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A FIXED POINT THEOREM AND ITS APPLICATIONS TO A
SYSTEM OF VARIATIONAL INEQUALITIES

QAMRUL HASAN ANSARI AND JEN-CHIH YAO

In this paper, we first prove a fixed point theorem for a family of multivalued maps
defined on product spaces. We then apply our result to prove an equilibrium existence
theorem for an abstract economy. We also consider a system of variational inequalities
and prove the existence of its solutions by using our fixed point theorem.

1. INTRODUCTION

By using a partition of unity, very recently Lan and Webb [8] have obtained some
fixed point theorems for a family of multivalued maps defined on product spaces without
compactness assumptions on the domain and range sets. Ding, Kim and Tan [6], Wu
[13], Wu and Shen [14] and Yannelis and Prabhakar [15] have also studied such types
of fixed point theorems with compactness assumption on the range set, which are well
suited to prove equilibrium existence theorems for an abstract economy.

Pang [9] showed that a variety of equilibrium models, for example, the traffic equi-
librium problem, the spatial equilibrium problem, the Nash equilibrium problem and the
general equilibrium programming problem can be uniformally modelled as a variational
inequality defined on the product sets. He decomposed the original variational inequality
into a system of variational inequalities which are easy to solve. He also studied the
convergence of such methods. The method of decomposition was also used by Zhu and
Marcotte [16] to solve a variational inequality problem defined on a set of inequality con-
straints. By generalising the concept of pseudomonotonicity to the product sets, Bianchi
[1] proved the existence of solutions of the system of variational inequalities, that is, a
family of variational inequalities defined on a product set.

Inspired by the system of variational inequalities, in the next section we establish a
fixed point theorem for a family of multivalued maps defined on product spaces, which
generalises the results in [6, 8, 14] and [15]. In Section 3, we apply our fixed point
theorem to prove an equilibrium existence theorem for an abstract economy. In Section
4, we consider the system of variational inequalities and prove the existence of its solutions
by using the result of Section 2.
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We shall use the following notation and definitions. Let A be a non-empty set.
We shall denote by 2A the family of all subsets of A. If A is a non-empty subset of a
topological vector space X, we shall denote by int* the interior of A in X. If A is a
subset of a vector space, co(A) denotes the convex hull of A.

Let X and Y be two topological vector spaces and T : X —> 2Y be a multivalued
map. Then T is said to have the local intersection property [14] if for each x € X with
T(x) ^ 0, there exists an open neighbourhood N(x) of x such that P| T(z) ^ 0.

z£N{x)

The multivalued map T is said to be transfer open-valued [4] if for any x 6 X, y S
T(x) there exists an z € X such that y € intyT(z).

The inverse of T, denoted by T~l, is the multivalued map from 1Z(T), the range of
T, to X defined by

x € T"1^) if and only if y G T(x).

2. FIXED POINT THEOREM

Let I be an index set and for each i 6 / , let £"* be a Hausdorff topological vector
space. Let {K{}iej be a family of non-empty convex subsets with each Ki in Et. Let
K = n #i and £ = f] #i-

THEOREM 1. For each i € /, Jet 5i,Tj : AT —• 2*' be two multivalued maps.
Assume that the following conditions hold.

(i) For each i € I and each x € K, co(Si(x)) C Ti(x) and Si{x) is non-empty.
(ii) For each i€ I, K = \J{intKS~l{xi) : x{ 6 Ki}.

(iii) If K is not compact, assume that there exist a non-empty compact convex
subset d of Kt and a non-empty compact subset D of K such that for
each x € K \D there exists y, € C* such that x € int/fS,"1^).

Then there exists x € K such that x € T(x) = J] Ti(x), that is, x{ € T{(x) for each i € I,
_ _ te/

where Xi is the projection of x onto K,.

P R O O F : For each i € / , we define a multivalued map Gt : K{ —> 2K by

Gi(xi) = {xeK:x<£ \ntKSrl(xi)} =K\int^Sr1^)-

Then d satisfies the following conditions:

(a) For each Xj € Ki, Gi(xi) is closed in K.

