
J. Plasma Phys. (2023), vol. 89, 905890519 © The Author(s), 2023.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377823001149

The effect of pressure anisotropy on 3-D MHD
stability for low magnetic field LHD equilibria

T.E. Moen 1,†, Y. Suzuki 2 and J.H.E. Proll 1

1Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama,

Higashihiroshima 739-8527, Japan

(Received 3 January 2023; revised 5 October 2023; accepted 5 October 2023)

The magnetohydrodynamic stability of plasmas with an anisotropic pressure component
is analysed for a low magnetic field configuration of the large helical device. Magnetic
equilibria are calculated by the anisotropic Neumann inverse moments equilibrium
code, an extension of the three-dimensional variational moments equilibrium code. A
modified version of the bi-Maxwellian is used to model the anisotropic particle velocity
distribution. Magnetohydrodynamic stability calculations for the n = 1 mode family are
carried out by TERPSICHORE, which has been expanded by the Kruskal–Oberman
energy principle. For on-axis particle deposition, the growth rate and plasma displacement
show that the parallel dominant plasmas are significantly more stable than isotropic
or perpendicular dominant plasmas. For off-axis particle deposition, the growth rate
and the Mercier criterion in the peripheral region ρ = 0.9, show that low field (LF)
deposition perpendicular dominant plasmas are most unstable. For the most realistic
off-axis deposition profile, it is found that parallel dominant plasmas are most stable
for LF deposition, while perpendicular dominant plasmas are most stable for high field
deposition. We conclude that, under low magnetic field conditions in the large helical
device, tangential neutral beam injection heating has a stabilising influence on the plasma.
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1. Introduction

The Large Helical Device (LHD), a heliotron type stellarator, has achieved a
volume-averaged normalised pressure, or beta value, 〈β〉, of over 4 % at low magnetic field
(Watanabe et al. 2005). Linear ideal magnetohydrodynamics (MHD) stability calculations
have been carried out for this operational regime. These have found that MHD instabilities
in the peripheral region do not cause drastic degradation of the plasma confinement
(Watanabe et al. 2005). This is in stark contrast to tokamaks, where operational 〈β〉
limits predicted by the linear ideal MHD theory can often be successfully confirmed by
experiment (ITER Physics Basis Editors et al. 1999).
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In order to sustain the high-beta plasma in the LHD, heating schemes including neutral
beam injection (NBI), ion cyclotron resonance heating (ICRH) and electron cyclotron
resonance heating (ECRH) are employed (Motojima et al. 2003). These heating schemes
sometimes produce a plasma with a non-Maxwellian velocity space distribution depending
on the thermal equilibration, which then leads to a pressure anisotropic plasma. In the
LHD, the ratio of parallel to perpendicular kinetic energy has been shown to exceed a
value of 4 as a consequence of heating through NBI (Yamaguchi et al. 2005). Under
low magnetic field conditions, the operational 〈β〉 regime of LHD has been shown to
cross the theoretical threshold predicted by isotropic, linear MHD theory (Watanabe
et al. 2005). Although MHD stability analyses have been carried out for LHD plasmas
with an anisotropic pressure distribution (Cooper et al. 2006b, 2007, 2012), the effect of
anisotropic plasmas on the operational 〈β〉 regime has not been researched in detail.

The three-dimensional (3-D) equilibrium solver VMEC (variational moments
equilibrium code) (Hirshman & Betancourt 1991) has been expanded by separating the
parallel and perpendicular components of the plasma pressure to a code called ANIMEC
(anisotropic Neumann inverse moments equilibrium code) (Cooper et al. 2009). The hot
plasma particles are described in this code using either a variant of a bi-Maxwellian
distribution (Cooper et al. 2006a) or a slowing-down distribution (Cooper et al. 2005).
The 3-D equilibria constructed by ANIMEC can be used to perform ideal linear MHD
stability calculations using the TERPSICHORE code (Anderson et al. 1990). This code
has been expanded to include two energy principles that extend beyond ideal MHD theory,
which allows plasmas with a pressure anisotropy to be analysed. The Kruskal–Oberman
(KO) principle models the hot-particle species as a fully interacting liquid, enabling it to
contribute to pressure- and current-driven instabilities (Kruskal & Oberman 1958). The
Johnson–Kulsrud–Weimer model, on the other hand, also known in the literature as the
non-interacting (NI) model, simulates the hot-particle species as a non-interacting layer
(Johnson, Kulsrud & Weimer 1969).

