) + S1 · b j(a) +

(
L+

2 + �− j − 1− (2�− j)
h1a2

1

D

)
b j+1(a) = 0,(4.2a)

for 1 ≤ j ≤ 2�,

(
L+

1 − � + j − 1 + j
h2a2

2

D

)
b j−1(a) + S1 · b j(a)− (2�− j)

h1a2
1

D
b j+1(a) = 0.

(4.2b)

The equations (4.1c) and (4.1d) are also equivalent to

for 0 ≤ j ≤ 2�− 1,

j
h1a2

1

D
b j−1(a) + S1 · b j(a)−

(
L−1 + �− j − 1 + (2�− j)

h2a2
2

D

)
b j+1(a) = 0,

(4.2c)

for 1 ≤ j ≤ 2�,

(
L−2 − � + j − 1− j

h1a2
1

D

)
b j−1(a)− S1 · b j(a) + (2�− j)

h2a2
2

D
b j+1(a) = 0.

(4.2d)

Then we can find the following C(a1, a2)-linear relations among b j(a)’s; from (4.2a)
and (4.2d) one has

for 1 ≤ j ≤ 2�− 1,

( j − 1)
h2a2

2

D
b j−2(a) + S1 · b j−1(a)+

(
8πh2a2

2 − 2(�− j)
h2a2

2

D

)
b j(a)(4.3a)

+ S1 · b j+1(a)− (2�− j − 1)
h2a2

2

D
b j+2(a) = 0,

and the others are obtained from the equations (4.2b) and (4.2c);

for 1 ≤ j ≤ 2�− 1,

( j − 1)
h1a2

1

D
b j−2(a) + S1 · b j−1(a) +

(
8πh1a2

1 − 2(�− j)
h1a2

1

D

)
b j(a)(4.3b)

+ S1 · b j+1(a)− (2�− j − 1)
h1a2

1

D
b j+2(a) = 0.
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Taking the differences of (4.3a) and (4.3b), we get for 1 ≤ j ≤ 2�− 1,

( j − 1)b j−2(a) +
(

8πD− 2(�− j)
)

b j(a)− (2�− j − 1)b j+2(a) = 0.(4.4)

Note that the indexes j − 2, j, and j + 2 occurring in each equation of (4.4) have
the common parity; hence we can separate the equations of (4.4) into 2 families; the
first one consists of the equations for the functions {b2k(a) | 0 ≤ k ≤ �} with even
indexes, and the other consisting of the equations for {b2k+1(a) | 0 ≤ k ≤ �−1} with
odd indexes. Solving the latter set of equations for odd indexed ones, which consists
of independent equations, we can conclude easily that the first assertion in lemma
holds.

So we can set b j(a) = 0 for all odd j’s in (4.2a), (4.2b), (4.2c) and (4.2d). Then
we obtain S1 · b2k(a) = 0 for 0 ≤ k ≤ �, which implies the second assertion. This
completes the proof of lemma.

Set b j(a) =
(√
|h1|a1

√
|h2|a2

) �+1
c j(a) for 0 ≤ j ≤ 2� and introduce new vari-

ables:
x = 2π(h1a2

1 + h2a2
2), y = 2π(h1a2

1 − h2a2
2).

By Lemma 4.2, the equations (4.2a), (4.2b), (4.2c), and (4.2d) give us the following
equations:

for 1 ≤ k ≤ �,

(2k− 1)c2k−2(x, y) +

(
2y
( ∂

∂x
−

∂

∂y

)
+ 2y − 2� + 2k− 1

)
c2k(x, y) = 0,(4.5a)

for 1 ≤ k ≤ �,(
2y
( ∂

∂x
+
∂

∂y

)
+ 2y + 2k− 1

)
c2k−2(x, y)− (2�− 2k + 1)c2k(x, y) = 0,(4.5b)

for 1 ≤ k ≤ �,

(2k− 1)c2k−2(x, y)−

(
2y
( ∂

∂x
+
∂

∂y

)
− 2y − 2� + 2k− 1

)
c2k(x, y) = 0,(4.5c)

for 1 ≤ k ≤ �,
(

2y
( ∂

∂x
−

∂

∂y

)
− 2y − 2k + 1

)
c2k−2(x, y) + (2�− 2k + 1)c2k(x, y) = 0.(4.5d)

