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OBITUARY

JOHN HAWKES (1944–2001)

In his curriculum vitae, John Hawkes lists his research interests as geometric
measure theory, probability (Lévy processes), and potential theory (probabilistic).
In fact, he made significant contributions to all three areas, and there are strong
relationships between them. He used both geometric measure theory and potential
theory as tools for his study of the trajectories of particular Lévy processes, but
in many cases he needed to develop the tool before it was ready to be used. We
will summarise his research later, but first we discuss what is known of his life
history.

John was born in Leeds on 28 February 1944; little is known of his early life.
He attended a primary school near Elland Road football ground, and he was the
only pupil in his year at that school to pass his 11-plus selection test; this gave
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him entry to Leeds Grammar School (which at that time was still a state grammar
school). As a teenager he played chess for his school and entered the adult regional
chess competitions; some of those against whom he competed in chess recognised
his outstanding talents and suggested that he should go to university, a possibility
that had not previously occurred to him. One of his mathematics teachers suggested
he should do a mathematics degree, and his application to Kings College, London
was successful. There he was influenced by Rex Tims, a student of Littlewood, who
taught him analysis and inspired him to become interested in precise analytical
thinking. He graduated from Kings College in 1966 with a first class honours degree.

From Kings, John moved to Westfield College, and I took him on as a research
student working towards a PhD. Conditions in London were good for students in
Analysis/Probability at this time, because they could be introduced to a working
analysis seminar at University College under the leadership of Ambrose Rogers,
and a seminar in probability at Imperial College under the leadership of Harry
Reuter; in addition, increasing numbers of active mathematicians from the USA
and elsewhere were coming to London for their sabbatical years. In most respects,
John was a model research student. He was a natural mathematician who set
himself high standards of precise thinking. He had good taste in choosing interesting
problems and conjectures, which he would then try to prove or disprove. I shared
responsibility for his supervision with Harry Reuter; John wrote an outstanding
thesis and was awarded a PhD by London University in 1969.

John’s first teaching post was at the University of Michigan, Ann Arbor; when
his contract was completed, he was encouraged to stay on to contend for a tenured
post, but decided to return to the UK in 1971. He held temporary posts first at
Imperial College and then at University College, London. (This was the first of
many periods of financial austerity in UK universities, which made tenured posts
almost unavailable.) John was married in 1973 to Jennifer Le Ruez, whom he had
met when they were both students at Westfield. They moved to the University
College of Swansea in 1974, where John first had an appointment in the Department
of Statistics before moving to Mathematics in 1983, first as Reader and then as
Professor from 1988 until his (early) retirement on health grounds in 1997, at which
point he moved back to London.

Throughout his career, John developed relationships with other working
researchers who shared a common interest. He was a welcome contributor to
Symposia, and often visited other departments to give colloquium talks. During
his time in Swansea he had two sabbaticals; the first in 1978–79, when he was
employed as research scientist at the IBM research centre near New York, working
with Benoit Mandelbrot on the mathematics of fractals, and the second in 1989–90,
when he was Visiting Professor at the University of British Columbia, working
with Ed Perkins on the theory of branching processes. He made numerous shorter
visits including: Stanford University (1976) to visit Kai Lai Chung, Moscow State
University (1977) to visit B. V. Gnedenko, Free University of Amsterdam (1981)
to visit H. Berbee, University of New South Wales (1981) to visit Gavin Brown,
University of Warwick (1985, 1987) for the Stochastic Analysis Summer School, and
University of Paris Sud (1992) to visit Jean-Pierre Kahane. Many of these contacts
produced collaborative research; several of his collaborators have revealed that they
despaired of ever getting John to agree that their carefully crafted paper was ready
for submission. John remained a perfectionist with regard to his publications, and
many of his ideas remain unpublished because of his desire for complete results with
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no avenue unexplored. For this reason his research output, though very impressive,
did not match his talents or potential. It is worth remarking that John had a
remarkable gift for communicating mathematics, both in print and in lectures. He
could explain deep and technical results with lucidity, and his talks were always
carefully structured and beautifully delivered.

John had various physical ailments in the last years of his life, but he never
complained or discussed these with his friends, always remaining an amusing and
lively companion. He is survived by his wife, Jennifer, who nursed him devotedly
through his final illness. He died of cancer of the pancreas on 11 April 2001.

Research

In order to give the flavour of John Hawkes’s mathematics, we will need quite a bit
of notation. Before describing his work, we establish some notation and definitions
in three distinct areas that appear unrelated but are used frequently to define
the problems on which he focused his research. Actually, some of his papers require
input from all three areas. His interest in geometric measure theory and probabilistic
potential theory was motivated by natural questions concerning the trajectories
of processes with stationary independent increments (now called Lévy processes
because their deep study was initiated by Paul Lévy).

