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Abstract
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing
case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the
focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs
measure. When 𝑑 = 2, our argument provides an alternative proof of the nonnormalizability result for the focusing
Φ4

2-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant
is characterized by the optimal constant for a certain Bernstein’s inequality on R𝑑 . We also go over the construction
of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of
the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs
measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure
with a focusing quartic interaction.
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2 T. Oh, K. Seong and L. Tolomeo

1. Introduction

1.1. Log-correlated Gibbs measures

In this paper, we study the Gibbs measure 𝜌 on the d-dimensional torus on T𝑑 = (R/2𝜋Z)𝑑 , formally
written as1

𝑑𝜌(𝑢) = 𝑍−1 exp
(
𝜆

𝑘

∫
T𝑑

𝑢𝑘𝑑𝑥

)
𝑑𝜇(𝑢), (1.1)

where 𝑘 ≥ 3 is an integer and the coupling constant 𝜆 ∈ R \ {0} denotes the strength of interaction,
which is repulsive (i.e., defocusing) when 𝜆 < 0 and k is even, and is attractive (i.e., focusing) when
𝜆 > 0 or k is odd.2 Here, 𝜇 is the log-correlated Gaussian free field on T𝑑 , formally given by

𝑑𝜇 = 𝑍−1𝑒
− 1

2 ‖𝑢 ‖
2
𝐻𝑑/2 𝑑𝑢 = 𝑍−1

∏
𝑛∈Z𝑑

𝑒−
1
2 〈𝑛〉

𝑑 |𝑢 (𝑛) |2 𝑑�̂�(𝑛), (1.2)

where 〈 · 〉 = (1 + | · |2) 1
2 and �̂�(𝑛) denotes the Fourier coefficient of u. When 𝑑 = 2, 𝜇 corresponds to

the massive Gaussian free field on T2. Recall that this Gaussian measure 𝜇 is nothing but the induced
probability measure under the map:3

𝜔 ∈ Ω ↦−→ 𝑢(𝜔) =
∑
𝑛∈Z𝑑

𝑔𝑛 (𝜔)
〈𝑛〉 𝑑

2
𝑒𝑛, (1.3)

where 𝑒𝑛 = 𝑒𝑖𝑛 ·𝑥 and {𝑔𝑛}𝑛∈Z𝑑 is a sequence of mutually independent standard complex-valued Gaussian
random variables on a probability space (Ω,F , P) conditioned that 𝑔−𝑛 = 𝑔𝑛.4 See Remark 1.1. It is well
known that a typical function u in the support of 𝜇 is merely a distribution and thus a renormalization
on the potential energy 𝜆

𝑘

∫
T𝑑

𝑢𝑘𝑑𝑥 is required for the construction of the Gibbs measure 𝜌.
Our main goal in this paper is to study the Gibbs measure 𝜌 in (1.1) in the focusing case. In particular,

we prove the nonnormalizability of the focusing Gibbs measure 𝜌 with the quartic interaction (𝜆 > 0 and
𝑘 = 4). See Theorem 1.4. We also present a brief discussion on the construction of the Gibbs measure
with the cubic interaction. See Theorem 1.9.

Before proceeding further, let us first go over the defocusing case: 𝜆 < 0 and 𝑘 ≥ 4 is an even
integer. When 𝑑 = 2, the defocusing Gibbs measure 𝜌 in (1.1) corresponds to the well-studied Φ𝑘2 -
measure whose construction follows from the hypercontractivity of the Ornstein–Uhlenbeck semigroup
(see Lemma 2.3) and Nelson’s estimate [39]. See [60, 26, 21, 47]. For a general dimension 𝑑 ≥ 1, the
same argument allows us to construct the defocusing Gibbs measure 𝜌 in (1.1) for any 𝜆 < 0 and any
even integer 𝑘 ≥ 4. Let us briefly go over the procedure.

Given 𝑁 ∈ N, we define the frequency projector5 𝜋𝑁 by

𝜋𝑁 𝑓 =
∑

|𝑛 | ≤𝑁
�̂� (𝑛)𝑒𝑛. (1.4)

1In this introduction, we keep our discussion at a formal level and do not worry about renormalizations. While we keep the
following discussion only to the real-valued setting, our results also hold in the complex-valued setting, where 𝑘 ≥ 4 is an even
integer and 𝑢𝑘 in (1.1) is replaced by |𝑢 |𝑘 . See Footnote 6.
Hereafter, we use Z, 𝑍𝑁 , etc. to denote various normalization constants whose values may change line by line.

2In this paper, by ‘focusing’, we mean ‘nondefocusing’. Namely, 𝜆 > 0 or k is odd in (1.1).
3By convention, we endow T𝑑 with the normalized Lebesgue measure 𝑑𝑥

T𝑑 = (2𝜋)−𝑑𝑑𝑥 so that we do not need to worry
about the factor 2𝜋 in various places. For simplicity of notation, we use 𝑑𝑥 to denote the standard Lebesgue measure R𝑑 and the
normalized Lebesgue measure on T𝑑 in the following.

4In particular, 𝑔0 is a standard real-valued Gaussian random variable. When 𝑛 ∈ N, Re 𝑔𝑛 and Im 𝑔𝑛 are real-valued Gaussian
random variables with mean 0 and variance 1

2 .
5We may also proceed with regularization via mollification.
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For u as in (1.3), set 𝑢𝑁 = 𝜋𝑁 𝑢. Then, for each fixed 𝑥 ∈ T𝑑 , 𝑢𝑁 (𝑥) is a mean-zero real-valued Gaussian
random variable with variance

𝜎𝑁 = E
[
𝑢2
𝑁 (𝑥)

]
=

∑
|𝑛 | ≤𝑁

1
〈𝑛〉𝑑

∼ log 𝑁 −→ ∞, (1.5)

as 𝑁 → ∞. Note that 𝜎𝑁 is independent of 𝑥 ∈ T𝑑 in the current translation invariant setting. We then
define the renormalized power (= Wick power) :𝑢𝑘𝑁 : by setting

:𝑢𝑘𝑁 (𝑥) : def
= 𝐻𝑘 (𝑢𝑁 (𝑥); 𝜎𝑁 ), (1.6)

where 𝐻𝑘 (𝑥; 𝜎) is the Hermite polynomial of degree k with a variance parameter 𝜎 defined through the
following generating function:6

𝐹 (𝑡, 𝑥; 𝜎) def
= 𝑒𝑡 𝑥−

1
2 𝜎𝑡

2
=

∞∑
𝑘=0

𝑡𝑘

𝑘!
𝐻𝑘 (𝑥; 𝜎). (1.7)

For readers’ convenience, we write out the first few Hermite polynomials:

𝐻0(𝑥; 𝜎) = 1, 𝐻1(𝑥; 𝜎) = 𝑥, 𝐻2(𝑥; 𝜎) = 𝑥2 − 𝜎, 𝐻3(𝑥; 𝜎) = 𝑥3 − 3𝜎𝑥.