(b) For each i g / , (") GJ(XJ) is compact in K.

Indeed, if K is compact, Q G,(XJ) is compact since Q Gi(xj) is closed
ii6Cj Xi6C,

in K by (a). If if is not compact,

f | Gi(Xi) - f | {x 6 K : x # mtKSrl(Xi)} c D by (iii)
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and thus is compact.

(c) Since for each i G / , K = \J{mtKS~1(xi) : xt € A"j}, we have

|"| Gi(xi)= f l {K\intKSr1(xi)}=<D, for each i e l .
Xi€Ki Xi€Ki

Now, we shall show that there exist an, • • • , au{ € Ki such that

(1) ( f | Gi(xi)

Suppose that (1) is not true, then for every finite set {yi, • • • , yn} C Kit we have

VXi€C, ' S = l /

Let P(y) = ( 0 Gi^ , ) ) n (Gi(2/)) for y e K{. Then the family {P(y) : y e K{} has

the finite intersection property. Note that P(y) is compact in K for each y e if, because
H Gi(xi) is compact and Gi(y) is closed in A". It follows that f| P(y) ^ 0 and thus

fl Gi(y) ^ 0 which is a contradiction to (c).

By (1), we have

(2) ( |J intKS-l(Xi)) U (

Let Fi = co(Ci U {aji, • • • , aa j ) . Then Fi is compact in K{. Let F = fl Pi, t n e n F is a

compact subset of K. By (2), we have

(3) F C ( U )

Since F is compact, there exist bn,- • • ,bit{ € Cj such that

(4) F c I int* SfV&i,-) U
S'=i v*=i

Let {CJI, • • • , Cini} = {aii, • • • , auit bn,-- • , 6^}. We rewrite (4) as follows

(5) F e l l int^5,~1(cjjt).

Let Xj = co({c;i, • • • ,Cini}) and X = ]\ X{. We denote by A{ the vector subspace of Ei

generated by X{. Then Aj is locally convex since it is a finite dimensional subspace. We
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note that X is a compact set in Yl At> and X c F C U ^ K ^ " ^ ^ ) . Therefore

nxc(j i
/t=i

(
i

and hence X = \J i
k=l

Since .Y is compact, there exists a partition of unity {5,1, • • • , flinj subordinated to
this finite subcovering such that

(I) for each k = 1, • • • , rii, gik : X —> [0,1] is continuous,

(II) for each k = 1, • • • , nu gik{x) = 0, for x $ intxS^c**),

(III) for each x e X, £ 9ut(x) = 1.
rii

For each i G /, we define a map fi : X —> X, by fi(x) = £] 5,t(x)c,fc, for all x 6 X.
k=l

Obviously, for each i € /, /j is continuous function. For each x € X and each k with
5.*(aO ^ 0, we have x € int^S"1^*) C S^l(cik) and so that Cj* g 5j(i) for each i e I.
By (i) and the definition of fi, we have for each i £ I, fi(x) € co(S<(z)) c Ti(x), for all
xeX.

Define a map h : X —> X by /i(z) = {U{x)) .g/. Since for each a; € X, /i(i) e Xj,
it follows that h is well-defined and continuous. By Tychonoff's fixed point theorem [12],
h has a fixed point x — (xj)ie/ G X. This implies that xt — fi(x) for all i e I. Since for
each i € /, /i(x) e T{{x) for all x € X, we have ij G T{(x). D

REMARK, (a) Theorem 1 generalises in [6, Theorem 2] and [14], respectively.
(b) The assumtion (ii) in Theorem 1 can be replaced by any one of the following

conditions:

(ii)' For each i G I, S~l is transfer open-valued.

(ii)" For each i € I, Si has the local intersection property.

(ii)'" For each i G / and xt G Ki, 5f L(XJ) is open in K.