1. Lévy processes

A random process Xt =X(t)= X(t, ω) taking values in R
d, has an increment

I(t, h) = Xt+h − Xt,

which is a random vector in R
d whose distribution does not depend on t, the variable

that we think of as time. Since increments are independent and we can write, for
each n,

I(t, h) =
n−1∑
j=0

I

(
t +

jh

n
,
h

n

)

with identically distributed summands, the distribution of the increment I(t, h) has
to be infinitely divisible, so that its Fourier transform satisfies the Lévy–Khintchine
formula

Eei〈u,I(t,h)〉 = e−hϕ(u)

with the exponent ϕ(u) satisfying

ϕ(u) = i〈b, u〉 =
1
2
uSu′ +

∫ [
1 − ei〈x,u〉 +

i〈x, u〉
1 + |x|2

]
ν(dx) (1.1)

where b is a constant vector in R
d, S is a non-negative symmetric d× d matrix, and

ν is a Borel measure on R
d satisfying∫ |x|2

1 + |x|2 ν(dx) < ∞. (1.2)

The three terms in ϕ(u) correspond to:
(i) a deterministic drift in the direction b;
(ii) a linear transformation of Brownian motion, the process for which ϕ(u) =

e−|u|2 ;

https://doi.org/10.1112/S0024609304003406 Published online by Cambridge University Press

https://doi.org/10.1112/S0024609304003406


698 john hawkes

(iii) a jump process in which the measure ν (now called the Lévy measure)
determines the rate of jumps; the number of jumps in a Borel set A is a
Poisson process with rate ν(A) when this is finite.

When A has 0 as a limit point, ν(A) may be infinite, and then the order in which the
jumps are added may make a difference; in this case, we add the jumps in decreasing
absolute size, but it may be necessary to compensate with a drift term which is
unbounded as we include smaller and smaller jumps. Condition (1.2) ensures that
the measure ν is finite outside any neighbourhood of the origin, and does not grow
too quickly near 0.

Whenever the second (Brownian motion) term is present in (1.1), it dominates
most local properties of the trajectory. The sample path properties of Brownian
motion are fascinating but were mostly well understood by the 1960s. It was natural
for Hawkes to concentrate his efforts on Lévy processes in which the first two terms
in (1.1) are missing, so that the Lévy measure ν determines the process. Some of his
more important papers relate to subordinators, that is, the class of monotone Lévy
processes. Now the increment I(t, h) is a non-negative random variable determined
by its Laplace transform

E exp(−λI(t, h)) = exp[−hg(λ)],

with

g(λ) = aλ +
∫∞

0

(1 − e−λµ)ν(du),

where a � 0, and the Lévy measure ν now charges the positive reals and satisfies∫
min(u, 1)ν(du) < ∞. (1.3)

Condition (1.3) limits the growth of ν near 0 more strongly than (1.2). There are
several indices determined by the Lévy measure. The upper Blumenthal–Getoor
index β is given by

β = inf{α � 0 : |u|−α|ϕ(u)| → 0 as |u| → ∞}. (1.4)

We have 0� β � 2 for any Lévy process, while 0 � β � 1 for any subordinator.
The lower index for a subordinator is given by

σ = sup{α � 0 : |u|−αg(u) → ∞ as u → ∞}. (1.5)

A Lévy measure on the positive reals satisfying (1.2) but not (1.3) will require an
infinite correction term, as the sum of jumps will not be convergent. If we assume
that ν satisfies (1.3) and a= 0, then the value of the process Xt at time t will be
the sum of the jumps occurring up to t. The special case g(λ)= λα corresponds to a
stable subordinator of index α, where 0 < α < 1. We remark that symmetric stable
processes of index α in R

d result whenever (1.1) reduces to ϕ(u) = exp(−|u|α) with
0< α � 2.

Here, α = 2 corresponds to Brownian motion, and α = 1 to the symmetric Cauchy
process. Note that (1.2) forces 0< α < 2 when there is a Lévy measure. A more
general stable process of index α in R

d results when the characteristic function
(1.1) is given by

ϕ(u) = −c|u|α
∫

Sd

wα(u, θ)m(dθ) with c > 0,
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where

wα(u, θ) =
[
1 − i sgn(u, θ) tan

πα

2

]∣∣∣∣
〈

u

|u| , θ
〉∣∣∣∣

α

, α �= 1,

(1.6)

w1(u, θ) =
∣∣∣∣
〈

u

|u| , θ
〉∣∣∣∣ +

2i

π

〈
u

|u| , θ
〉

log
∣∣∣∣
〈

u

|u| , θ
〉∣∣∣∣,

and m is a probability measure on S
d, the unit sphere in R

d. The symmetric stable
process results when m is the uniform measure on S

d. The scaling property held by
all stable processes with index α �= 1, and the symmetric Cauchy process can be
expressed as

r−1/αX(rt) is another version of X(t), for any r > 0. (1.7)

This property greatly simplifies many arguments. It was first observed for Brownian
motion.