See, for example, [32], for further properties of the Hermite polynomials. We then define the following
renormalized truncated potential energy:

𝑅𝑁 (𝑢) =
𝜆

𝑘

∫
T𝑑

:𝑢𝑘𝑁 : 𝑑𝑥, (1.8)

where the coupling constant 𝜆 < 0 denotes the strength of repulsive interaction. A standard computation
allows us to show that {𝑅𝑁 }𝑁 ∈N forms a Cauchy sequence in 𝐿𝑝 (𝜇) for any finite 𝑝 ≥ 1, thus converging
to some random variable 𝑅(𝑢):

lim
𝑁→∞

𝑅𝑁 (𝑢) = 𝑅(𝑢) (1.9)

in 𝐿𝑝 (𝜇) and almost surely See, for example, Proposition 1.1 in [47].7
Define the renormalized truncated Gibbs measure 𝜌𝑁 by

𝑑𝜌𝑁 (𝑢) = 𝑍−1
𝑁 𝑒𝑅𝑁 (𝑢)𝑑𝜇(𝑢).

Then, a standard application of Nelson’s estimate8 yields the following uniform exponential integrability
of the density; given any finite 𝑝 ≥ 1, there exists 𝐶𝑝,𝑑 > 0 such that

sup
𝑁 ∈N

���𝑒𝑅𝑁 (𝑢)
���
𝐿𝑝 (𝜇)

≤ 𝐶𝑝,𝑑 < ∞. (1.10)

See, for example, Proposition 1.2 in [47]. Then, the uniform bound (1.10) together with softer conver-
gence in measure (as a consequence of (1.9)) implies the following 𝐿𝑝-convergence of the density:

6In the complex-valued setting (with even k), we use the Laguerre polynomial 𝑐𝑘𝐿 𝑘
2
( |𝑢𝑁 |2; 𝜎𝑁 ) to define the Wick

renormalization. See [47].
7The claimed almost sure convergence follows form the 𝐿𝑝 (Ω)-convergence in [47, Proposition 1.1] together with the Borel–

Cantelli lemma.
8One may also prove the uniform exponential integrability bound (1.10) via the variational approach as in [3], using the Boué–

Dupuis variational formula (Lemma 3.1). When k is large, however, the combinatorial complexity for the variational approach
may be cumbersome, while there is no such combinatorial issue in the approach of [21, 47].
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lim
𝑁→∞

𝑒𝑅𝑁 (𝑢) = 𝑒𝑅 (𝑢) in 𝐿 𝑝 (𝜇).

See, for example, Remark 3.8 in [66]. This allows us to construct the defocusing Gibbs measure:

𝑑𝜌(𝑢) = 𝑍−1𝑒𝑅 (𝑢)𝑑𝜇(𝑢)

as a limit of the truncated defocusing Gibbs measure 𝜌𝑁 .
As mentioned above, our main goal is to study the Gibbs measure 𝜌 with the log-correlated Gaussian

field 𝜇 in the focusing case (𝜆 > 0). Before doing so, we present a brief discussion on dynamical problems
associated with these Gibbs measures in Subsection 1.2. We then present the nonnormalizability of the
focusing log-correlated Gibbs measure with the quartic interaction (Theorem 1.4) and the construction
of the focusing log-correlated Gibbs measure with the cubic interaction (Theorem 1.9).

Remark 1.1. Recall from [2, (4,2)] that the Green’s function 𝐺R𝑑 for (1 − Δ) 𝑑
2 on R𝑑 satisfies

𝐺R𝑑 (𝑥) = −𝑐𝑑 log |𝑥 | + 𝑜(1) (1.11)

as 𝑥 → 0 for some 𝑐𝑑 > 0. Here, in view of the translation invariance, we view G as a function of
one variable through 𝐺 (𝑥) ≡ 𝐺 (𝑥, 0). It is a smooth function on R𝑑 \ {0} and decays exponentially as
|𝑥 | → ∞; see [28, Proposition 1.2.5].

Now, let G be the Green’s function for (1 − Δ) 𝑑
2 on T𝑑 . Then, we have

𝐺
def
= (1 − Δ)−

𝑑
2 𝛿0 =

∑
𝑛∈Z𝑑

1
〈𝑛〉𝑑

𝑒𝑛 = lim
𝑁→∞

∑
|𝑛 | ≤𝑁

1
〈𝑛〉𝑑

𝑒𝑛. (1.12)

Recall the Poisson summation formula ([27, Theorem 3.2.8]):∑
𝑛∈Z𝑑

FR𝑑 ( 𝑓 ) (𝑛)𝑒𝑛 (𝑥) =
∑
𝑚∈Z𝑑

𝑓 (𝑥 + 2𝜋𝑚), 𝑥 ∈ R𝑑 , (1.13)

for any function f on R𝑑 such that | 𝑓 (𝑥) | � 〈𝑥〉−𝑑−𝛿 for some 𝛿 > 0 and
∑
𝑛∈Z𝑑 |FR𝑑 ( 𝑓 ) (𝑛) | < ∞. The

Poisson summation formula (1.13) is a typical tool to pass information from R𝑑 to a periodic torus T𝑑;
see [4, 50, 5] for example. Here, FR𝑑 ( 𝑓 ) (𝑛) denotes the Fourier transform of f on R𝑑 given by

FR𝑑 ( 𝑓 ) (𝑛) = 1
(2𝜋)𝑑

∫
R𝑑

𝑓 (𝑥)𝑒−𝑛 (𝑥)𝑑𝑥, (1.14)

where 𝑑𝑥 = 𝑑𝑥R𝑑 is the standard Lebesgue measure on R𝑑 . Then, by applying (1.13) (with a frequency
truncation 𝜋𝑁 and taking 𝑁 → ∞) together with the asymptotics (1.11), we conclude that there exists
a smooth function 𝑅 such that

𝐺 (𝑥) = −𝑐𝑑 log |𝑥 | + 𝑅(𝑥) (1.15)

for any 𝑥 ∈ T𝑑 \ {0}. See [44, Section 2] for a related discussion. Finally, from (1.3), (1.12) and (1.15),
we obtain

E𝜇

[
𝑢(𝑥)𝑢(𝑦)

]
= 𝐺 (𝑥 − 𝑦) = −𝑐𝑑 log |𝑥 − 𝑦 | + 𝑅(𝑥 − 𝑦)

for any 𝑥, 𝑦 ∈ T𝑑 with 𝑥 ≠ 𝑦.

1.2. Dynamical problems associated with the log-correlated Gibbs measures

From the viewpoint of mathematical physics such as Euclidean quantum field theory, the construction
of the Gibbs measures 𝜌 in (1.1) is of interest in its own right. In this subsection, we briefly discuss some
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examples of dynamical problems associated with these log-correlated Gibbs measures. These examples
show the importance of studying the log-correlated Gibbs measure 𝜌 in (1.1) from the (stochastic)
partial differential equation (PDE) point of view.

The associated energy functional9 for the Gibbs measure 𝜌 in (1.1) is given by

𝐸 (𝑢) = 1
2

∫
T𝑑

| (1 − Δ)
𝑑
4 𝑢 |2𝑑𝑥 − 𝜆

𝑘

∫
T𝑑

𝑢𝑘𝑑𝑥. (1.16)

The study of the Gibbs measures for Hamiltonian PDEs, initiated by [25, 33, 8, 38, 11], has been an
active field of research over the last decade. We first list examples of the Hamiltonian PDEs generated
by this energy functional 𝐸 (𝑢) in (1.16) along with the references.

(i) fractional nonlinear Schrödinger equation (for complex-valued u):

𝑖𝜕𝑡𝑢 + (1 − Δ)
𝑑
2 𝑢 − 𝜆 |𝑢 |𝑘−2𝑢 = 0. (1.17)

Equation (1.17) corresponds to the nonlinear half-wave equation (also known as the semirelativistic
nonlinear Schrödinger equation (NLS)) when 𝑑 = 1, to the well-studied cubic NLS when 𝑑 = 2
([11, 47, 23]), and to the biharmonic NLS when 𝑑 = 4.