Building on the analysis of 3-D equilibria of pressure anisotropy in LHD carried out by
Romba, Suzuki & Proll (2021), in this work, we analyse the effect of pressure anisotropy
on linear 3-D MHD stability using both ANIMEC and TERPSICHORE. In particular,
we provide both a qualitative and a quantitative analysis of pressure anisotropy on linear
MHD stability for different hot-particle pressure profiles. We consider both on-axis and
off-axis particle deposition profiles. For the off-axis profiles, both high field (HF) and
low field (LF) deposition simulations are carried out and compared. The MHD stability
corresponding to pressure anisotropic plasmas is analysed by investigating the plasma
displacement, growth rate and Mercier criterion of global (low-n) MHD modes. This
analysis is then used to investigate the effect of pressure anisotropy on plasma stability
and the operational 〈β〉 regime of LHD.

Section 2 treats the theory associated with magnetic equilibria in the context of pressure
anisotropy. Section 3 introduces the theory behind linear MHD stability for pressure
anisotropic plasmas and discusses two energy principles that extend isotropic MHD
theory. Section 4 describes the magnetic equilibrium of the plasmas that will be simulated.
Next, in § 5, the result of the MHD stability calculations pertaining to the equilibria
described in the previous section is analysed. Finally, § 6 summarises the results and looks
at possible future research that could extend this work.

2. Numerical equilibrium theory

Magnetohydrodynamic equilibrium codes employ energy minimisation techniques to
calculate a plasma equilibrium. The total energy minimised in VMEC and ANIMEC
comprises a potential and kinetic energy part. The former is associated with magnetic
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pressure and the latter with plasma pressure. The total energy functional used in ANIMEC
is given by (Cooper et al. 1992),

W =
∫

d3x
(

B2

2μ0
+ p‖(s,B)
Γ − 1

)
, (2.1)

where B denotes the local magnetic field strength, μ0 is the permeability of free space
(4π × 10−7 H m−1) and Γ is the adiabatic index, which is usually set to zero. The total
parallel particle pressure p‖(s,B), is a function of the flux surface coordinate s ∈ [0, 1],
which is proportional to the toroidal magnetic flux 2πΦ enclosed, and of the magnetic
field strength B. Note that the normalised radial coordinate ρ relates to the flux surface
coordinate s as s = ρ2. It has been shown that (2.1) can be manipulated such that the ideal
MHD equilibrium force is recovered (Cooper et al. 1992)

F = −∇ · P + j × B. (2.2)

In this equation, P is the pressure tensor given by (Chew et al. 1956)

P = p⊥I + ( p‖ − p⊥)bb, (2.3)

where p⊥ and p‖ are the total perpendicular and parallel pressures, respectively, I is the
unit matrix, b = B/B is the unit vector in the direction of the magnetic field lines and j is
the current density. Given that the parallel pressure is a function of B, this quantity, and
by extension the perpendicular pressure, are not flux surface quantities, as opposed to the
total pressure. The parallel pressure comprises a part due to thermal particles and a part
due to hot particles. With the adiabatic index set to zero, the total parallel pressure takes
the form (Cooper et al. 1992)

p‖(s,B) = M(s)
[
1 + ph(s)H(s,B)

]
, (2.4)

where M(s) is the plasma mass, ph(s) is the hot-particle pressure component and H(s,B) is
a factor that describes the change in total parallel pressure around a magnetic flux surface.
The hot-particle term in this equation introduces an anisotropy through the dependence of
H on the magnetic field. For completeness, the force balance describing the calculation of
the total perpendicular pressure is given by

p⊥(s,B) = p‖(s,B)− B
∂p‖
∂B

∣∣∣∣
s

. (2.5)

The hot particles modelled by ANIMEC are described by a variant of the bi-Maxwellian
distribution (Cooper et al. 2006a)

Fh(s, E, μ) = N (s)
(

mh

2πT⊥(s)

)3/2

exp
[
−mh

(
μBC

T⊥(s)
+ |E − μBC|

T‖(s)

)]
. (2.6)