2. Geometric measure theory

The early years of the twentieth century saw the establishment of Lebesgue
measure as an appropriate tool for real analysis. Then Carathéodory defined metric
outer measure, and used this to define measurability. In 1914, Hausdorff exploited
the Carathéodory method to define an outer measure h-m for all subsets of a
metric space, starting with any monotone increasing function h : (0, 1) −→ R with
h(0+) = 0. His definition is

h-m(E) = lim inf
δ↓0

[ ∞∑
i=1

h(diam Ci) : E ⊂
∞⋃

i=1

Ci,diam Ci < δ

]
. (2.1)

Now h-m(E) may be 0, finite and positive, or +∞. Because it defines a metric
outer measure, all Borel (and analytic) sets are measurable. In R

d, if h(s) = sd,
h-m is known to be a multiple of Lebesgue measure, but other powers of s lead to
measures that classify the size of subsets of zero Lebesgue measure. The (Hausdorff–
Besicovitch) dimension is defined by

dim E = inf{α > 0 : sα − m(E) = 0} = sup{α > 0 : sα − m(E) = ∞}. (2.2)

Clearly, 0 � dim E � d for any E ⊂ R
d, but even if dim E = α, we can have

sα − m(E) taking the value 0 or +∞. We say that E has exact dimension h if
0 < h-m(E) < +∞. Many random sets generated by the trajectory of a stochastic
process can be shown to have zero Lebesgue measure, and so calculating the h-
measure of such sets gives information about their size.

There are several other ways of examining ‘small sets’. Suppose that E is a
bounded subset in R

d and ε > 0; let Nε(E) denote the smallest number of sets of
diameter less than 2ε that can be used to cover E. The ε-entropy of E, Hε(E) is
defined by Hε(E) = log2 Nε(E). The upper and lower entropy dimensions of E are
given by

h̄(E) = lim sup
ε↓0

{Hε(E)/ log(1/ε)}, h(E) = lim inf
ε↓0

{Hε(E)/ log(1/ε)}. (2.3)
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If they are equal, their common value is called the entropy dimension and denoted
h(E). It is easy to see that

dim E � h(E) � h̄(E),

and the inequalities may be strict.

3. Probabilistic potential theory

If q(x, y) is a function on R
d ×R

d −→ R
+ and µ is a Borel measure on R, we call

h(x) = hµ
q (x) =

∫
q(x, y)µ(dy)

the q-potential at x generated by the measure µ. If a closed set E is such that
hµ

q (x) is unbounded for each positive measure µ concentrated on E, we say that the
q-capacity of E is zero. On the other hand, if h(x) is bounded for some measure µ
on E, we can choose the largest such measure for which

0 � hµ
q (x) � 1 for all x.

This special measure µ is called the capacitory distribution on E for the potential
q. Classical potential theory in R

d(d � 3) comes from the Newtonian kernel

q(x, y) = |x − y|2−d.

Riesz potentials of index α come from qα(x, y) = |x − y|α−d, for α � d.
In the 1940s, Kakutani 〈7〉 had obtained the connection between the hitting

probabilities of Brownian motion and classical potential. If E is a Borel set of
positive (Newtonian) capacity in R

d (d � 3), then for a Brownian motion B(t)
starting at x, the probability that B(t) will enter E for some t> 0 is given by

Φ(x,E) =
∫
|x − y|2−dµ(dy),

where µ is the capacitory distribution on E; whenever E has zero capacity the
probability that B(t) will hit E is zero. Hunt 〈5〉 extended Kakutani’s results to
a general Markov process. Lévy processes are a special type of Markov process
for which the corresponding kernel can be calculated. For example, the kernel for
a symmetric stable process of index α in R

d is exactly the Riesz kernel qα(x, y)
defined above. Given a set E, we can define the set of accessibility A(E) to be
the set x of points from which there is positive probability that the Lévy process
started at x will hit the set E. We say that E is polar for X if A(E) is empty. It
is essentially polar if A(E) has zero Lebesgue measure. Thus polar sets have zero
capacity in the appropriate potential theory. Given a set E of positive capacity, we
can identify the regular points x to be such that the process X(t) starting at x will
hit E immediately with probability 1, or

inf{t > 0;X(t) ∈ E} = 0 almost surely. (3.1)

We can use the process to define hitting probabilities in terms of the total time
spent in E. Put

U(E) = E

∫∞

0

1E(Xt)dt; Uα(E) = E

∫∞

0

e−αt1E(Xt) dt. (3.2)

Then U(E) will be finite for bounded sets E whenever Xt is transient; Uα is always
defined.
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We are now ready to look at Hawkes’s research contributions, which I will arrange
in sections as his interests developed.