In Appendix A, we also provide a brief discussion on the Gibbs measure for the Zakharov
system when 𝑑 = 2.

(ii) fractional nonlinear wave equation (NLW):10

𝜕2
𝑡 𝑢 + (1 − Δ)

𝑑
2 𝑢 − 𝜆𝑢𝑘−1 = 0. (1.18)

Equation (1.18) corresponds to the NLW equation (or the nonlinear Klein–Gordon equation) when
𝑑 = 2 ([48]), and to the nonlinear beam equation when 𝑑 = 4.

(iii) generalized Benjamin–Ono equation (with 𝑑 = 1):11

𝜕𝑡𝑢 +H𝜕2
𝑥𝑢 − 𝜆𝜕𝑥 (𝑢𝑘−1) = 0, (1.19)

where H denotes the Hilbert transform defined by Ĥ 𝑓 (𝑛) = −𝑖sgn(𝑛) �̂� (𝑛) with the understanding
that Ĥ 𝑓 (0) = 0. Equation (1.19) is known as the Benjamin–Ono equation when 𝑘 = 3 ([67, 22])
and the modified Benjamin–Ono equation when 𝑘 = 4.

Next, we list stochastic PDEs associated with the Gibbs measure 𝜌 in (1.1).

(iv) parabolic stochastic quantization equation [52]:

𝜕𝑡𝑢 + (1 − Δ)
𝑑
2 𝑢 − 𝜆𝑢𝑘−1 =

√
2𝜉. (1.20)

Here, 𝜉 denotes the space-time white noise onT𝑑×R+. When 𝑑 = 2 and 𝜆 < 0, (1.20) corresponds
to the standard parabolic Φ𝑘2 -model ([20, 56, 65]).

(v) canonical stochastic quantization equation [57]:

𝜕2
𝑡 𝑢 + 𝜕𝑡𝑢 + (1 − Δ)

𝑑
2 𝑢 − 𝜆𝑢𝑘−1 =

√
2𝜉. (1.21)(1.21)

9Once again, we do not worry about renormalizations in this formal discussion.
10For (1.18), we need to add 1

2
∫
T𝑑

(𝜕𝑡𝑢)2𝑑𝑥 to the energy functional 𝐸 (𝑢) in (1.16).
11For (1.19), the coefficient of the potential energy in (1.16) is slightly different. Thanks to the conservation of the spatial mean∫
T
𝑢𝑑𝑥 under the generalized Benjamin–Ono (1.19), we can work on the mean-zero functions. In this case, we consider the Gibbs

measure associated with the massless log-correlated Gaussian field by replacing (1 − 𝜕2
𝑥 )

1
4 in (1.16) with (−𝜕2

𝑥 )
1
4 .
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Equation (1.21) corresponds to the stochastic damped NLW when 𝑑 = 2 ([29, 30, 63]), and to
the stochastic damped nonlinear beam equation when 𝑑 = 4.

When 𝑑 = 2, the conservative stochastic Cahn–Hilliard equation is known to (formally) preserve the
Gibbs measure 𝜌 in (1.1) ([55]).

For the equations listed above, once we establish local well-posedness almost surely with respect to
the Gibbs measure initial data, Bourgain’s invariant measure argument [8, 11] allows us to construct
almost sure global dynamics and to prove invariance of the Gibbs measure. However, since functions on
the support of the log-correlated Gibbs measure 𝜌 in (1.1) almost surely belong to the 𝐿 𝑝-based Sobolev
spaces 𝑊 𝑠, 𝑝 (T𝑑) \ 𝐿 𝑝 (T𝑑) only for 𝑠 < 0 with any 1 ≤ 𝑝 ≤ ∞, there are only a handful of the well-
posedness results [11, 22, 48, 29, 23] for the Hamiltonian PDEs mentioned above (including (1.21)).

Remark 1.2. We point out that as long as we can construct the Gibbs measure, a compactness argument
with invariance of the truncated Gibbs measures and Skorokhod’s theorem allows us to construct
(nonunique) global-in-time dynamics along with invariance of the Gibbs measure in some mild sense.
See [1, 19, 14, 47, 43]. In our current setting, this almost sure global existence result holds for (i) the
defocusing case (𝜆 < 0 and even 𝑘 ≥ 4; see the discussion in Subsection 1.1) and (ii) the quadratic
nonlinearity (i.e., 𝑘 = 3). See Theorem 1.9 for the latter case.

Remark 1.3. Given 𝛿 > 0, consider the intermediate long wave equation (ILW) on T:

𝜕𝑡𝑢 − G𝛿𝜕2
𝑥𝑢 − 𝜕𝑥 (𝑢2) = 0, (1.22)

where the dispersion operator G𝛿 is given by

Ĝ𝛿 𝑓 (𝑛) = −𝑖
(

coth(𝛿𝑛) − 1
𝛿𝑛

)
�̂� (𝑛) , 𝑛 ∈ Z. (1.23)

Equation (1.22) models the internal wave propagation of the interface in a stratified fluid of finite depth
𝛿 > 0, providing a natural connection between the Benjamin–Ono regime (𝛿 = ∞) and the Korteweg–de
Vries (KdV) regime (𝛿 = 0). Indeed, there are results establishing convergence of ILW to the Benjamin–
Ono equation (and the KdV equation) as 𝛿 → ∞ (and 𝛿 → 0, respectively); see [34, 15, 16] and the
references therein. While it is not obvious from the rather complicated dispersive symbol in (1.23), the
Gibbs measure associated to ILW is indeed log-correlated, and the results in this paper apply to the
Gibbs measure associated to the generalized ILW (where the nonlinearity 𝜕𝑥 (𝑢2) in (1.22) is replaced
by 𝜆𝜕𝑥 (𝑢𝑘−1)). Furthermore, as 𝛿 → ∞ (and 𝛿 → 0), the Gibbs measure for the (generalized) ILW
converges to that for the (generalized) Benjamin–Ono equation (and the (generalized) KdV equation,
respectively) in an appropriate sense. See a recent work [35] for a further discussion. See also [17] for the
construction and convergence of invariant measures for ILW associated with higher order conservation
laws.

1.3. Nonnormalizability of the focusing Gibbs measure

We now turn our attention to the focusing case. In this subsection, we study the Gibbs measure 𝜌 in
(1.1) with the focusing quartic interaction (𝜆 > 0 and 𝑘 = 4). In this case, we prove the following
nonnormalizability of the (renormalized) focusing Gibbs measure 𝜌.

Theorem 1.4. Let 𝜆 > 0 and 𝑘 = 4. Then, given any 𝐾 > 0, we have

sup
𝑁 ∈N

𝑍𝐾,𝑁
def
= sup
𝑁 ∈N
E𝜇

[
1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }𝑒

𝑅𝑁 (𝑢)
]
= ∞, (1.24)

where 𝑅𝑁 is the renormalized potential energy defined in (1.8) with 𝑘 = 4. Moreover, the divergence
rate of 𝑍𝐾,𝑁 is given by
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log 𝑍𝐾,𝑁 = 𝜆
𝐶𝐵
4

𝑁𝑑𝜎2
𝑁 (1 + 𝑜(1)) ∼ 𝑁𝑑 (log 𝑁)2, (1.25)

as 𝑁 → ∞. Here, 𝐶𝐵 is the optimal constant in Bernstein’s inequality:

‖𝑃 𝑓 ‖4
𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) ≤ 𝐶𝐵 ‖ 𝑓 ‖4

𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) , (1.26)

where P is the sharp Fourier projection onto the unit ball:

𝑃 𝑓 (𝜉) = 1{ |𝜉 | ≤1} �̂� (𝜉),

and 𝜎𝑁 is defined in (1.5). Moreover, we have

𝑍𝐾
def
= E𝜇

[
1{ |

∫
T𝑑

:𝑢2: 𝑑𝑥 | ≤𝐾 }𝑒
𝑅 (𝑢)

]
= ∞, (1.27)

where 𝑅(𝑢) is the limit of 𝑅𝑁 (𝑢) defined in (1.9). In particular, the focusing Gibbs measure (even with
a Wick-ordered 𝐿2-cutoff) cannot be defined as a probability measure.