PROOF: For the proof of (ii)', we refer to [4, Lemma 2.1].
(ii)" Since for each i G /, Sj(x) / 0, for all x € K, there exists a neighbourhood Ni(x)
of x such that f) $(z) ^ 0- Let y{ G fl $(z), then y{ G Si{z), for all z G M(x)

and hence z G S~x{\)i), for all 2 G M(x). Therefore, x G N{(x) C S'^yt), so that
x G int/fSfHl/t)- This implies that K C U{int*-Si"1 (&) : Vi € ^ } C K, and hence

(ii)'" From assumption (i) in Theorem 1, we have K = \J{S~1(yi) : y, G Ki} and since
for each y{ G Ku S~x{yi) is open in K, we get ZC = UiinttfSi"1^) : 2/i G /Cj}. D
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When the index set / is a singleton, we have the following result which generalises
the well-known Browder fixed point theorem [3], [10, Theorem 1], [14, Corollary 3] and
[15, Theorem 3.3].

COROLLARY 1 . Let K be a non-empty convex subset of a Hausdorff topological
vector space E, and let S,T : K —> 2K be two multivalued maps. Assume that the
following conditions hold.

(i) For each x e K, co(5(x)) C T(x) and S(x) is non-empty.

(ii) K = \J{intKS-1(y):yeK}.

(iii) If K is not compact, assume that there exist a non-empty compact convex
subset C of K and a non-empty compact subset D of K such that for each
x £ K \D there exists y £ C such that x € intf(S~l(y).

Then there exists x e K such that x € T(x).

REMARK. The assumption (ii) in Corollary 1 is equivalent to the following condition of
Tarafdar [10]:

(ii)' For each y € K, S~l(y) = [x 6 K : y € S(x)} contains a relatively open
subset Oy of K (Oy could be empty for some y) such that |J Oy = K.

3. EQUILIBRIUM EXISTENCE THEOREM

In this section, we prove an equilibrium existence theorem for a non-compact abstract

economy with an infinite number of commodities and an infinite number of agents.

Let / be a (possibly uncountable) set of agents. An abstract economy T =

(Ki, Ai, Bi, P{) [6], where A{,Bi : K = Y[ Kj —• %Ki a r e constraint correspondences

and Pi : K —> 2Ki is a preference correspondence. An equilibrium [6] for F is a point
x S K such that for each i G / ,

Xi € Bi(x) and Ai(x) D P{{x) = 0.

When Ai = Bi for each i € / , these definitions of an abstract economy and an
equilibrium coincide with the standard definitions, see for example [2] and [15].

THEOREM 2 . Let {Ki}isI be a family of non-empty convex subsets with each Kt

in a Hausdorff topological vector space Et and let F = (Kit Ait Bit Pt) be an abstract
economy. Assume that the following conditions hold.

(i) For each i € I and each x £ K, co(Ai(x)) C Bi(x) and Ai(x) is non-empty.

(ii) For each i € / , K = (J mtK[{{coPd~l{yi) U W{} n A f 1 ^ ) ] , where

Wi = {xeK: Ai{x) n Pi{x) = 0} .

(iii) For each i € / and each x € K, x^ £ co(Pj(x)).

https://doi.org/10.1017/S0004972700033116 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033116


438 Q.H. Ansari and J-C. Yao [6]

(iv) If K is not compact, assume that there exist a non-empty compact convex
subset C{ ofK{ and a non-empty compact subset D ofK such that for each
x e K\D there exists & € C{ such that x € int^[{(coP,)""1^) U W{} n

Then there exists a point x € K such that x{ e Bi(x) and Ai(x) nPj(i) = 0, for aiJ i e I.

PROOF: For each i € /, let V{ = {x 6 K : A{{x) D Pt(x) / 0} and for each x€ K,
let I(x) = {i e / : At(x) n P{(x) ̂  0}. For each i € 7, we define two multivalued maps
SuTi : K—> 2*' by

ct \ _ / coPi(i) n Ai(x), for i e 7(z)
I 4 - I T I Fnr 7 tf # (T* 1
v

and

f coPi(a:) n ^ ( i ) , for 2 € I(x)
{ } ~ 1 BAx), iovii I(x).