4. Sample path properties of stable processes [2–6]

Hawkes’s early work developed from his PhD. In [2], Hawkes looks at properties
of the asymmetric Cauchy process on the line, the simplest stable process which
does not have the scaling property (1.7). Since the unit sphere in R

d contains only
two points +1 and −1, the exponent given by (1.6) reduces to

ϕ(u) = |u|{1 + ih sgn(u) log |u|} (4.1)

with h = (2/π)(p−q), where p and q are the weights on +1, −1, such that p+q = 1.
Here, h = 0 corresponds to the symmetric case, which was already well under-

stood. Hawkes proves that, when h �= 0, the range has positive Lebesgue measure,
while the zero set Z has Hausdorff dimension 0 and logarithmic dimension 1.
The paper [3] obtains precise answers to potential-theoretic questions that can
be asked about stable processes of index α in R, for 0 < α < 1. He obtains the
surprising result that the class of recurrent sets, E ⊂ R

+, is the same for all stable
processes with index α, including the stable subordinator of index α. (We call a set
E recurrent for X if the set {t > 0 : Xt ∈ E} is unbounded.) It was already known
that all strictly stable processes of a given index have the same class of polar sets.
Hawkes improves this result by showing that, for a non-polar set E, the question
of whether x is regular for E determined by (3.1), again has the same answer for
all stable processes with the same index.

The paper [4] formulates and proves a precise analogue for stable subordinators
of a result of P. Lévy on the uniform nature of the size of small oscillations on a
Brownian path. This uniform lower rate of escape is then used to establish that,
see (2.2),

dim C(ω) = α(1 − 1/β) almost surely,

where the random collision set C(ω) is the set of points x ∈ R for which x = Xt = Yt

for some t > 0, where α < 1 < β < 2, Xt is a stable subordinator of index α, and Yt

is any stable process of index β. Similar ideas are used in [5] to find the Hausdorff
dimension of the intersection between a fixed Borel set E and the range of a stable
process in R

d. Some results are obtained for general d, but a complete result is
given for d = 1: suppose that dim E = γ, and Xt is a symmetric stable process of
index α � 1; then the occupation set

S(ω) = {t > 0 : Xt(ω) ∈ E} almost surely satisfies dim S =
α + γ − 1

α
,

and the intersection set E ∩ R(ω) satisfies

min[γ, α + γ − 1] = sup{θ > 0 : Px[dimE ∩ R(ω) > θ] > 0}.

The complete solution to the dimension problem for general stable processes in
R

d as defined by (1.6) is given in [6]. Here, Hawkes proves that there is a uniform
connection between the dimension of E and its image X(E,ω), which is valid almost
surely for all Borel sets E ⊂ R, including sets E that may depend on ω, and any
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stable process of index α �= 1 or the symmetric Cauchy case α = 1. Provided that
α � d,

dim X(E,ω) = α dim E for all Borel sets E, with probability 1.

This gives, for a Borel set E with dim E = γ,

P
x[dim E ∩ R(ω) = α + γ − d] = 1,

whenever x is a regular point for E, and R(ω) is the range of a strictly stable Xt

of index α in R
d. (Note that, if α < d − γ, E is polar for X, and so it will have no

regular points.)

5. Properties of more general Lévy processes [8–10, 16, 19, 20, 22, 24]

The exact Hausdorff measure function f(s) for the range R(s, ω), 0 � t � s, of a
general subordinator was found by Fristedt and Pruitt 〈4〉. This implies that

f-m R(s, ω) = cs, for all s almost surely for some constant c > 0.

In [8], Hawkes shows that 1
2 � c � 1, and by computing c exactly for a stable

subordinator of index α he shows that these bounds are sharp. He uses these results
to obtain information about the local time of a stable process with index α > 1, as
well as the asymmetric Cauchy process.

Blumenthal and Getoor 〈3〉 in 1960 defined several indices [see (1.5), (1.6)] for
a general Lévy process Xt(ω), and used these to compare dim B and the image
dim X(B) for a fixed Borel set B. However, in many applications the set B is
random, depending on the sample path, so that results uniform in B are needed.
This is the problem attacked successfully in [9]. The main results obtained in [9]
are as follows.