When 𝑑 = 2, Theorem 1.4 provides an alternative proof of the nonnormalizability result for of the
focusing Φ4

2-measure due to Brydges and Slade [13] whose proof is based on analysis of a model
closely related to the Berlin–Kac spherical model. Furthermore, Theorem 1.4 provides a precise rate
(1.25) of divergence of the partition function 𝑍𝐾,𝑁 . Our strategy for proving the divergence rate (1.25)
is straightforward and thus is expected to be applicable to a wide range of models.

Our proof of Theorem 1.4 is based on the variational approach due to Barashkov and Gubinelli [3].
More precisely, we will rely on the Boué–Dupuis variational formula [7, 68]; see Lemma 3.1. Our main
task is to construct a drift term which achieves the desired divergence (1.24). Our argument is inspired
by recent works by the third author with Weber [64] and by the first and third authors with Okamoto
[41, 42]. In particular, our presentation closely follows but refines that in [41], where an analogous
nonnormalizability is shown for focusing Gibbs measures on T3 with a quartic interaction of Hartree-
type. We point out that the argument in [41] shows nonnormalizability only for large 𝐾 � 1 and thus
we need to refine the argument to prove the divergence (1.24) for any 𝐾 > 0. The main new ingredient
(as compared to [41]) is the construction a drift term which approximates a blowup profile, such that
the Wick-ordered 𝐿2-cutoff does not exclude this blowup profile for any cutoff size 𝐾 > 0. See, in
particular, Lemma 3.4 and the proof of (3.42). We also mention related works [33, 13, 53, 12, 46, 54]
on the nonnormalizability (and other issues) for focusing Gibbs measures.
Remark 1.5. As a direct consequence of (1.24), we have

sup
𝑁 ∈N
E𝜇

[
𝑒𝑅𝑁 (𝑢)

]
≥ sup
𝑁 ∈N
E𝜇

[
1{

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 ≤𝐾 }𝑒

𝑅𝑁 (𝑢)
]

≥ sup
𝑁 ∈N
E𝜇

[
1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }𝑒

𝑅𝑁 (𝑢)
]
= ∞.

Remark 1.6. In the one-dimensional setting studied in [33, 46], the sharp Gagliardo–Nirenberg inequal-
ity on R plays an important role in determining (non-)normalizability of the focusing Gibbs measure
with a sextic interaction. In our current problem with a quartic interaction, Bernstein’s inequality (1.26)
on R𝑑 , which is essentially a frequency-localized version of Sobolev’s inequality, plays a crucial role
in determining the precise divergence rate (1.25). We point out that this particular form of Bernstein’s
inequality appears due to the form of the regularization we use for our problem (namely, the sharp
frequency truncation onto the frequencies {|𝑛| ≤ 𝑁}). In the current singular setting where a renormal-
ization is required, we need to start with a regularized problem. However, there are different ways to
regularize a problem, and different regularizations lead to different divergence rates. For example, if we
instead use a smooth frequency truncation, we would obtain a divergence rate with a different constant
(while the essential rate 𝑁𝑑 (log 𝑁)2 in (1.25) remains the same).
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Remark 1.7. (i) An analogous nonnormalizability result holds for a focusing Gibbs measure with the
quartic interaction even if we endow it with taming by the Wick-ordered 𝐿2-norm. See Remark 1.12.

(ii) By controlling combinatorial complexity, we can extend the nonnormalizability result in
Theorem 1.4 to the higher-order interactions 𝑘 ≥ 5 in the focusing case (i.e., either k is odd or 𝜆 > 0
when k is even).

(iii) In terms of dynamical problems, Theorem 1.4 states that Gibbs measures associated with the
equations listed in Subsection 1.2 do not exist for (i) 𝜆 > 0 and 𝑘 ≥ 4 or (ii) odd 𝑘 ≥ 5. This list in
particular includes

◦ the focusing 𝐿2-(super)critical fractional NLS (1.17) (including the focusing (super)cubic NLS onT2),
◦ the focusing 𝐿2-(super)critical fractional NLW (1.18) (including the focusing (super)cubic NLW on
T

2 and the focusing (super)cubic nonlinear beam equation on T4),
◦ the focusing modified Benjamin–Ono equation (1.19) (and the focusing generalized Benjamin–Ono

equation with 𝑘 ≥ 5).

See also Appendix A for a brief discussion on the two-dimensional Zakharov system.

Remark 1.8. In a recent work [46], the first and third authors with Okamoto studied the construction
of the Φ3

3-measure on T3 (i.e., (1.1) with 𝑑 = 3 and 𝑘 = 3) and established the following phase
transition: normalizability in the weakly nonlinear regime (|𝜆 | � 1) and nonnormalizability in the
strongly nonlinear regime (|𝜆 | � 1), where the latter result was obtained based on the strategy in
the current paper. In particular, in view of the nonnormalizability of the Φ3

3-measure in the strongly
nonlinear regime, we expect that the same approach would yield nonnormalizability of the focusing
Φ𝑘3 -measure for 𝑘 ≥ 4 (namely, (i) for even 𝑘 ≥ 4 with 𝜆 > 0 or (ii) for odd 𝑘 ≥ 5 with 𝜆 ≠ 0).

1.4. Gibbs measure with the cubic interaction

Let us first go over the focusing Gibbs measure construction in the two-dimensional setting. In [10],
Bourgain reported Jaffe’s construction of a Φ3

2-measure endowed with a Wick-ordered 𝐿2-cutoff:

𝑑𝜌(𝑢) = 𝑍−11{
∫
T2 :𝑢2: 𝑑𝑥 ≤𝐾 }𝑒

∫
T2 :𝑢3: 𝑑𝑥𝑑𝜇(𝑢). (1.28)

Note that the measure in (1.28) is not suitable to generate any NLS / NLW / heat dynamics since (i) the
renormalized cubic power : 𝑢3 : makes sense only in the real-valued setting and hence is not suitable
for the Schrödinger equation and (ii) NLW and the heat equation do not preserve the 𝐿2-norm of a
solution and thus are incompatible with the Wick-ordered 𝐿2-cutoff. In [10], Bourgain instead proposed
to consider the Gibbs measure of the form:12.