Then for each i € / and each x € K, co(Si(z)) C TJ(x) and 5i(x) is non-empty.
Now for each i 6 / and y* 6 Tfj,

-. [{(coPi)"1^.)n A7Hyi)} n V5] u [i4,7l(j/0 n ^ ]
= [(coP;)"1^) n A-l(yi)] u [A-1(j/i) n w j

From (ii), we have

K= \J mtK[{(coPi)-
1(yi)UWi}nA-1(yi)}=

Hence all the conditions of Theorem 1 are satisfied, therefore there exists x € K such
that Xi € Ti(x) for all i 6 /. By (iii) and the definition of Tj, we have ij e JB:(X) and
Ai(x) n Pi(x) = 0, for all i e 7. D

4. SYSTEM OF VARIATIONAL INEQUALITIES

Let / be an index set and for each i 6 I, let Ei be a Hausdorff topological vector
space with its topological dual £,*. Let {Ki\^j be a family of non-empty convex subsets
with each K{ in E{. Let K = \[ Ku K{ = ft Ki and E = n Ei- F o r e a c h * e /,

let ylj : K —> Ef be a given function. Then we consider the system of variational
inequalities (in short, SVI) which is to find x = (XJ,I*) € K such that for each i 6 I,

(6) (Ai{x), 2/i - i.) ^ 0, for all y< e Kit
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where (•, •) denotes the pairing between E^ and Ei.

The (SVI) was considered by Pang [9] with applications in equilibrium problems. He
showed that the traffic equilibrium problem, the spatial equilibrium problem, the Nash
equilibrium problem and the general equilibrium programming problem can be modelled
as the (SVI). He also investigated the local and global convergence of various iterative
methods for solving the (SVI). But he did not discuss the existence of solutions of the
(SVI). Later, Bianchi [1] proved the existence of solutions of the (SVI) by generalising
the concept of pseudomonotonicity to the product sets and using the Fan-KKM Theorem
[7]. The (SVI) was also studied by Cohen and Chaplais [5], and Zhu and Marcotte [16].

First we shall prove an existence theorem for a more general system.

THEOREM 3 . For each i € I, let f{ and g{ be two real-valued functions defined
on K x Ki. Assume that the following conditions hold.

(i) For each i € / , x >-¥ fi(x, yi) is upper semicontinuous on K, for all yi € Ki.

(ii) For each i € / and each finite subset {y},--- ,y"} of Ki we have
n

fi(x, y\) < 0, for all j = 1, • • • , n imply gt{x, y{) < 0, where y{ = £ o?y[,
3 = 1

n

o? ^ 0 for all j = 1, • • • , n and £3 aJ = 1.
3 = 1

(iii) For each i £ I and all x 6 K, i,- £ Ki, gi(x,xi) ^ 0.

(iv) If K is not compact, assume that there exist a non-empty compact convex

subset d of Ki and a non-empty compact subset D of K such that for

each x € K \D there exists 5/i € C* such that fi(x,y~i) < 0.

Then there exists x € K such that for each i e I, fi(x,yi) ^ 0, for all y{ € K{.

P R O O F : For each y{ € Kit we define a multivalued map H{ : Ki —> K by

Then from (i) we have, for each i € / and yt € Kt, Hi(yi) is closed in K.

Suppose that the conclusion of this theorem is not true. Then for each x e K,

{yi € Kt : f i { x , yi) < 0 } = { y i e K i : x < £ H i ( y i ) } £ 0 , f o r e a c h i e J Q I .

Now, we define two multivalued maps St,Ti : K —> 2Ki by

St(x) = {yt e Ki : fi(x,yi) < 0} and T{{x) = {y{ € K{ : ft(x,y0 < 0} , respectively.

Then clearly Si(x) is non-empty, for all x € K and each i € J.
Let {y}, •• • , yj1} be a finite subset of Kt such that / ,(x, y{) < 0 for all j = 1, • • • , n

n
and x e K. Then from (ii), we have 5i(x,yi) < 0, where yt — Y2 &]£, a* ^ 0 for all

3=1
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n
j = 1, • • • , n and J2 a J = *• Hence any convex combination of points of S,(x) lies in

7=1

Ti(x). Thus co(S,(x)) C Ti(x), for all x G A" and each i € J.