For any Lévy process Xt with upper index β,

P[dim X(B) � β dim B for all B] = 1.

For a general subordinator with indices β and σ,

P[σ dim B � dim X(B) � β dim B for all B] = 1,

and there is a special class of sets Dσ involving a regularity condition for which

P[dim X(B) = σ dim B for all B ∈ Dσ] = 1.

Indices coincide for stable processes, so it follows that, if Xt is strictly stable of
index α � d, than

P[dim X(B) = α dim B for all Borel sets B] = 1.

Examples are given to show that the results are best possible.
In [10], Hawkes exploits, for a Lévy process Xt that hits points, connections

between the modulus of continuity of the local time, its subordinator inverse, and
the exponent of Xt. He defines a new parameter b = b(X) directly in terms of
the exponent of X, and proves that dimZ(ω) = 1 − 1/b almost surely, where
Z(ω) = {t � 0 : X(t, ω) = 0} is the zero set. He further shows that the corresponding
local time L(t) belongs to Lipα for α < 1 − 1/b, but not for α > 1 − 1/b. He gives
examples to show that b is a genuinely new parameter for a Lévy process Xt.

Markov random sets, considered by Hawkes in [16], are really the image of
subordinators. If X1, X2 are subordinators with ranges R1, R2 such that R1 ∩ R2
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is non-empty almost surely, he proves that
∫1

0

u1(t)dU2(t) < ∞,

where u1 is the density of the potential kernel of X1, and U2 is the potential kernel
of X2, as defined in (3.2). The converse holds if u1 is monotone. Hawkes then finds
interesting properties of R = R1 ∩ R2 when this is non-empty.

Takeuchi 〈13〉 obtained precise results for the moments of the last exit time of a
transient symmetric stable process in R

d of index α < d. The objective of [19] is to
obtain the corresponding results for any symmetric Lévy process. The paper [20]
studies multiple points for symmetric processes. Note that a process that misses
points may still hit some points more than once. The set Mk(ω) consists of k-
multiple points x ∈ R such that

x = X(ti, ω), i = 1, 2, . . . , k with 0 < t1 < t2 < . . . < tk.

The existence of Mk(ω), and its size, were already known for special processes;
Hawkes obtains corresponding results based on the integrability properties of the
potential kernel U(x), which are valid for any symmetric Lévy process.

The paper [22] obtains precise information about the Hausdorff measure of the
image X(B) of a Borel set B, and the intersection B ∩ R, where R = X(0,∞) is
the range of a general subordinator Xt. In [24], Hawkes considers the dimension
properties of A ∩ X−1(B) and B ∩ X(A), where A is a time set, B is a Borel set
and Xt is a stable process of index α. The new idea needed in this paper is the use
of a special metric on R

+ × R
d, which corresponds to the scaling properties of the

graph process t 	→ (t,Xt).

6. Analysis of small sets [7, 11–13, 15, 31]

In his study of sample path properties, Hawkes needed to use results from both
the theory of fractal measures and general potential theory. When the results needed
were not available, he was stimulated to answer the unanswered questions. At
times he did so within the context of sample path properties, but these papers
are independent of sample path problems and deal directly with specific problems
in analysis.

The paper [7] is based on work of Kahane 〈6〉. For a fixed sequence {
n} of reals
decreasing to zero, consider the intervals In(ω) = (Xn,Xn + 
n) reduced modulo 1,
where {Xn} is a sequence of independent random variables uniformly distributed
in [0, 1). Let E∞(ω) be the set of points covered infinitely often by {In(ω)} and
F∞(ω) its complement. For the particular sequence 
n = α/n, 0 < α < 1, Kahane
shows that dim F∞ = 1 − α and, if dim A < α for a fixed set A⊂ [0, 1], then
A⊂E∞ almost surely; if dim A > α, then A ∩ F∞ is non-empty almost surely.
Hawkes obtains similar results for more general sequences, but gives examples to
prove that some regularity conditions are needed. The main result for the Kahane
case 
n = α/n is that, for a fixed set B with dim B = β > α,

β − α = dim(B \ E∞) almost surely.