𝑑𝜌(𝑢) = 𝑍−1𝑒
∫
T2 :𝑢3: 𝑑𝑥−𝐴

( ∫
T2 :𝑢2: 𝑑𝑥

)2

𝑑𝜇(𝑢) (1.29)

(for sufficiently large 𝐴 > 0) in studying NLW dynamics on T2.13
We now extend the construction of the Gibbs measures in (1.28) and (1.29) to a general dimension

𝑑 ≥ 1. Given 𝑁 ∈ N, let

𝑅�
𝑁 (𝑢) =

𝜆

3

∫
T𝑑

:𝑢3
𝑁 : 𝑑𝑥 − 𝐴

( ∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥

)2
, (1.30)

12The choice of the exponent 𝛾 = 2 in 𝐴
( ∫
T2 : 𝑢2 : 𝑑𝑥

)𝛾 (with 𝐴 � 1) is optimal. See Remark 4.2
13For the NLW dynamics, we need to couple 𝜌 on the u-component with the white noise measure 𝜇0 on the 𝜕𝑡𝑢-component

(which is independent from 𝜌). More precisely, the Gibbs measure is of the form �𝜌 = 𝜌 ⊗ 𝜇0, where the Φ3
2-measure 𝜌 in (1.29)

is on the u-component and the white noise measure 𝜇0 is on the 𝜕𝑡𝑢-component.
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where the coupling constant 𝜆 ∈ R \ {0} denotes the strength of cubic interaction, and define the
truncated renormalized Gibbs measure 𝜌𝑁 by

𝑑𝜌𝑁 (𝑢) = 𝑍−1
𝑁 𝑒𝑅

�
𝑁 (𝑢)𝑑𝜇(𝑢). (1.31)

Then, we have the following result for the focusing Gibbs measure with a cubic interaction.

Theorem 1.9. Let 𝜆 ∈ R \ {0}. Given any finite 𝑝 ≥ 1, there exists sufficiently large 𝐴 = 𝐴(𝜆, 𝑝) > 0
such that 𝑅�

𝑁 in (1.30) converges to some limit 𝑅� in 𝐿 𝑝 (𝜇). Moreover, there exists 𝐶𝑝,𝑑,𝐴 > 0 such that

sup
𝑁 ∈N

���𝑒𝑅�
𝑁 (𝑢)

���
𝐿𝑝 (𝜇)

≤ 𝐶𝑝,𝑑,𝐴 < ∞. (1.32)

In particular, we have

lim
𝑁→∞

𝑒𝑅
�
𝑁 (𝑢) = 𝑒𝑅

� (𝑢) in 𝐿 𝑝 (𝜇). (1.33)

As a consequence, the truncated renormalized Gibbs measure 𝜌𝑁 in (1.31) converges, in the sense of
(1.33), to the focusing Gibbs measure 𝜌 given by

𝑑𝜌(𝑢) = 𝑍−1𝑒𝑅
� (𝑢)𝑑𝜇(𝑢).

Furthermore, the resulting Gibbs measure 𝜌 is equivalent to the log-correlated Gaussian field 𝜇.

As for the convergence of 𝑅�
𝑁 , we omit details since the argument is standard. See, for example, [47,

Proposition 1.1], [49, Proposition 3.1], [31, Lemma 4.1] and [41, Lemma 5.1] for related details. As
mentioned in Subsection 1.1, the main task is to prove the uniform integrability bound (1.32). Once this
is done, the rest follows from a standard argument. In Section 4, we establish the bound (1.32) by using
the variational formulation.

Remark 1.10. Note that

1{ | · |≤𝐾 } (𝑥) ≤ exp
(
− 𝐴|𝑥 |𝛾

)
exp(𝐴𝐾𝛾) (1.34)

for any 𝐾, 𝐴, 𝛾 > 0. Then, the following uniform bound for the focusing cubic interaction:

sup
𝑁 ∈N

���1{ |
∫
T𝑑

:𝑢2: 𝑑𝑥 | ≤𝐾 }𝑒
𝑅𝑁 (𝑢)

���
𝐿𝑝 (𝜇)

≤ 𝐶𝑝,𝑑,𝐾 < ∞

for any 𝐾 > 0 follows as a direct consequence of the uniform bound (1.32) and (1.34) with 𝛾 = 2,
where 𝑅𝑁 is as in (1.8) with 𝜆 ∈ R \ {0} and 𝑘 = 3. This allows us to construct the log-correlated Gibbs
measure with the cubic interaction (with a Wick-ordered 𝐿2-cutoff):

𝑑𝜌(𝑢) = 𝑍−11{ |
∫
T𝑑

:𝑢2: 𝑑𝑥 | ≤𝐾 }𝑒
𝜆
3
∫
T𝑑

:𝑢3: 𝑑𝑥𝑑𝜇(𝑢)

as a limit of its truncated version (for any 𝜆 ∈ R \ {0} and 𝐾 > 0).

Remark 1.11. In [67], Tzvetkov constructed the Gibbs measure (with a Wick-ordered 𝐿2-cutoff) for the
Benjamin–Ono equation (1.19) with 𝑘 = 3. Theorem 1.9 and Remark 1.10 provide an alternative proof
of the construction of the Gibbs measure for the Benjamin–Ono equation.

Remark 1.12. (i) It follows from Theorem 1.4 and (1.34) that an analogue of Theorem 1.9 fails for the
quartic interaction (𝑘 = 4). More precisely, we have

https://doi.org/10.1017/fms.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.28


10 T. Oh, K. Seong and L. Tolomeo

sup
𝑁 ∈N

���� exp
(
𝜆

4

∫
T𝑑

:𝑢4
𝑁 : 𝑑𝑥 − 𝐴

��� ∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥

���𝛾)����
𝐿𝑝 (𝜇)

= ∞

for any 𝜆, 𝐴, 𝛾 > 0.
(ii) If we consider a smoother base Gaussian measure 𝜇𝛼, then we can prove the following uniform

exponential integrability bound; given any 𝜆 > 0, 𝛼 > 𝑑
2 and finite 𝑝 ≥ 1, there exists sufficiently large

𝐴 = 𝐴(𝜆, 𝛼, 𝑝) > 0 and 𝛾 = 𝛾(𝛼) > 0 such that

sup
𝑁 ∈N

���� exp
(
𝜆

4

∫
T𝑑

𝑢4
𝑁 𝑑𝑥 − 𝐴

( ∫
T𝑑

𝑢2
𝑁 𝑑𝑥

)𝛾)����
𝐿𝑝 (𝜇𝛼)

≤ 𝐶𝑝,𝑑,𝐴 < ∞. (1.35)

Here, 𝜇𝛼 denotes the Gaussian measure with a formal density

𝑑𝜇𝛼 = 𝑍−1𝑒−
1
2 ‖𝑢 ‖

2
𝐻𝛼 𝑑𝑢. (1.36)

See Appendix B for the proof of (1.35). The bound (1.35) allows us to construct the focusing Gibbs
measure with a focusing quartic interaction of the form:

𝑑𝜌𝛼 = 𝑍−1𝑒
𝜆
4
∫
T𝑑
𝑢4𝑑𝑥−𝐴

( ∫
T𝑑
𝑢2𝑑𝑥

) 𝛾
𝑑𝜇𝛼 . (1.37)

Moreover, in view of (1.34), we can also construct the following focusing Gibbs measure with an 𝐿2-
cutoff:

𝑑𝜌𝛼 = 𝑍−11{
∫
T𝑑

|𝑢 |2𝑑𝑥≤𝐾 }𝑒
𝜆
4
∫
T𝑑

|𝑢 |4𝑑𝑥𝑑𝜇𝛼 (1.38)

for any 𝐾 > 0.
In [61, 62], Sun and Tzvetkov recently studied the following fractional NLS on T:

𝑖𝜕𝑡𝑢 + (1 − 𝜕2
𝑥)𝛼𝑢 − 𝜆 |𝑢 |2𝑢 = 0 (1.39)

in the defocusing case (𝜆 < 0). They proved almost sure local well-posedness of (1.39) with respect
to the Gaussian measure 𝜇𝛼 in (1.36) for 𝛼 > 31−

√
233

28 ≈ 0.562 ( > 1
2 ),14 which in turn yielded almost

sure global well-posedness with respect to the defocusing Gibbs measure (namely, 𝜌𝛼 in (1.38) without
an 𝐿2-cutoff) and invariance of the defocusing Gibbs measure. Since their local result also holds in
the focusing case (𝜆 > 0), our construction of the focusing Gibbs measure 𝜌𝛼 in (1.38) implies almost
sure global well-posedness of (1.39) with respect to the focusing Gibbs measure 𝜌𝛼 in (1.38) and its
invariance under the dynamics of (1.39) for the same range of 𝛼.