In this equation E and μ represent the total particle energy and the particle magnetic
moment, respectively. These parameters can be rewritten to obtain an equivalent
description in terms of v‖ and v⊥, the parallel and perpendicular particle velocity
components. The parameters N (s), mh, T⊥(s) and T‖(s) describe a density-like amplitude,
the hot-particle mass and the perpendicular and parallel components of the plasma
temperature, respectively. The parameter BC, called the critical magnetic field, determines
the number of trapped particles in the fusion device. This is a consequence of the fact
that most hot particles are deposited near the location where B = BC. This variant of
the bi-Maxwellian distribution has been shown to satisfy the lowest-order solution to the
Fokker–Planck equation B · ∇Fh = 0 (Dendy et al. 1995).
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3. Linear MHD stability theory

Two energy principles have been implemented in the TERPSICHORE code: the fully
interacting KO principle (Kruskal & Oberman 1958) and the non-interacting NI model
(Johnson et al. 1969). These energy principles fundamentally differ in the way they
treat hot-particle species in the context of pressure- and current-driven instabilities. The
KO model incorporates the effect of hot particles on MHD instabilities, while the NI
model describes hot particles as non-interacting, therefore affecting MHD instabilities
only indirectly. In this research we focus on the KO energy principle, given that this model
forms the most comprehensive framework for studying the effect that different hot-particle
pressure profiles have on pressure- and current-driven instabilities.

The TERPSICHORE code solves the following eigenvalue equation:

〈δWP〉 + 〈δWV〉 − ω2〈δWK〉 = 0, (3.1)

where δWP, δWV and δWK denote the plasma potential energy, the vacuum energy and the
kinetic energy. The variable 〈W〉 denotes the volume average of the energy W. The plasma
potential energy can be subdivided into the following components:

〈δWP〉 = 〈δWC2〉 + 〈δWBI〉 + 〈δWJ〉, (3.2)

where WC2 represents a positive definite stabilising component, which is associated
with magnetic field line bending and compression as well as plasma compression; WBI
represents pressure driven instabilities such as ballooning and interchange modes and WJ
represents parallel current driven kink modes. In TERPSICHORE, the terms in (3.2) are
evaluated in Boozer coordinates, which allows the eigenvalue problem to be separated into
individual Fourier components (Boozer 1980).

In ideal MHD theory with isotropic pressure, the term in (3.2) that describes pressure-
driven instabilities is given by

〈δWBI〉 = −
∫

d3x(ξ⊥ · ∇p)(ξ ∗
⊥ · κ), (3.3)

where ξ denotes the plasma displacement vector, p the pressure and κ the curvature vector
of the magnetic flux surface. The asterisk denotes complex conjugation. By modelling
the plasma as an incompressible fluid, the plasma displacement can be written as follows
(Anderson et al. 1990):

ξ = √
gξ s∇θ × ∇φ + η

B × ∇s
B2

, (3.4)

where ξ s and η are the radial and binormal components of ξ , respectively, and
√

g is the
Jacobian describing the transformation from Cartesian to Boozer coordinates. Due to the
incompressibility constraint, the component of ξ parallel to the field lines vanishes.

The KO and NI energy principles expand on the equation above by introducing pressure
anisotropy. When expressing the corresponding energy term in the KO energy principle
in Boozer coordinates (Boozer 1980), the following expression is obtained (Grad 1966;
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Cooper et al. 2006b):

δWBI(s) = −1
2

∫ 2π/Ls

0
dφ

∫ 2π

0
dθ

(
τ

τ + σ

)(
1
σB2

)(
∂p‖
∂s

∣∣∣∣
B

+ σ

τ

∂p⊥
∂s

∣∣∣∣
B

)
(ξ s)

2

×
[√

g
(
∂p‖
∂s

∣∣∣∣
B

+ σ

τ

∂p⊥
∂s

∣∣∣∣
B

)
+ ψ ′′(s)J(s)−Φ ′′(s)I(s)

+ψ ′(s)J′(s)−Φ ′(s)I′(s)+ σBs(B · ∇√
g)− σB2 ∂

√
g

∂s

]
. (3.5)

In this equation τ and σ refer to the mirror and firehose stability criteria, 2πΨ , 2πI and
2πJ refer, respectively, to the poloidal magnetic flux, the effective poloidal current flux
and effective toroidal current flux and Ls refers to the number of field periods within one
toroidal period. This equation shows that the hot-particle pressures, which are contained
in the terms p‖ and p⊥, have a direct influence on the energy balance.