The classical definition of independence for two subsets A, B in a probability
space is

P(A ∩ B) = P(A) ·P(B).
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This forces any set A of zero probability to be independent of every set B; so we need
some more useful method of obtaining independence for sets of zero probability. For
example, we would like some condition which implies that

dim(A ∩ B) = dimA + dimB − d

for sets A, B ‘in general position’. The paper [11] considers many candidates for
such a condition. Hawkes starts by showing that the range of any Lévy process in
R has the same value for the Hausdorff dimension and the lower entropy dimension
as given by (2.3). He then gives a definition of weak independence for subsets of a
cube in R

d which ensures that

h∗(A ∩ B) = h∗(A × B) − d,

where h∗ stands for any of the entropy dimensions. In fact, other definitions of
independence are explored, which have ramifications relevant to information theory
and functional analysis.

For any subset A ⊂ R, the difference set is given by

D(A) = {x − y : x, y ∈ A}.

Steinhaus 〈12〉 showed that, if A has positive Lebesgue measure, then D(A) contains
an open interval about the origin. It is easy to see that the classical Cantor set C
satisfies D(C) = [−1,+1] so that (t+C)∩C is non-empty for t in [−1,+1]. In [12],
Hawkes shows that, for any θ satisfying 0 � θ � dim C (= log 2/ log 3), the set

{t : dim[(t + C) ∩ C] = θ}

is non-empty, and

dim[(t + C) ∩ C] =
1

3 log2 3

for (Lebesgue) almost all t. He also obtains reasonable regularity conditions on A
which ensure that

dim D(A) = min(1, 2 dim A).

A sequence {ri} of positive numbers is majorising for a set A in a metric space
Ω if centres {zi} can be chosen in Ω such that, for each n,

A ⊂
∞⋃

i=n

S(zi, ri).

In [15], Hawkes and Gardner use the fine connections between Hausdorff ϕ-measure
and the potential theory with kernel Φ(x, y) = 1/ϕ(|x − y|) to obtain a majorising
sequence for any compact set A that is Φ-polar.

Given a compact set K in [0, 1], the complementary intervals have lengths that
can be arranged as a sequence 
1 � 
2 � . . . � 
n � . . . � 0 with

∑∞
i=1 
i = 1 if K

has zero Lebesgue measure. In 1954, Besicovitch and Taylor 〈2〉 defined two indices
α{
i} and β{
i}, and proved that 0 � dim K � α � β � 1. In [31], Hawkes defines
a natural way of reordering the complementary intervals randomly to produce a
random set K(ω). He shows that α is the lower entropy index of K, and that
dim K(ω) = α, almost surely. In [37], Hawkes considers the extension of this result
to R

d. Suppose that in the unit ball in R
d there is a sequence of disjoint open balls

whose complement is a residual set R of zero Lebesgue measure. He shows that two
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constants defined by the sequence of radii of the packing balls coincide with the
upper and lower entropy dimensions of R, defined by (2.3).

7. Potential theory for Lévy processes [14, 25, 32]

In [14], Hawkes focuses on the question of the polarity of sets A⊂R for
general subordinators with range R(ω) = {x : x = Xt(ω) for some t > 0}. If the
subordinator has upper and lower parameters β and σ, then 1−β < dim A < 1−σ
yields no information about the polarity of A. He obtains a surprising result, namely,
that there is a constant η(A), determined by the exponent of Xt, such that

dim{A × R(ω)} = η(A) almost surely,

and η(A) < 1 implies that A is polar, while η(A) > 1 implies that A is non-polar.
This allows him to give examples of sets A and B and a subordinator Xt such that
dim A < dim B while B is polar but A is non-polar for X.

The potential theory for a general Lévy process was considered by Meyer 〈9〉
and Orey 〈10〉. Many of their results required the kernel Uα defined by (3.2) to
be absolutely continuous. In [25], Hawkes considers relationships between certain
classes of exceptional sets for a Lévy process in which the kernel U need not
be absolutely continuous. First he shows that absolute continuity of U implies
and is implied by what is known as the strong Feller property for the semigroup
of transition operators defined by the process. For such processes, the class of
essentially polar sets is the same as the class of polar sets. He then deduces a
sufficient condition for the class of essentially polar sets to be the same for two
distinct Lévy processes. Interesting examples, which exhibit unexpected behaviour,
are constructed. The paper [32] is a survey of various relations between the
trajectories of a Lévy process and the potential-theoretic quantities defined by the
process. The author’s contributions are substantial, though some proofs are omitted
and several of the papers cited remain unpublished. However, the survey is valuable
in providing an interesting geometric viewpoint.