(iii) Theorem 1.4 and Part (ii) of this remark show that in the case of the focusing quartic interaction,
there is no phase transition, depending on the value of 𝜆 > 0. Compare this with the situation in [41, 42],
where such a phase transition (as described in Remark 1.8) was established in the critical case. It may
be of interest to pursue the issue of a possible phase transition for a higher-order focusing interaction,
in the nonsingular regime 𝛼 > 𝑑

2 .

2. Preliminary lemmas

In this section, we recall basic definitions and lemmas used in this paper.
Let 𝑠 ∈ R and 1 ≤ 𝑝 ≤ ∞. We define the 𝐿2-based Sobolev space 𝐻𝑠 (T𝑑) by the norm:

‖ 𝑓 ‖𝐻 𝑠 = ‖〈𝑛〉𝑠 �̂� (𝑛)‖ℓ2
𝑛
.

14See also a recent preprint [36], where the authors covered the range 𝛼 > 1
2 .
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We also define the 𝐿𝑝-based Sobolev space 𝑊 𝑠, 𝑝 (T𝑑) by the norm:

‖ 𝑓 ‖𝑊 𝑠,𝑝 =
��F−1 [〈𝑛〉𝑠 �̂� (𝑛)]

��
𝐿𝑝 .

When 𝑝 = 2, we have 𝐻𝑠 (T𝑑) = 𝑊 𝑠,2 (T𝑑).

2.1. Deterministic estimates

We first recall the following interpolation and fractional Leibniz rule. As for the second estimate (2.1),
see [29, Lemma 3.4].

Lemma 2.1. The following estimates hold.
(i) (interpolation) For 0 < 𝑠1 < 𝑠2, we have

‖𝑢‖𝐻 𝑠1 ≤ ‖𝑢‖
𝑠1
𝑠2
𝐻 𝑠2 ‖𝑢‖

𝑠2−𝑠1
𝑠2

𝐿2 .

(ii) (fractional Leibniz rule) Let 0 ≤ 𝑠 ≤ 1. Suppose that 1 < 𝑝 𝑗 , 𝑞 𝑗 , 𝑟 < ∞, 1
𝑝 𝑗

+ 1
𝑞 𝑗

= 1
𝑟 , 𝑗 = 1, 2.

Then, we have15

‖〈∇〉𝑠 ( 𝑓 𝑔)‖𝐿𝑟 (T𝑑) �
(
‖ 𝑓 ‖𝐿𝑝1 (T𝑑) ‖〈∇〉𝑠𝑔‖𝐿𝑞1 (T𝑑) + ‖〈∇〉𝑠 𝑓 ‖𝐿𝑝2 (T𝑑) ‖𝑔‖𝐿𝑞2 (T𝑑)

)
, (2.1)

where 〈∇〉 =
√

1 − Δ .

The next lemma states almost optimal Bernstein’s inequality on T𝑑 .

Lemma 2.2. Given 𝑁 ∈ N, let 𝜋𝑁 be the frequency projector as in (1.4). Then, we have

‖𝜋𝑁 𝑓 ‖4
𝐿4 (T𝑑) ≤ 𝐶𝐵𝑁𝑑 (1 + 𝑜(1))‖ 𝑓 ‖4

𝐿2 (T𝑑)

as 𝑁 → ∞, where 𝐶𝐵 is the optimal constant for Bernstein’s inequality (1.26) on R𝑑 .

Proof. Given 𝑁 ∈ N, let 𝐶𝐵,𝑁 be the optimal constant for the following inequality on T𝑑:

‖𝜋𝑁 𝑓 ‖4
𝐿4 (T𝑑) ≤ 𝐶𝐵,𝑁 𝑁𝑑 ‖𝜋𝑁 𝑓 ‖4

𝐿2 (T𝑑) , (2.2)

and let 𝑓𝑁 be an optimizer for (2.2) with ‖ 𝑓𝑁 ‖𝐿2 (T𝑑) = 1 and 𝜋𝑁 𝑓𝑁 = 𝑓𝑁 . In particular, we have

‖ 𝑓𝑁 ‖4
𝐿4 (T𝑑) = 𝐶𝐵,𝑁 𝑁𝑑 . (2.3)

Note that such an optimizer exists since the set { 𝑓𝑁 : ‖ 𝑓𝑁 ‖𝐿2 (T𝑑) = 1, 𝜋𝑁 𝑓𝑁 = 𝑓𝑁 } is compact.
Moreover, by Sobolev’s inequality on the torus, we have

𝐶𝐵,𝑁 � 1, (2.4)

uniformly in 𝑁 ∈ N. Then, in view of (2.3), it suffices to show that

lim sup
𝑁→∞

𝑁−𝑑 ‖ 𝑓𝑁 ‖4
𝐿4 (T𝑑) ≤ 𝐶𝐵 . (2.5)

Fix small 𝜀 > 0. Let 𝜒𝜀 ∈ 𝐶∞
𝑐 (R𝑑; [0, 1]) be a smooth bump function which is compactly supported

on [−𝜋, 𝜋)𝑑 � T𝑑 such that 𝜒𝜀 ≡ 1 on [−𝜋+𝑐0𝜀, 𝜋−𝑐0𝜀]𝑑 for some small 𝑐0 = 𝑐0 > 0 to be chosen later.
Recalling that 𝑑𝑥T𝑑 = (2𝜋)−𝑑𝑑𝑥 is the normalized Lebesgue measure on T𝑑 , we see that ‖ 𝑓𝑁 ‖4

𝐿4 (T𝑑) is

15We use the convention that the symbol � indicates that inessential constants are suppressed in the inequality.
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the average of | 𝑓 (𝑥) |4 on T𝑑 . Hence, by suitably translating 𝑓𝑁 (that does not affect its optimality) and
choosing 𝑐0 = 𝑐0 > 0 sufficiently small (independent of small 𝜀 > 0 and 𝑁 ∈ N), we have

‖𝜒2
𝜀 𝑓𝑁 ‖𝐿4 (T𝑑) ≥ (1 − 𝜀)‖ 𝑓𝑁 ‖𝐿4 (T𝑑) , (2.6)

uniformly in 𝑁 ∈ N. In the following, when we view 𝑓𝑁 as a function on R𝑑 , we simply view it as a
periodic function: 𝑓 (𝑥) = 𝑓 (𝑥 + 2𝜋𝑚), 𝑚 ∈ Z𝑑 .