The TERPSICHORE code is a linear MHD code which returns an eigenvalue
corresponding to the growth rate of the most dominant linear MHD instability as
well as the corresponding eigenvector which describes the plasma displacement. The
TERPSICHORE code has, however, been expanded to return quasi-linear parameters such
as physical values for the kinetic energy and a calculation of the Mercier criterion for both
the KO and NI energy principles (Cooper 1992). Growth rates, plasma displacements and
Mercier criteria are analysed in § 5.

4. Equilibrium calculations

The 3-D magnetic equilibria required to perform MHD stability analysis have been
simulated using ANIMEC with fixed boundary conditions. In this work, the last closed
magnetic flux surface has been chosen to represent the LHD standard configuration. The
pressure anisotropy can be input in ANIMEC by specifying T⊥/T‖ as a function of s. In this
work we have set the ratio T⊥/T‖ to a constant value. In order to better capture the degree
of pressure anisotropy in the plasma, the following parameter will be used to characterise
magnetic equilibria:

〈β⊥/‖〉 ≡ 〈β⊥〉
〈β‖〉 . (4.1)

The following definitions are employed:

〈β〉 =
1
3

∫
d3x( p‖ + 2p⊥)∫

d3x
B2

2μ0

, (4.2a)

〈β⊥〉 =

∫
d3xp⊥∫

d3x
B2

2μ0

, (4.2b)

〈β‖〉 =

∫
d3xp‖∫

d3x
B2

2μ0

. (4.2c)
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Name ph ∝ BC values (T) Heating scheme

Parabolic 1 − s 2.7 NBI
Peaked (1 − s)2 2.7 ECRH, ICRH
Broad 1 − s2 2.7 NBI
Hollow s(1 − s) 2.3, 3.1 ECRH, ICRH, NBI
Realistic 1 − s2 + s(1 − s) 2.3, 3.1 NBI

TABLE 1. The hot-particle pressure profiles for which MHD stability analysis has been
performed, along with the values for BC chosen for simulation and the corresponding heating
scheme.

We approximate the fraction 〈βh〉/〈β〉 ≈ 1/3 for all simulations in this work,
unless otherwise specified. For all simulations 〈β〉 is scanned over the set 〈β〉 ∈
{0.5 %, 1.0 %, . . . , 3.5 %}. The perpendicular to parallel pressure ratio was approximated
to be 〈β⊥/‖〉 ∈ {1/4, 1, 4}, corresponding to parallel dominant, isotropic and perpendicular
dominant plasmas, respectively. It should be noted that this pressure ratio strongly depends
on the thermal- and hot-pressure profiles. The thermal-pressure profile has been set to a
parabolic profile pth ∝ 1 − s, which approximates experimental observations (Watanabe
et al. 2005). The hot-particle pressure profiles used in this work are described in table 1.
These hot-particle pressure profiles have been chosen to be able to simulate the effect
of pressure anisotropy in the context of different heating schemes. The table lists the BC
values for which simulations have been carried out and the heating methods that most
accurately describe the corresponding hot-pressure profile. The values BC = 2.3 T, 3.1 T
correspond to LF and HF deposition. Note that, for pressure isotropic simulations, a
value of BC = 1.0T has been used. For isotropic simulations, T‖(s) = T⊥(s), which, in
combination with the value of BC = 1.0T, reduces the bi-Maxwellian given in (2.6) to a
Maxwellian distribution. Figure 1 displays the hot-pressure profiles as a function of the
flux surface coordinate s. The parabolic, peaked and broad profiles have a maximum at
s = 0, corresponding to on-axis hot-particle deposition, whereas the hollow and realistic
profiles correspond to off-axis deposition.

The magnetic equilibrium computed by ANIMEC can be analysed by investigating
the parallel and perpendicular components of the hot-particle pressure distribution. For
the example case of the perpendicular dominant realistic hot-particle profile, figures 2
and 3 show the parallel and perpendicular components of the hot-particle distribution,
respectively, overlapped by flux surfaces. From these plots, it is observed that neither
component of the hot-particle distribution is a flux surface quantity. The perpendicular
hot-particle pressure shows two clear local maxima. This can be explained by the fact that
the perpendicular component of the ion velocity is highest near the reflection points of
trapped particles. The shape of the perpendicular hot-particle pressure distribution implies
the existence of high pressure gradients which can negatively impact plasma stability.
Also, these gradients impose a threshold on the maximum 〈β〉 value that can be simulated.
Both the hot- and thermal-pressure distributions have an effect on the local effective
magnetic field, which in turn affects the rotational transform profile, ι(s). The rotational
transform profile of two example cases and a vacuum simulation are shown in figure 4. The
rotational transform of the LHD is negative everywhere inside the fusion device. In this
work, however, the rotational transform will be presented as a positive value for readability
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FIGURE 1. The normalised hot-particle pressure profiles ph described in table 1, as a function
of the flux surface coordinate s.