8. Miscellaneous problems in probability theory [17, 18, 21, 23, 25–30]

Any random variable X with finite expected value EX has a characteristic
function ψ(s) differentiable at 0. In [17], Hawkes shows that, for positive random
variables X,

iEX = lim
s→0

ψ(s) − 1
s

(8.1)

in the sense that if either side exists and is finite, so does the other. He defines a
positive X with E X = ∞ but

lim
s→0

inf
∣∣∣∣ψ(s) − 1

s

∣∣∣∣ = 0,

so (8.1) cannot always be true when EX = ∞.
In [18], Hawkes considers a Gaussian process Xt in R with stationary increments

and
σ2(t) = E(Xs+t − Xs)2.

Whenever σ is monotone, define

dimσ(E) = inf{α � 0 : σα − m(E) = 0}
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and two indices

α(σ) = sup
{
α � 0 : t1/α = o(1)σ(t) as t ↓ 0

}
,

(8.2)
β(σ) = inf

{
β � 0 : σ(t) = o(1)t1/β as t ↓ 0

}
.

He proves that, if β(σ) < ∞, then

P[dim X(E) = min(1,dimσ(E)) for all analytic E] = 1,

extending the result of McKean for Brownian motion. He then uses the methods
that he has developed to find precise formulae for the Hausdorff dimension of the
level sets and graph of the Gaussian process X, whose indices are given by (8.2).

Hawkes collaborates with John Jenkins in [21] to consider sequences of real
numbers {bn} and {an} connected by

nbn =
n∑

j=0

ajbn−j , n = 1, 2, . . . . (8.3)

They first characterise such sequences {bn} with b0 > 0 and aj � 0, and obtain
a sufficient condition for bn to converge to a non-zero limit. This is only possible
with b0 = 1 if {bn} is infinitely divisible; that is, for each integer r, there is a non-
negative {dn} such that bn = d∗r

n . Here that rth convolution power of {dn} is
defined inductively by

d∗1n = dn, d∗r
n =

n∑
j=0

dn−jd
∗(r−1)
j .

These results can be thought of as a generalisation of the renewal theorem with
finite mean recurrence time.

The paper [26] deals with lacunary series. Suppose that {nk} is a sequence of
positive integers with nk+1/nk > c > 1, and ak > 0. Consider

Zn(θ) =
n∑

k=1

ak exp(2πinkθ).

If
∑

a2
k < ∞, the asymptotic behaviour of {Zn(θ)} was previously known. Hawkes

shows in [26] that under the stronger lacunary condition that
∑

nk/nk+1 < ∞, the
sequence {Zn(θ)} can be approximated by sums of independent random variables.
From this he deduces that |Zn(θ)| diverges to ∞ or is dense in the plane according
as

∑
B

−1/2
n < ∞ or

∑
B

−1/2
n = ∞, where Bn =

∑n
k=1 a2

k. Several other interesting
results are obtained. For example, if nk = 2k, and Cn =

∑n
k=1 ak, the set

{θ : Zn(θ) ∼ Cnλ} for some λ has Hausdorff dimension 1.
Now consider the unit interval partitioned by a sample of size n from the uniform

distribution on [0, 1]. Define Zn(x) to be the length of the sample spacing that
contains x, and define

Zn = max{Zn(x) : x ∈ [0, 1]}.
Hawkes proves in [27] that lim nZn/ log n= 1 almost surely, and lim sup
nZn(x)/ log log n = 1 for Lebesgue almost all x. He also proves that, for 0 � c � 1,

dim
{

x : lim sup
nZn(x)
log n

= c

}
= 1 − c.

This last result has the flavour of a multifractal decomposition.
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There is a natural metric on the boundary of a Galton–Watson branching
process generated by the distribution {pk} with p0 = 0, pk � 0, and

∑∞
k=1 pk = 1.

This process starts from a single ancestor at level 0, and each node at level n
independently produces k children with probability pk at level (n+1). The ergodic
theorem implies that if µ =

∑
kpk<∞, then W = lim Zn/µn exists and is random

with EW = 1, where Zn is the number of nodes at level n. In [28], Hawkes obtains
the Hausdorff dimension of the boundary set K and, in the special case where
the distribution of Z1 is geometric, he shows that, for α = log µ/ log 2 and h(s)=
sα log log 1/s, h-m(K)= W almost surely.

If {pk} is an infinitely divisible distribution on the non-negative integers, it will
have a corresponding Lévy measure {νn}. In [29], Embrechts and Hawkes obtain
a necessary and sufficient condition for the existence of lim pn/νn. Among other
results, they also obtain necessary and sufficient conditions for the first positive
ladder epoch to belong to the domain of attraction of a positive stable law with
index α ∈ (1, 2].

For a probability distribution F which is in the domain of attraction of a stable
law Fα of index α∈ (0, 2], let Sn =

∑n
i=1 Xi where the Xi are independent with

distribution F . Then there exists a sequence Bn =n1/αL(n) with L(n) slowly
varying, such that Sn/Bn converges in distribution to Fα.