Let 𝜃 ∈ 𝐶∞
𝑐 (R𝑑; [0, 1]) be a smooth radial bump function on R𝑑 such that 𝜃 (𝜉) = 1 for |𝜉 | ≤ 1 and

𝜃 (𝜉) = 0 for |𝜉 | > 2. Given 𝑀 > 0, set 𝜃𝑀 (𝜉) = 𝜃
( 𝜉
𝑀

)
. Now, we set

𝜒𝜀,𝑀 = Q𝑀 (𝜒𝜀) := F−1
R𝑑

(𝜃𝑀 ) ∗ 𝜒𝜀 , (2.7)

where F−1
R𝑑

is the inverse Fourier transform on R𝑑 . Namely, 𝜒𝜀,𝑀 is the frequency-localized version of
𝜒𝜀 onto the frequencies {𝜉 ∈ R𝑑 : |𝜉 | ≤ 2𝑀}. Then, by choosing 𝑀 = 𝑀 (𝜀, 𝑁) > 0 sufficiently large,
we have

‖𝜒𝜀 − 𝜒𝜀,𝑀 ‖𝐿1 (R𝑑)∩𝐿∞ (R𝑑) = ‖(Id−Q𝑀 )𝜒𝜀 ‖𝐿1 (R𝑑)∩𝐿∞ (R𝑑) � 𝜀𝑁− 𝑑
4 . (2.8)

Since 𝜒𝜀 is a Schwartz function, we have 𝑀 (𝜀, 𝑁) = 𝑜(𝑁) for each fixed 𝜀 > 0.
By the definition (2.7) of 𝜒𝜀,𝑀 and choosing 𝑀 = 𝑀 (𝜀, 𝑁) = 𝑜(𝑁) possibly larger, we have

‖𝜒𝜀,𝑀 ( · + 2𝜋𝑚)‖𝐿∞ ( [−𝜋,𝜋)𝑑) = sup
𝑥∈[−𝜋,𝜋)𝑑

𝑀𝑑

∫
R𝑑

𝜒𝜀 (𝑥 + 2𝜋𝑚 − 𝑦)F−1
R𝑑

(𝜃) (𝑀𝑦)𝑑𝑦

�
𝑀𝑑

〈𝑀𝑚〉2𝑑+1 � 𝜀

〈𝑚〉𝑑
, (2.9)

uniformly in 𝑚 ∈ Z𝑑 \ {0}, where the penultimate step follows from supp 𝜒𝜀 ⊂ [−𝜋, 𝜋)𝑑 and the fact
that 𝜃 is a Schwartz function. Then, from the periodicity of 𝑓𝑁 , supp 𝜒𝜀 ⊂ [−𝜋, 𝜋)𝑑 , (2.8) and (2.9),
we obtain

‖(𝜒𝜀 − 𝜒𝜀,𝑀 ) 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )

=

(
1

(2𝜋)𝑑
∑
𝑚∈Z𝑑

∫
[−𝜋,𝜋)𝑑

(𝜒𝜀 − 𝜒𝜀,𝑀 )4(𝑥 + 2𝜋𝑚) | 𝑓𝑁 (𝑥) |4𝑑𝑥

) 1
4

≤ ‖ 𝑓𝑁 ‖𝐿4 (T𝑑)

(
‖𝜒𝜀 − 𝜒𝜀,𝑀 ‖4

𝐿∞ ( [−𝜋,𝜋)𝑑) +
∑

𝑚∈Z𝑑\{0}
‖𝜒4
𝜀,𝑀 ( · + 2𝜋𝑚)‖4

𝐿∞ ( [−𝜋,𝜋)𝑑)

) 1
4

� 𝜀‖ 𝑓𝑁 ‖𝐿4 (T𝑑) .

As a consequence, we have

‖(𝜒2
𝜀 − 𝜒2

𝜀,𝑀 ) 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)∩𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)

≤ ‖𝜒𝜀 − 𝜒𝜀,𝑀 ‖𝐿∞ (R𝑑)∩𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)

×
(
2‖𝜒𝜀 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) + ‖(𝜒𝜀 − 𝜒𝜀,𝑀 ) 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)

)
(2.10)

� 𝜀𝑁− 𝑑
4 ‖ 𝑓𝑁 ‖𝐿4 (T𝑑) .
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Hence, from (2.6) and (2.10), we have

(1 − 2𝜀)‖ 𝑓𝑁 ‖𝐿4 (T𝑑) ≤ ‖𝜒2
𝜀,𝑀 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) ≤ (1 + 𝜀)‖ 𝑓𝑁 ‖𝐿4 (T𝑑) (2.11)

for any small 𝜀 > 0, uniformly in 𝑁 ∈ N.
Define the function 𝑔𝑁 , 𝑔𝑁 ,𝑀 : R𝑑 → C by setting

𝑔𝑁 (𝑥) =
1

𝑁
𝑑
2

𝜒2
𝜀

( 𝑥

𝑁

)
𝑓𝑁

( 𝑥

𝑁

)
and 𝑔𝑁 ,𝑀 (𝑥) = 1

𝑁
𝑑
2

𝜒2
𝜀,𝑀

( 𝑥

𝑁

)
𝑓𝑁

( 𝑥

𝑁

)
. (2.12)

Then, from (2.11) and (2.12), we have

𝑁
𝑑
4 ‖𝑔𝑁 ,𝑀 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )
= ‖𝜒2

𝜀,𝑀 𝑓𝑁 ‖𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )
≥ (1 − 2𝜀)‖ 𝑓𝑁 ‖𝐿4 (T𝑑) . (2.13)

By Hölder’s inequality and (2.10) with (2.3) and (2.4), we have

‖𝑔𝑁 − 𝑔𝑁 ,𝑀 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )
= ‖(𝜒2

𝜀 − 𝜒2
𝜀,𝑀 ) 𝑓𝑁 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )

� 𝜀.

Noting that ‖𝑔𝑁 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )
= ‖𝜒2

𝜀 𝑓𝑁 ‖𝐿2 (T𝑑) ≤ 1, we then obtain

‖𝑔𝑁 ,𝑀 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑 )
≤ (1 + 𝜀). (2.14)

Finally, recalling that the Fourier support of 𝑓𝑁 = 𝜋𝑁 𝑓 (as a function on T𝑑) is contained in {𝑛 ∈
Z
𝑑 |𝑛| ≤ 𝑁} and the Fourier support of 𝜒𝜀,𝑀 (as a function on R𝑑 is contained in {𝜉 ∈ R𝑑 : |𝜉 | ≤ 2𝑀}

and that 𝑀 (𝜀, 𝑁) = 𝑜(𝑁), it follows from (2.12) that

supp(�̂�𝑁 ,𝑀 ) ⊂
{
𝜉 ∈ R𝑑 : |𝜉 | ≤ 𝑁 + 2𝑀

𝑁

}
⊂
{
𝜉 ∈ R𝑑 : |𝜉 | ≤ 1 + 𝑜(1)

}
. (2.15)

Therefore, from (2.13) and (the scaled version of) (1.26) with (2.15) followed by (2.14), we conclude that

𝑁−𝑑 ‖ 𝑓𝑁 ‖4
𝐿4 (T𝑑) ≤ (1 − 2𝜀)−4‖𝑔𝑁 ,𝑀 ‖4

𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)

≤ (1 − 2𝜀)−44𝐶𝐵 (1 + 𝑜(1))‖𝑔𝑁 ,𝑀 ‖4
𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
)

≤
(

1 + 𝜀

1 − 2𝜀

)4
𝐶𝐵 (1 + 𝑜(1)).