Comparing the equations in (4.5a) with the ones in (4.5c), or those in (4.5b) with
the ones in (4.5d), we find that

∂

∂x
c2k(x, y) = 0

for 0 ≤ k ≤ �. Therefore we obtain

Proposition 4.3 For a solution of the set of equations above, c2k(x, y) does not depend
on the variable x for all 0 ≤ k ≤ �.
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So we may consider c2k(y) = c2k(x, y) and study the ordinary differential and dif-
ference equations of one variable y. The equations (4.5a), (4.5b), (4.5c), and (4.5d)
are, then, reduced to the followings:

for 1 ≤ k ≤ �,

(2k− 1)c2k−2(y)−
(

2y
d

dy
− 2y + 2�− 2k + 1

)
c2k(y) = 0,(4.6a)

for 1 ≤ k ≤ �,

(
2y

d

dy
+ 2y + 2k− 1

)
c2k−2(y)− (2�− 2k + 1)c2k(y) = 0.(4.6b)

For each k, 0 ≤ k ≤ �, we make a pair of equations in (4.6a) and (4.6b) that contain
the functions c2k−2(y) and c2k(y), or c2k(y) and c2k+2(y). Then we find the following
equation of second degree for a single c2k(y), for 0 ≤ k ≤ �,

(
y2 d2

dy2
+ (� + 1)y

d

dy
+ (�− 2k)y − y2

)
c2k(y) = 0.(4.7)

During this process to obtain (4.7), we can also check that the integrable condition
is satisfied for the set of equations (4.6a) and (4.6b). Indeed, we can find 2 pairs in
(4.6a) and (4.6b) to give equations for c2k(y), 1 ≤ k ≤ � − 1 of second degree, and
the results become exactly the same one for both of the pairs; it is the equation (4.7)
for c2k(y).

Now we separate our computation into 2 cases depending on the parity of �; the
case that � is even, or � is odd.

4.4 The Even Case

Consider the equation (4.7) for 2k = �:

(
y2 d2

dy2
+ (� + 1)y

d

dy
− y2
)

c�(y) = 0.

It is holonomic of rank 2 and has solutions:

c�(y) = β1 · y−�/2K �
2
(y) + β2 · y−�/2I �

2
(y),(4.8)

where β1, β2 are constants, and Kν(z), Iν(z) are the modified Bessel functions, [M-
O-S], p. 66, and p. 69, 3.2. All the other c2k(y), 0 ≤ k ≤ �, are determined recursively
through the equations (4.6a) and (4.6b). Then the following recurrence relations
between the modified Bessel functions tells us that each c2k(y) can be written as a
C[y, y−1]-linear combination of the modified Bessel functions:

Kν−1(z)− Kν+1(z) = −2(ν/z)Kν(z), Kν−1(z) + Kν+1(z) = −2
(

dKν(z)/dz
)
,

Iν−1(z)− Iν+1(z) = 2(ν/z)Iν(z), Iν−1(z) + Iν+1(z) = 2
(

dIν(z)/dz
)
,

[M-O-S], p. 67, 3.1.1.
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4.5 The Odd Case

Consider the equations (4.6a) and (4.6b) for 2k = � + 1:

�c�−1(y)−
(

2y
d

dy
− 2y + �

)
c�+1(y) = 0,

(
2y

d

dy
+ 2y + �

)
c�−1(y)− �c�+1(y) = 0.

It is holonomic of rank 2, and the solutions are given by

c�±1(y) = y−
�−1

2
{
β1 ·
(

K �−1
2

(y)∓ K �+1
2

(y)
)

+ β2 ·
(

I �−1
2

(y)± I �+1
2

(y)
)}
,(4.9)

where β1, β2 are constants. Similarly as in the even case, the other functions c2k(y),
0 ≤ k ≤ �, are given recursively through the equations (4.6a) and (4.6b), and each
of them can be written as a C[y, y−1]-linear sum of the modified Bessel functions in
the variable y.