In [30], Bingham and Hawkes prove a local limit theorem in two cases, lattice
and non-lattice, from which they derive a central limit theorem for

Nn(I) = number of {k � n : Sk ∈ I},
namely that Nn(I)/|I|n1−1/αL(n) converges in law to the Mittag–Lefler
distribution. Kesten 〈8〉 had shown the equivalence of the central limit theorem
for Sn and Nn(I); in this paper, the authors derive an analogue for symmetric
processes, and then extend it to spectrally positive Lévy processes.

9. Last decade

In his last decade, Hawkes produced several useful surveys [34–36], in which
he frequently interjected a new idea to obtain useful examples while expounding
known results. He also collaborated with others [33, 39] to produce papers that
proved to be seminal, while in [38, 40] he returned to earlier topics to extend or
improve on his results. He remained active and involved in the many fields to which
he had contributed until shortly before his death.

The paper [33], with Martin Barlow, attacks the long-standing problem of joint
continuity in x and t of the local time L(x, t) for a 1-dimensional Lévy process
Xt for which 0 is regular for {0}; see (3.1). For fixed x, we can think of L(x, t) as
measuring the time spent at x by Xs for s � t. It is known that, as a function of
t, L(x, t) is continuous almost surely for each x. The problem is to decide when
there is a version of L(x, t) that is jointly continuous in x and t. If the process has
exponent ψ(u), we can define

ϕ(x) =
1
π

∫
(1 − cos ux)R

1
1 + ψ(u)

du

and construct a monotone rearrangement of ϕ on [0, 1], denoted by ϕ̄. Hawkes and
Barlow show that if

I(ϕ̄) < ∞, where I(ψ) =
∫1/e

0

ψ(u)u−1(log(1/u))1/2 du,
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then L(x, t) has a version jointly continuous in x and t. The fact that I(ϕ̄) < ∞ is
also necessary for joint continuity was proved shortly afterwards by Barlow 〈1〉.

In [34], Hawkes continues his study of local time L(x, t), now written Lt(x). He
shows that, when it exists, it is almost surely square-integrable, even though there
are examples (asymmetric Cauchy processes) for which it is known to be unbounded
in every interval. For each fixed x, define

L(x) =
∫∞

0

e−t dLt(x),

and a new process Zw = L(w + x). He shows that Zw is second-order stationary,
and discusses the possible value of regarding local time as an example of a process
with stationary increments.

Physicists became interested in interactions between random fields in the 1970s.
For occupation fields related to the intersection of random processes, these had been
used by Le Gall and others to investigate the Hausdorff measure of intersection
sets. In [35], Hawkes gives a unified approach, based on capacity techniques, to
many of these interesting random sets. He obtains interesting new results about
the intersection of translates of a unit circle in the plane with a fixed set K such
that dim K > 1.

The article [37] is a survey of results related to, and inspired by Kahane’s
1968 book on random series of functions 〈6〉. He explains results of Sierpinski,
Besicovitch, Rademacher, Kolmogorov, Barlow & Hawkes, and Marcus & Rosen in
the context of this book.

In [39], Hawkes uses some of his ideas from [28] to collaborate with Allouba,
Durrett and Perkins in examining the natural boundary measure on a Galton–
Watson tree, also known as a supercritical process. The authors not only obtain new
insights into the super α-process, but they construct examples where the random
measure has a very smooth density.

In [40], Hawkes returns to his work in [5] and [14], and obtains more precise
results about the size of the image X(B) whenever Xt is a stable process of index α.
Perkins and Taylor 〈11〉 had shown that complete precision is impossible using only
the Hausdorff measure properties of B. In this paper, Hawkes obtains precise results
for stable subordinators and symmetric stable processes X by using the theory of
Riesz capacities.
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des processus de Lévy’, Comptes Rendus Acad. Sci., Paris 301 (1985) 237–239.

34. ‘Local times as stationary processes’, From local times to global geometry, control and physics,
Pitman Research Notes 150 (ed. K. D. Elworthy, Longman, 1986) 111–120.

35. ‘Random-path intersections in geometry, probability and physics’, Stochastic processes and
applications (ed. S. Albeverio et al., Kluwer Academic, 1990) 177–186.

36. (with A. Truman) ‘Statistics of local time and excursions’, Stochastic analysis, London Math.
Soc. Lecture Note Ser. 167 (ed. M. T. Barlow and N. H. Bingham, Cambridge University
Press, 1991) 91–102.

37. ‘Some real and random series of functions’, Laboratoire de probabilités de l’Université de
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