FIGURE 2. Hot-particle parallel pressure distribution for the realistic hot-pressure profile with
BC = 2.3T and 〈β〉 ≈ 3 % in a vertically elongated cross-section. The black curves indicate flux
surfaces.

of the figures. Note that, under specific conditions, the magnetic shear can vanish close to
the magnetic axis.

5. The MHD stability results

The MHD stability code TERPSICHORE will be used to analyse the n = 1 mode family
of instabilities (Cooper et al. 1990; Nührenberg née Schwab 1993; Ardelea & Cooper
1997). The n = 1 mode family is analysed, because experiment shows that the most
dominant MHD instabilities in LHD belong to this particular mode family (Watanabe et al.
2005). The growth rate, plasma displacement vector ξ and Mercier criterion corresponding
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FIGURE 3. Hot-particle perpendicular pressure distribution for the realistic hot-pressure profile
with BC = 2.3T and 〈β〉 ≈ 3 % in a vertically elongated cross-section. The black curves indicate
flux surfaces.

FIGURE 4. Rotational transform ι(s) for a vacuum simulation and for the parabolic and realistic
hot-pressure profiles at pressure isotropy. For the latter two profiles, 〈β〉 ≈ 2.5 % and 〈β〉 ≈ 3 %,
respectively.

to the KO energy principle (Cooper et al. 2006b) will be analysed in this section. The
plasma displacement vector ξ will be analysed through its modal structure as a function
of the flux surface coordinate s. For every hot-particle pressure profile, the maximum
〈β〉 simulation that would converge in both ANIMEC and TERPSICHORE is treated.
This implies that, especially for on-axis heating profiles, the 〈β〉 value shown can be
significantly lower than the maximum of the 〈β〉 scan.
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The plasma displacement sum over all modes will be used to compare the plasma
displacement between different levels of anisotropy

Ξ(s) =
K∑

k=1

ξnk,mk(s), (5.1)

where K is the total number of computed modes, {nk} and {mk} are sequences containing
toroidal and poloidal mode numbers, respectively, sorted based on maximum amplitude
and where

ξ n,m(s) = ξn,m(s) · ξ̂ n,m(s). (5.2)

Note that the unit vector ξ̂ n,m(s) is normal to the flux surface s and is pointing away from
the magnetic axis. The sequences {nk} and {mk} are constructed such that

max
s∈[0,1]

|ξn1,m1(s)| ≥ max
s∈[0,1]

|ξn2,m2(s)| ≥ · · · ≥ max
s∈[0,1]

|ξnK ,mK (s)|. (5.3)

Note also that the eigenvector ξ calculated by TERPSICHORE can be scaled arbitrarily.
The figures containing Ξ(s) throughout this work illustrate the direct results from
calculations performed by TERPSICHORE and have not been rescaled.

5.1. On-axis deposition profiles
Figure 5 shows the graph ofΞ(s) for the parabolic, peaked and broad hot-particle pressure
profiles, normalised per simulation result by the maximum value Ξmax ≡ maxs∈[0,1]Ξ(s).
The mode width of the plasma displacement is observed to be significantly smaller
for parallel dominant plasmas for all on-axis deposition profiles, while the differences
between the isotropic and perpendicular dominant cases are negligible. In global mode
analysis, this mode width directly relates to the growth rate (Sugama & Wakatani 1989;
Gupta, Callen & Hegna 2002). Moreover, the mode width pertaining to the plasma
displacement is proportional to the volume of plasma displaced. Thus, following from
(3.5), this difference in mode width indicates that the energy associated with the plasma
displacement is smallest for parallel dominant plasmas for on-axis profiles, which is
conducive to plasma stability. A shift in smax, the flux surface coordinate s for which the
plasma displacement is largest, is also observed with smax decreasing for increasing 〈β⊥/‖〉.
The change in smax is a direct consequence of the change in shape of the ι(s) profile for
different hot-pressure profiles. The underlying mode structure of the displacement vector
is shown in figure 6 for an example case that corresponds to a pressure isotropic simulation
of the parabolic hot-particle pressure profile. This figure also shows the graph of the
rotational transform ι(s), which allows us to conclude that the most dominant mode is the
resonant n = 1,m = 2 mode at the ι = 0.5 surface. The mode structure for the parabolic,
peaked and broad hot-particle profiles look very similar.