Theorem 4.6 Consider the set of difference-differential equations (4.1a), (4.1b), (4.1c),
and (4.1d), and make b2k+1(a) = 0 for 0 ≤ k ≤ � − 1 after Lemma 4.2. Then it
determines a holonomic system of rank 2. There exists a unique solution, up to a scalar
multiple, satisfying the conditions (i) and (ii) below if and only if the character ψ of N1

corresponds to an indefinite quadratic form; that is h1h2 < 0. The conditions on b2k(a),
0 ≤ k ≤ �, are the followings:

(i) all b2k(a) are holomorphic on A0, and
(ii) all b2k(a) decay rapidly when a1, a2 → +∞.

The unique solution with the properties (i) and (ii) is obtained recursively through the
equations (4.6a,b) from the following function(s):

if h1 > 0 and h2 < 0, and � is even, then

b�(a) =

(√
|h1h2|a1a2

) �+1

(
2π(h1a2

1 − h2a2
2)
) �

2

K �
2

(
2π(h1a2

1 − h2a2
2)
)
, or(E)

if h1 > 0 and h2 < 0, and � is odd, then

b�∓1(a) =

(√
|h1h2|a1a2

) �+1

(
2π(h1a2

1 − h2a2
2)
) �−1

2

(O)

(
K �−1

2

(
2π(h1a2

1 − h2a2
2)
)
± K �+1

2

(
2π(h1a2

1 − h2a2
2)
))
.

Proof As we obtained in 4.4 and 4.5, all the solutions can be written as products of(√
|h1h2|a1a2

) �+1
and C[y, y−1]-linear sums of the modified Bessel functions. We

recall that that the function Iν(z) rapidly increases as |z| → +∞ and z ∈ R, [M-O-S]
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p. 139. If h1h2 > 0, then the variable y = h1a2
1 − h2a2

2 admits zeros in A0. Then, in
the linear sum, the terms containing a K-Bessel function have poles of finite degree
along these zeros; thus such terms cannot appear in the solution under the condition
(i). On the other hand the terms containing Iν(z) increases rapidly, which violates
the condition (ii). Therefore we have no solution satisfying (i), (ii), if h1h2 > 0.

If h1h2 < 0, we can see that only the terms containing Kν(z) satisfy both of the
conditions, because y = h1a2

1 − h2a2
2 cannot be zero on A0, and Kν(y) has good

asymptotic behavior as a1 and a2 → +∞, if h1 > 0 and h2 < 0, [M-O-S] p. 139. If
h1 < 0 and h2 > 0, then, rewriting (4.6a) and (4.6b) for −y, we can discuss again
similarly as above. These together give our assertions.

4.7

In the next place, we investigate the (N2, ψ)-Whittaker embedding of Aq7 (λ). The
K-type decomposition of the module tells us that the following equations should be
satisfied for the function ϕ�,−�(g) ∈ C∞(G,Cη ⊗ V�,−�) defined in 3.6 with respect
to the minimal K-type τ�,−�:

for 0 ≤ j ≤ 2�,

j
(
∂1+�− j − 1

)
b j−1(a) + 2(�− j)S2 · b j(a)(4.10a)

− (2�− j)
(
∂2 − 2

√
−1χ(c)a2

2 + �− j − 1
)

b j+1(a) = 0,

for 1 ≤ j ≤ 2�,

(
∂1 − �− j − 1

)
b j−1(a)− 2S2 · b j(a)(4.10b)

+
(
∂2 − 2

√
−1χ(c)a2

2 + �− j − 1
)

b j+1(a) = 0,

for 0 ≤ j ≤ 2�,

j
(
∂2+2

√
−1χ(c)a2

2 − � + j − 1
)

b j−1(a)(4.10c)

− 2(�− j)S2 · b j(a)− (2�− j)(∂1 − � + j − 1)b j+1(a) = 0,

for 1 ≤ j ≤ 2�,

(
∂2 + 2

√
−1χ(c)a2

2 − � + j − 1
)

b j−1(a) + 2S2 · b j(a)(4.10d)

+ (∂1 − 3� + j − 1)b j+1(a) = 0.