Since Hi(yi) is closed for all y,- € Kt and each z G J, we have S~x(yi) — [x & K :

fi{x,Vi) < 0} = [Hi(yi)]c (the complement of #j(y<) in K) is open in if and hence

S,"1^) = S,rl(j/i) for all y* € AV Since for each x G K, Si(x) is non-empty, we have

= U S i " 1 ^ ) = U intxS,"^^) . Then 5< and Tu for each i G J, satisfy all the

conditions of Theorem 1. Hence there exists x € K such that xt G Tj(x), that is, there
exists x G K such that <fc(x, Xi) < 0 for each i G J,which is a contradiction of assumption
(iii). The result is proved. D

THEOREM 4 . For each i € I, let fc and <& be two real-valued functions defined
on K x Ki. Assume that the following conditions hold.

(i) For each i G / , x >-* /,(x, ?/,) is upper semicontinuous on K, for all yt G K^.

(ii) For each i G / , fi{x, y{) < 0 implies gi(x, y,) < 0, for all (x, j/i) G K x Ki.

(iii) For each i G / , either /j or & is quasiconvex in their second variables.

(iv) For each i G / and all x € K, xt e Kt, gi(x,Xi) ^ 0.

(v) 7f AT is not compact, assume that there exist a non-empty compact convex

subset Ci of K{ and a non-empty compact subset D of K such that for

each x G K\D there exists j / ; G Ci such that fi(x,yi) < 0.

Then there exists x G K such that for each i G / , fi(x, y<) ^ 0, for all y{ G Kt.

P R O O F : The result will follow from Theorem 3 if we show that co(5j(x)) C T{(x),

for all x G K and each i £ / , where Si and TJ are defined as in the proof of Theorem 3.

Let {y}, • • • , y"} be a finite subset of Ki such that fi(x, y{) < 0, for all j — 1, • • • , n.
Assume that for each i G / , fi is quasiconvex in the second variable. Then we have

n . n
/i(x, yi) < 0, where yi = £) ^yf, o^ ^ 0, for all j = 1, • • • , n and £ aJ = 1. From (ii),
we have ^(x.yi) < 0 and hence % G Ti(x), that is, the convex combinations of points of
Si{x) lie in Ti(x). Thus co(Si(z)) C Ti{x), for all x G K and each i G / .

Now let for each i G / , g,- be quasiconvex in the second variable. Since fi(x, yf) < 0,
for all j = 1, • • • ,n, from (ii) we have gi{x,y{) < 0, for all j — 1, • • • ,n. Since & is
quasiconvex in the second variable, we have gj(x,y,) < 0, and hence % G Tj(x). Thus
co(5i(x)) C Tt(x), for all x G # and each i G / . D

REMARK. When / is a singleton, Theorem 3 generalises [11, Lemma 2.1] while Theorem
4 reduces to [11, Lemma 2.1].

COROLLARY 2 . For each i £ I, let At be a function defined on K into E'.
Assume that the following conditions hold.

(i) For each i G / , Ai is upper semicontinuous on K.
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(ii) There exists a family {<?,}j6/ of real-valued functions defined on K x Kt

such that

(a) for each i G / , (Ai(x), yt -1,) < 0 imply gi(x, yt) < 0, for all

x € K and Xi,yi G Kit

(b) for each i G / and all x G K, xt € Kt, gi(x, xt) ^ 0.

(iii) If K is not compact, assume that there exist a non-empty compact convex

subset Ci of Ki and a non-empty compact subset D of K such that for

each x G K\D there exists yt G C, such that (Ai(x),yt — xj < 0.

Then there exists a solution x G K of the (SVI).

P R O O F : For each i e / , we define a real-valued function fc on K x Ki by

fi(x, Vi) = (Ai(x),yi - Xi), for all (z, y{) = ((xu xl), Vi) eK x Kt.

Then by Theorem 4, there exists x 6 K such that

(Ai(x), y{ - x^ ^ 0, for all y{ G K{.
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