The growth rates corresponding to the eigenvalues found in (3.1) are shown in figure 7.
From the growth rates we conclude that the plasma becomes more unstable for increasing
〈β⊥/‖〉 for all on-axis deposition profiles. Noticeably, for high 〈β〉 values, parallel dominant
plasmas have significantly lower growth rates than isotropic or perpendicular dominant
plasmas, which is in agreement with the plasma displacement results. Analysing the mode
structure of the plasma displacement for the on-axis deposition profiles, it is concluded
that the n = 1,m = 2 is present and dominant for all 〈β〉 values. The Mercier criteria at
s = 0.81 (ρ = 0.9) corresponding to the on-axis deposition profiles are shown in figure 8.
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FIGURE 5. The normalised plasma displacement sum over all modes as a function of the flux
surface coordinate s, Ξ(s)/Ξmax, for the parabolic, peaked and broad hot-particle pressure
profiles. For each profile, three levels of anisotropy were considered. The 〈β〉 values for
the parabolic, peaked and broad profiles are approximately equal to 2.5 %, 1.5 % and 3 %,
respectively.

FIGURE 6. The five most dominant modes in line with ordering in (5.3) of the displacement
vector and the ι profile for a parabolic hot-pressure profile. This figure shows a pressure isotropic
simulation with 〈β〉 ≈ 2.5 %. The red dotted lines indicate the location of the ι(s) = 0.5 surface.

5.2. Off-axis deposition profiles
The hollow and realistic hot-particle pressure profile simulations contain an additional
parameter BC, which has been scanned over to vary the deposition location of the
hot-particle species. Figure 9 shows Ξ(s) corresponding to the hollow and realistic
off-axis deposition profiles for varying pressure anisotropy and critical magnetic field BC.
It is found that, for parallel dominant plasmas, the value of BC has a negligible effect on
the plasma displacement Ξ(s). This can be explained by the fact that the trapped particle
fraction for parallel dominant plasmas is relatively low compared with perpendicular
dominant plasmas. From this figure, we can also conclude that LF deposition of
perpendicular dominant ions has a pronounced destabilising effect for both hot-pressure
profiles. This is corroborated by figure 10, which shows the growth rates corresponding
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FIGURE 7. The growth rates corresponding to the parabolic, peaked and broad hot-particle
pressure profiles. For each profile, three levels of anisotropy were considered. The 〈β〉 values
for the parabolic, peaked and broad profiles are approximately equal to 2.5 %, 1.5 % and 3 %,
respectively. The value for 〈β⊥/‖〉 represents the average value over all simulations in the
〈β〉-scan with the same ratio T⊥/T‖.

FIGURE 8. The Mercier criteria corresponding to the parabolic, peaked and broad hot-particle
pressure profiles. For each profile, three levels of anisotropy were considered. The 〈β〉 values
for the parabolic, peaked and broad profiles are approximately equal to 2.5 %, 1.5 % and 3 %,
respectively. The value for 〈β⊥/‖〉 represents the average value over all simulations in the
〈β〉-scan with the same ratio T⊥/T‖. The black lines indicate the stability boundary where the
Mercier criterion is zero.

to the simulations of the off-axis deposition profiles. The growth rates pertaining to the
perpendicular dominant plasmas for both hot-pressure profiles are observed to decrease
substantially when transitioning from LF to HF deposition. The realistic profile shows
the only case in all simulations carried out for which a perpendicular dominant plasma
in the context of the same hot-pressure profile appears to be more stable than parallel
dominant plasmas. It is observed in figure 10 that the growth rate is more sensitive to
the plasma anisotropy ratio 〈β⊥/‖〉 for LF deposition than for HF deposition for both the
hollow and realistic hot-particle pressure profiles. This result is in agreement with the
eigenvalue analysis performed for the mode family n = 2 for the hollow profile in Cooper
et al. (2007).