Since the Gelfand-Kirillov dimension of Aq7 (λ) is not of maximal, there cannot exist
any non-zero embedding under consideration, if both χ and ψ are non-trivial; [Ko],
[V]. This fact can be observed, of course, directly also in our setting:

Lemma 4.8 To obtain a non-zero functional in Whχ·ψ
(

Aq7 (λ)
)

it is necessary that
χ = 0 for the linear form χ on m2(ψ)R. For any solution {b j(a) | 0 ≤ j ≤ 2�} of
(4.10a), (4.10b), (4.10c), and (4.10d), we also have linear relations b j−1(a) + b j+1(a) =
0 for 1 ≤ j ≤ 2�− 1.
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Proof The equations (4.10a) and (4.10b) are equivalent to

for 0 ≤ j ≤ 2�− 1,

jb j−1(a) + S2b j(a)−
(
∂2 − 2

√
−1χ(c)a2

2 + �− j − 1
)

b j+1(a) = 0,(4.11a)

for 1 ≤ j ≤ 2�,

(∂1 − �− 1)b j−1(a)− S2b j(a) = 0.(4.11b)

Also the equations (4.10c) and (4.10d) are equivalent to

for 0 ≤ j ≤ 2�− 1,

(
∂2 + 2

√
−1χ(c)a2

2 − � + j − 1
)

b j−1(a) + S2b j(a)− (2�− 1)b j+1(a) = 0,(4.11c)

for 1 ≤ j ≤ 2�,

S2b j(a) + (∂1 − �− 1)b j+1(a) = 0.(4.11d)

We can find C(a1, a2)-linear relations among b j(a)’s by pairing (4.11a) and (4.11c),
which are given by

for 1 ≤ j ≤ 2�− 1,

( j − 1)b j−2(a) + S2b j−1(a)

(4.12a)

− 2
(

2
√
−1χ(c)a2

2 + �− j
)

b j(a) + S2b j+1(a)− (2�− j − 1)b j+2(a) = 0.

Similarly the equations (4.11b) and (4.11d) yield

for 1 ≤ j ≤ 2�− 1,

S2

(
b j−1(a) + b j+1(a)

)
= 0.(4.12b)

As we have assumed that h1 �= 0 in the definition, (4.12b) implies that b j−1(a) +
b j+1(a) = 0 for 1 ≤ j ≤ 2�− 1. Then (4.12a) and these relations give us

1 ≤ j ≤ 2�− 1, 4
√
−1χ(c)a2

2 · b j(a) = 0.(4.13)

If χ �= 0, then it tells us b j(a) = 0 for 1 ≤ j ≤ 2� − 1. But it provides us only with
the trivial solution. Thus χ should be zero and the proof is completed.

Set b j(a) = a�+1
1 a−�+1

2 c j(a) for 0 ≤ j ≤ 2�. Here we introduce the new variables:

x = a1a2, y = a1/a2,

and consider the functions c j(x, y) = c j(a1, a2) for 0 ≤ j ≤ 2�.

Lemma 4.9 A solution {c j(x, y) | 0 ≤ j ≤ 2�} satisfying the set of equations does not
depend on the variable x.
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Proof By Lemma 4.8, our equations are reduced to the followings:

for 1 ≤ j ≤ 2�,

(
x
∂

∂x
− y

∂

∂y

)
c j−1(x, y) + 2π

√
−1h1 y · c j(x, y) = 0,(4.14a)

for 1 ≤ j ≤ 2�,

2π
√
−1h1 y · c j−1(x, y)−

(
x
∂

∂x
− y

∂

∂y

)
c j(x, y) = 0,(4.14b)

for 1 ≤ j ≤ 2�,

(
x
∂

∂x
+ y

∂

∂y

)
c j−1(x, y)− 2π

√
−1h1 y · c j(x, y) = 0,(4.14c)

for 1 ≤ j ≤ 2�,

2π
√
−1h1 y · c j−1(x, y) +

(
x
∂

∂x
+ y

∂

∂y

)
c j(x, y) = 0.(4.14d)

By pairing (4.14a) and (4.14c), or (4.14b) and (4.14d), we find

∂

∂x
c j(x, y) = 0

for 0 ≤ j ≤ 2�. This implies our assertion.
After all we obtain the following difference-differential equations:

for 1 ≤ j ≤ 2�,

d

dy
c j−1(y)− 2π

√
−1h1 · c j(y) = 0,(4.15a)

1 ≤ j ≤ 2�,

2π
√
−1h1 · c j−1(y) +

d

dy
c j(x, y) = 0.(4.15b)

Finally we conclude

Theorem 4.10 Let Aq7 (λ) be a derived functor module of the class 7 with an integral
λ in the good range. Then the set of difference differential equations (4.10a), (4.10b),
(4.10c), and (4.10d) defines a holonomic system of rank 2, and the following b j(a),
0 ≤ j ≤ 2�, give its solution:

b j(a) =
(√
−1
) j

a1a2

( a1

a2

) �(
(−1) jβ1e2πh1(a1/a2) + β2e−2πh1(a1/a2)

)
.

Here β1 and β2 are constants which do not depend on j. If β1 = 0, β2 �= 0 and h1 > 0
(resp. β1 �= 0, β2 = 0 and h1 < 0), this solution decays rapidly as a1/a2 → +∞, and
decays as a2 → +∞, since � ≥ 2.
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5 The Derived Functor Modules of the Class 6

5.1

Next we study a derived functor module Aq6 (λ) of the class 6 with an integral λ in
the good range. It is known by works of Kostant and Vogan that there is no (N0, ψ)-
Whittaker embedding of this module, so we study N1, N2 cases. We have λ + ρu6 =
�e1 + 0e2 with a non-negative integer �, and λ is good, if � ≥ 2. The minimal K-type
of Aq6 (λ) is (τ�,1,V�,1). Each K-type occurring in the module has the highest weight
(� + 2n1 + n2, 1 + n2) with non-negative integers n1 and n2.

First we study the (N1, ψ)-Whittaker embedding of the module Aq6 (λ). The K-
type decomposition tell us that the function ϕ−1,−�(g) ∈ C∞(G,Cη ⊗ V−1,−�) de-
fined in 3.6 with respect to the minimal K-type should satisfy the following equa-
tions:

P1,−�∇+
−1,−�ϕ−1,−�(g) = 0, P0,−�+1∇+

−1,−�ϕ−1,−�(g) = 0,

P−1,−�+2∇+
−1,−�ϕ−1,−�(g) = 0, P−3,−�∇−−1,−�ϕ−1,−�(g) = 0.

By Proposition 3.3, these are given explicitly for the restriction ϕ−1,−�|A0 on A0;

ϕ−1,−�(a) =
∑�−1

j=0 b j(a)v−1,−�
j ,

for 0 ≤ j ≤ � + 1,

j( j − 1)
(

L+
1 + j − 2−�− 2(� + 1− j)

h2a2
2

D

)
b j−2(a)− 2 j(� + 1− j)S1 · b j−1(a)

(5.1a)

+ (�− j)(� + 1− j)
(

L+
2 − j − 1 + 2 j

h1a2
1

D

)
b j(a) = 0,

for 0 ≤ j ≤ �− 1,

j
(

L+
1 + j − 1−�− (�− 1− 2 j)

h2a2
2

D

)
b j−1(a)− (�− 1− 2 j)S1 · b j(a)

(5.1b)

− (�− 1− j)
(

L+
2 − j − 2− (�− 1− 2 j)

h1a2
1

D

)
b j+1(a) = 0,

for 0 ≤ j ≤ �− 3,

(
L+

1 + j−� + 2( j + 1)
h2a2

2

D

)
b j(a) + 2S1 · b j+1(a)(5.1c)

+
(

L+
2 − j − 3 + �− 2(�− 2− j)

h1a2
1

D

)
b j+2(a) = 0,
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for 0 ≤ j ≤ �− 3,

(
L−2 + j + 1− 2( j + 1)

h1a2
1

D

)
b j(a)− 2S1 · b j+1(a)

(5.1d)

+
(

L−1 − j − 2 + � + 2(�− 2− j)
h2a2

2

D

)
b j+2(a) = 0.