In the case of a hollow hot-pressure profile, the n = 1,m = 1 mode component is clearly
visible, peaking at s ≈ 0.75, and is most pronounced for the parallel dominant case. The
Mercier criteria at s = 0.81 corresponding to the off-axis deposition profiles are shown in
figure 11. As opposed to the Mercier criteria for on-axis profiles, figure 8, a large change
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FIGURE 9. The function Ξ(s)/Ξmax for the hollow and realistic hot-particle pressure profiles.
For each profile, three levels of anisotropy were considered. For both pressure profiles, 〈β〉 ≈
3 %.

in Mercier criterion value is observed in the case of perpendicular dominant plasmas.
For perpendicular dominant plasmas, the Mercier criterion value crosses the stability
boundary at a lower value of 〈β〉. The results shown in figure 11 are in agreement with
the results corresponding to the plasma displacement and growth rate to some degree. The
main discrepancy that exists for both hot-pressure profiles is the fact that the difference
in Mercier criteria for the isotropic and parallel dominant cases is negligible, while the
difference in growth rate is substantial, for high values of 〈β〉.
6. Conclusion

The 3-D magnetic equilibrium and linear MHD stability have been calculated for
anisotropic plasmas in the case of the LHD stellarator for a low magnetic field
configuration and have been compared with isotropic plasmas. The magnetic equilibrium
has been calculated using the ANIMEC code, while TERPSICHORE has been used for
the linear MHD stability calculations. A modified version of the bi-Maxwellian was used
to model the effect of pressure anisotropy on the particle velocity distribution. In the
simulations carried out, we chose a parabolic thermal-pressure profile in order to match
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FIGURE 10. The growth rates corresponding to the hollow and realistic hot-particle pressure
profiles. For each profile, three levels of anisotropy were considered. For both pressure profiles,
〈β〉 ≈ 3 %. The value for 〈β⊥/‖〉 represents the average value over all simulations in the 〈β〉-scan
with the same ratio T⊥/T‖.

experimental conditions. Five hot-particle pressure profiles were analysed, three of which
correspond with on-axis particle deposition and two with off-axis deposition. The KO
energy principle, which has been implemented in TERPSICHORE, has been used to
calculate the following stability parameters: the growth rate, the mode structure of the
plasma displacement and the Mercier criterion at s = 0.81. The n = 1 mode family has
been analysed in TERPSICHORE.

The growth rates for the on-axis hot-particle pressure profiles reveal a clear dependence
on the level of anisotropy 〈β⊥/‖〉. For all 〈β〉 > 0.5 %, the growth rate is observed
to increase for increasing 〈β⊥/‖〉, regardless of the specific profile shape. The plasma
displacement for parallel dominant plasmas is observed to have a small mode width
in comparison with the isotropic and perpendicular cases. These two facts combined
allows us to conclude that the parallel dominant case represents the most stable plasma
configuration and is noticeably more stable than the more common case of plasma
isotropy. For the off-axis hot-particle pressure profiles, the plasma displacement, growth
rate and Mercier criterion at s = 0.81 show that perpendicular dominant plasmas with LF
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FIGURE 11. The Mercier criteria corresponding to the hollow and realistic hot-particle pressure
profiles. For each profile, three levels of anisotropy were considered. For both pressure profiles,
〈β〉 ≈ 3 %. The value for 〈β⊥/‖〉 represents the average value over all simulations in the 〈β〉-scan
with the same ratio T⊥/T‖. The black lines indicate the stability boundary where the Mercier
criterion is zero.

deposition are very unstable compared with all other plasma configurations. The Mercier
criterion shows a clear discrepancy in stability between perpendicular dominant plasmas
on the one hand and isotropic and parallel dominant plasmas on the other. For the realistic
hot-pressure profile, perpendicular dominant plasmas with HF deposition are found to
be most stable. For LF deposition, however, parallel dominant plasmas are found to be
most stable for this profile. We can conclude that the fact that the theoretical threshold for
isotropic plasmas is found to be crossed under a low magnetic field configuration for LHD
can be attributed to anisotropy in plasmas. Specifically, tangential NBI heating, which is
used as a main heating scheme in LHD, is found to stabilise such plasmas.

Future research could concentrate on the treatment of higher-order modes such as the
n = 2 mode in TERPSICHORE. This could form a more comprehensive picture of the
effect of pressure anisotropy on plasma stability. Another topic for future research is to
expand on this work by calculating equilibria using the slowing-down distribution. This
distribution is generally found to be more relevant and accurate in modelling NBI heating.
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Our work provides a theoretical treatment of the effect of pressure anisotropy on plasma
stability. Further research, however, is needed to provide a connection between MHD
stability theory and experiment, where experimental research such as that provided by
Watanabe et al. (2005) should be taken into account.
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