Theorem 5.2 Consider the set of equations (5.1a), (5.1b), (5.1c), and (5.1d). It has
non-trivial one dimensional solutions if and only if

χ(c)2h1h2 = −(�− 1)2

is satisfied for the linear form χ on m1(ψ). If this condition is satisfied the solution is
given by

b j(a) = c j ×
(√
|h1|a1

) �− j(√
|h2|a2

) j+1
e−2π(h1a2

1+h2a2
2),

for 0 ≤ j ≤ � − 1. Here c j are the constants explicitly given by c j =
(√
−1
) j

for

0 ≤ j ≤ � − 1, if χ(c)
√

h1h2 =
√
−1(� − 1), or =

(√
−1
) �−1− j

, if χ(c)
√

h1h2 =

−
√
−1(�− 1). It decays rapidly as a1, a2 → +∞ if and only if h1 > 0 and h2 > 0.

Proof We reduce the difference-differential equations in 5.1. The equations (5.1a)
and (5.1b) are equivalent to

for 0 ≤ j ≤ �,

j( j − 1)
h2a2

2

D
b j−2(a) + jS1 · b j−1(a)− (�− j)

(
L+

2 − 1 + j
h2a2

2

D

)
b j(a) = 0,

(5.2a)

for 1 ≤ j ≤ � + 1,

( j − 1)
(

L+
1 − 1−(� + 1− j)

h1a2
1

D

)
b j−2(a)

(5.2b)

− (� + 1− j)S1 · b j−1(a) + (�− j)(� + 1− j)
h1a2

1

D
b j(a) = 0.

Also the equations (5.1b) and (5.1c) are equivalent to

for 0 ≤ j ≤ �− 2,

j
h2a2

2

D
b j−1(a) + S1 · b j(a) +

(
L+

2 − �− 1− (�− 1− j)
h2a2

2

D

)
b j+1(a) = 0,(5.3a)
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for 1 ≤ j ≤ �− 1,

(
L+

1 − �− 1 + j
h1a2

1

D

)
b j−1(a) + S1 · b j(a)− (�− 1− j)

h1a2
1

D
b j+1(a) = 0.(5.3b)

Considering the equations (5.1c) and (5.1d), we get

for 1 ≤ j ≤ �− 2,

(L+
1 + L−2 − �− 1)b j−1(a) + (L−1 + L+

2 − �− 1)b j+1(a) = 0.(5.4)

Then the following sets of difference-differential equations are equivalent to each
other: {

(5.1a), (5.1b),
(5.1c), (5.1d)

}
≈

{
(5.2a), (5.2b), (5.3a),
(5.3b), (5.4)

}
.

Paring the equations in (5.2a) and (5.3a), or (5.2b) and (5.3b), we get

for 0 ≤ j ≤ �− 1,

(L+
2 − j − 1)b j(a) = 0, (L+

1 − � + j)b j (a) = 0.(5.5)

So, if we put b j(a) =
(√
|h1|a1

) �− j(√
|h2|a2

) j+1
e−2π(h1a2

1+h2a2
2)c j(a), 0 ≤ j ≤ �− 1,

then (5.5) implies that all c j(a) are constants. Write the constants c j = c j(a), 0 ≤ j ≤
�−1. Then (5.2a), (5.2b), (5.3a), (5.3b), and (5.4) give a set of linear relations among
c j , 0 ≤ j ≤ �−1, which has a non-zero solution, if and only ifχ(c)2h1h2 = −(�−1)2.

5.3

Let us consider the (N2, ψ)-Whittaker embedding of Aq6 (λ). By the K-type decom-
position of the module and Proposition 3.5 we obtain the following set of equations
for the function ϕ−1,−�(g) defined in 3.6 with respect to the minimal K-type:

for 0 ≤ j ≤ � + 1,

j( j − 1)(∂1 + �− j)b j−2(a) + 2 j(� + 1− j)S2 · b j−1(a)

(5.6a)

+ (�− j)(� + 1− j)
(
∂2 − 2

√
−1χ(c)a2

2 − j − 1
)

b j(a) = 0,

for 0 ≤ j ≤ �− 1,

j(∂1 − j − 2)b j−1(a) + (�− 1− 2 j)S2 · b j(a)(5.6b)

− (�− 1− j)
(
∂2 − 2

√
−1χ(c)a2

2 − j − 2
)

b j+1(a) = 0,

for 0 ≤ j ≤ �− 3,

(∂1 − �− j − 2)b j(a)− 2S2 · b j+1(a)(5.6c)

+
(
∂2 − 2

√
−1χ(c)a2

2 − j − 3
)

b j+2(a) = 0,
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for 0 ≤ j ≤ �− 3,

(
∂2 + 2

√
−1χ(c)a2

2 + j + 1
)

b j(a) + 2S2 · b j+1(a)(5.6d)

+ (∂1 − � + j + 2)b j+2(a) = 0.

Theorem 5.4 The above set of difference-differential equations has only the trivial solu-
tion: b j(a) = 0 for 0 ≤ j ≤ �− 1. Hence Aq6 (λ) has no non-trivial (N2, ψ)-Whittaker
embedding for a non-degenerate (h1 �= 0) unitary character ψ of N2.

Proof The equations (5.6a) and (5.6b) are equivalent to

for 0 ≤ j ≤ �,

j( j − 1)b j−2(a) + jS2b j−1(a) + (�− j)
(
∂2 − 2

√
−1χ(c)a2

2 − j − 1
)

b j(a) = 0,

(5.7a)

for 1 ≤ j ≤ � + 1,

( j − 1)(∂1 − 1)b j−2(a) + (� + 1− j)S2b j−1(a) = 0.(5.7b)

Also (5.6b) and (5.6c) yield

for 0 ≤ j ≤ �− 2,

jb j−1(a) + S2b j(a)−
(
∂2 − 2

√
−1χ(c)a2

2 − j − 2
)

b j+1(a) = 0,(5.8a)

for 1 ≤ j ≤ �− 1,

(∂1 − �− 1)b j−1(a)− S2b j(a) = 0.(5.8b)

By pairing the equations (5.7a) and (5.8a), or the ones (5.7b) and (5.8b), we obtain
the following equations: for 0 ≤ j ≤ �− 1,

(
∂2 − 2

√
−1χ(c)a2

2 − j − 1
)

b j(a) = 0 and (∂1 − � + j)b j(a) = 0.

If we put b j(a) = a�− j
1 a j+1

2 e
√
−1χ(c)a2

2 c j(a), 0 ≤ j ≤ � − 1, then these equations tell
us that all c j(a) = c j are constants. To determine these constants we use again (5.6a),
(5.6b), (5.6c), and (5.6d). Since h1 �= 0, we get only the trivial solution: c j = 0 for
0 ≤ j ≤ �− 1.

6 Observation on Some Relations With Nilpotent Orbits

6.1

Let us consider a derived functor module. We will observe that the existence of a
non-zero (N, ψ)-Whittaker embedding of it could be related to a nilpotent G-orbit
in g∗R which is attached to this module.
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Let G be a real semisimple Lie group and gR its Lie algebra. Matumoto [Ma]
studied the C−∞-Whittaker vectors of a Harish-Chandra G-module (π,Hπ) for a
non-degenerate unitary character ψ of a maximal nilpotent Lie subalgebra n0 of gR.
He obtained a necessary and sufficient condition for these vectors not to vanish: such
a non-zero C−∞-Whittaker vector of π exists if and only if the asymptotic support
Asym(π) of π [B-V] contains the principal real nilpotent G-orbit in g∗R to which ψ
belongs; in particular, π should be (quasi) large. More precise statements can be
found in [Ma] Theorems 5.5.1 and 5.5.2. For unitary highest weight modules we can
refer [Y2] for a related subject. Kawanaka [K] conjectured some relation between
Whittaker vectors and the wave front set for a smooth representation of the group of
rational points of a reductive group over a finite or a p-adic field. Works of Rodier,
originally, Howe, and Mœglin-Waldspurger are also concerned with this philosophy.
It might be partially stated as a conjecture in our case:

Conjecture 6.2 Let π be an irreducible admissible Hilbert space representation of a
real semisimple Lie group G, and Asym(π) be the asymptotic support of π. Consider
the (N, ψ)-Whittaker embedding Whχ�ψ(π) of π, where ψ is a unitary character of a
unipotent subgroup N and χ a unitary representation of M(ψ). Moreover we consider
a subspace Whmod

χ�ψ(π) of functionals in Whχ�ψ(π) which have images consisting of
analytic and at most moderate growth functions on G. Then it might hold that

(i) Whmod
χ�ψ(π) �= {0} for some χ if and only if the real nilpotent coadjoint G-orbit OR

ψ

of ψ in
√
−1g∗R is contained in Asym(π). Here we use the maps n∗R � n

opp
R ↪→

gR � g∗R to obtain the orbit OR
ψ , where n

opp
R is the nilpotent subalgebra in the

opposite position to nR.
(ii) If dimC Ass(π) ≤ dimC n and the condition in (i) is satisfied, then there are only

finitely many irreducible χ up to equivalence such that Whmod
χ�ψ(π) �= {0}. And for

such a χ, the dimension of Whmod
χ�ψ(π) is finite.

We show that the results in Sections 4 and 5 are consistent with the conjecture
and Matumoto’s results. We use the notations in Section 2, 3. By a result of Schmid
and Vilonen [S-V], given an irreducible admissible representation π of G, we can
compute its asymptotic support Asym(π) [B-V] from the associated variety Ass(π)
of π by Kostant-Sekiguchi correspondence. Then we can obtain Asym

(
Aq7 (λ)

)
as

the union of the real nilpotent coadjoint G-orbits in
√
−1g∗R which corresponds to

Ass
(

Aq7 (λ)
)
= Cl

(
O

)
by the correspondence. Let us put Ψh :=

( 02√
−1h

02
02

)
∈

√
−1gR with h = t h ∈ M2(R). It determines a linear form ψh ∈

√
−1g∗R by ψh(X) =

tr(ΨhX), X ∈ gR. We can check that the real nilpotent G-orbit OR
ψh

of ψh coincides
with the image of the orbit O by the correspondence if and only if det(h) < 0.

Therefore it occurs in Asym
(

Aq7 (λ)
)

if and only if ψh defines an “indefinite” unitary
character of the unipotent radical N1 of the Siegel parabolic subgroup. On the other
hand,ψh with det(h) > 0, which defines a “definite” unitary characters of N1, belongs
to another real nilpotent orbit; if h is a positive, or negative, definite, then OR

ψh
is the

real orbit which corresponds to the KC-orbit O , or O , respectively. Both of
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these definite real orbits are not contained in Asym
(

Aq7 (λ)
)

. On the other hand, the

orbit OR
ψh

for a positive definite h meets with Asym
(

Aq6 (λ)
)

, because Ass
(

Aq6 (λ)
)
=

Cl
(
O

)
. For a linear form ψ given in 3.4, we can check that the orbit OR

ψ agrees

with the image of the KC-orbit O by the correspondence.

Putting together our observations on the nilpotent orbits and the statements in
Theorem 4.6, 4.10, 5.2, and 5.4, we can state the following:

Proposition 6.3 Fix a non-degenerate unitary character of N0, N1, or N2. Assume that
π = Aq6 (λ) or Aq7 (λ) with good and integral λ has a non-trivial realization into C∞-
IndG

Mi (ψ)�Ni
(χ · ψ) for some character χ of Mi(ψ), i ∈ {0, 1, 2} (M0(ψ): trivial), and

also that its image consists of holomorphic and moderate growth functions on G. Then
the real nilpotent coadjoint G-orbit OR

ψ of ψ should be contained in Asym(π).

Proof The statement for the (N0, ψ)-Whittaker embedding of π is a well known the-
orem of Kostant [Ko] and Vogan [V2]. It says each of Aq6 (λ) and Aq7 (λ) has no
(N0, ψ)-Whittaker embedding. But we know, in this case, OR

ψ is of maximal dimen-
sion, which is not contained in Asym(π).
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