Since 𝜀 > 0 is arbitrary, by taking the lim sup as 𝑁 → ∞, we obtain (2.5). �

2.2. Tools from stochastic analysis

Next, we recall the Wiener chaos estimate (Lemma 2.3). For this purpose, we first recall basic definitions
from stochastic analysis; see [6, 59]. Let (𝐻, 𝐵, 𝜈) be an abstract Wiener space. Namely, 𝜈 is a Gaussian
measure on a separable Banach space B with 𝐻 ⊂ 𝐵 as its Cameron–Martin space. Given a complete
orthonormal system {𝑒 𝑗 } 𝑗∈N ⊂ 𝐵∗ of 𝐻∗ = 𝐻, we define a polynomial chaos of order k to be an element
of the form

∏∞
𝑗=1 𝐻𝑘 𝑗 (〈𝑥, 𝑒 𝑗〉), where 𝑥 ∈ 𝐵, 𝑘 𝑗 ≠ 0 for only finitely many j’s, 𝑘 =

∑∞
𝑗=1 𝑘 𝑗 , 𝐻𝑘 𝑗 is the

Hermite polynomial of degree 𝑘 𝑗 as in (1.7), and 〈·, ·〉 = 𝐵 〈·, ·〉𝐵∗ denotes the B-𝐵∗ duality pairing. We
then denote the closure of polynomial chaoses of order k under 𝐿2 (𝐵, 𝜈) by H𝑘 . The elements in H𝑘
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are called homogeneous Wiener chaoses of order k. We also set

H≤𝑘 =
𝑘⊕
𝑗=0

H 𝑗

for 𝑘 ∈ N.
Let 𝐿 = Δ − 𝑥 · ∇ be the Ornstein–Uhlenbeck operator.16 Then, it is known that any element in H𝑘

is an eigenfunction of L with eigenvalue −𝑘 . Then, as a consequence of the hypercontractivity of the
Ornstein–Uhlenbeck semigroup 𝑈 (𝑡) = 𝑒𝑡𝐿 due to Nelson [39], we have the following Wiener chaos
estimate [60, Theorem I.22].
Lemma 2.3. Let 𝑘 ∈ N. Then, we have

‖𝑋 ‖𝐿𝑝 (Ω) ≤ (𝑝 − 1)
𝑘
2 ‖𝑋 ‖𝐿2 (Ω)

for any 𝑝 ≥ 2 and any 𝑋 ∈ H≤𝑘 .

Lemma 2.4. Let 𝜈𝑁 be the law of 𝐼𝑁
def
=
∫
T𝑑

:𝑢2
𝑁 (𝑥) : 𝑑𝑥, where u is as in (1.3) and 𝑢𝑁 = 𝜋𝑁 𝑢. Then,

for every 𝑁 ∈ N, 𝜈𝑁 is absolutely continuous with respect to the Lebesgue measure 𝜆 on R. Moreover,
we have ����𝑑𝜈𝑁

𝑑𝜆

����
𝐿∞ (R)

� 1, (2.16)

uniformly in 𝑁 ∈ N. As a consequence, we have

𝜇

( ∫
T𝑑

:𝑢2(𝑥) : 𝑑𝑥 = 𝐾

)
= 0 (2.17)

for any 𝐾 ∈ R, where 𝜇 is the log-correlated Gaussian free field defined in (1.2).
Proof. By the definition (1.6) of :𝑢2

𝑁 : with (1.3), we have∫
T𝑑

:𝑢2
𝑁 (𝑥) : 𝑑𝑥 =

∑
0≤ |𝑛 | ≤𝑁

|𝑔𝑛 |2 − 1
〈𝑛〉𝑑

=
∑

0≤ |𝑛 | ≤1

|𝑔𝑛 |2 − 1
〈𝑛〉𝑑

+
∑

2≤ |𝑛 | ≤𝑁

|𝑔𝑛 |2 − 1
〈𝑛〉𝑑

=: 𝐴1 + 𝐴2,𝑁

with the understanding that 𝐴2,𝑁 = 0 when 𝑁 = 1. Because of independence of the Gaussians {𝑔𝑛}|𝑛 |>2
from 𝑔0 and 𝑔1, the random variables 𝐴1 and 𝐴2,𝑁 are independent. Note that the law 𝜇1 of 𝐴1 (and
𝜇2,𝑁 of 𝐴2,𝑁 when 𝑁 ≥ 2, respectively) is absolutely continuous with respect to the Lebesgue measure
𝜆 on R. Thus, we have 𝑑𝜇1 = 𝜎1𝑑𝜆 for some 𝜎1 ∈ 𝐿1 (R) (and 𝑑𝜇2,𝑁 = 𝜎2,𝑁 𝑑𝜆 for some 𝜎2,𝑁 ∈ 𝐿1 (R)
when 𝑁 ≥ 2, respectively).

We have ∑
0≤ |𝑛 | ≤1

|𝑔𝑛 |2 − 1
〈𝑛〉𝑑

= (𝑔2
0 − 1) + 21− 𝑑

2 (|𝑔1 |2 − 1).

Letting 𝜎10 (and 𝜎11) be the density for 𝑔2
0 − 1 (and 21− 𝑑

2 (|𝑔1 |2 − 1), respectively), we have

𝜎1 = 𝜎10 ∗ 𝜎11.

16For simplicity, we write the definition of the Ornstein–Uhlenbeck operator L when 𝐵 = R𝑑 .
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Note that 𝑔2
0 is a chi-square distribution of one degree of freedom and thus the density 𝜎10 for 𝑔2

0 − 1
is unbounded.17 On the other hand, 2|𝑔1 |2 = 2(Re 𝑔1)2 + 2(Im 𝑔1)2 is a chi-square distribution of
two degrees of freedom and thus the density 𝜎11 for 21− 𝑑

2 (|𝑔1 |2 − 1) is bounded. Hence, by Young’s
inequality, we have

‖𝜎1‖𝐿∞ (R) = ‖𝜎10 ∗ 𝜎11‖𝐿∞ (R) ≤ ‖𝜎10‖𝐿1 (R) ‖𝜎11‖𝐿∞ (R) < ∞,

which proves (2.16), when 𝑁 = 1. Next, we consider the case 𝑁 ≥ 2. Denoting by 𝜎2𝑛 the density for
2〈𝑛〉−𝑑 (|𝑔𝑛 |2 − 1), by Young’s inequality, we have

‖𝜎2,𝑁 ‖𝐿1 (R) = ‖𝜎22 ∗ 𝜎23 ∗ · · ·𝜎2𝑁 ‖𝐿1 (R) ≤
𝑁∏
𝑛=2

‖𝜎2𝑛‖𝐿1 (R) = 1, (2.18)

where the last equality holds since 𝜎2𝑛 is a density of a probability measure. Hence, by Young’s
inequality with (2.18), we have����𝑑𝜈𝑁

𝑑𝜆

����
𝐿∞ (R)

=

����𝑑 Law(𝐴1 + 𝐴2,𝑁 )
𝑑𝜆

����
𝐿∞ (R)

= ‖𝜎1 ∗ 𝜎2,𝑁 ‖𝐿∞ (R)

≤ ‖𝜎1‖𝐿∞ (R) ‖𝜎2,𝑁 ‖𝐿1 (R)

= ‖𝜎1‖𝐿∞ (R)

� 1,

uniformly in 𝑁 ≥ 2. This proves (2.16).
Let 𝐼∞ =

∫
T𝑑

:𝑢2(𝑥) : 𝑑𝑥. Since 𝐼𝑁 converges to 𝐼∞ in law (see, for example, [47, Proposition 1.1]),
it follows from the Portmanteau theorem and (2.16) that

P(𝐼∞ = 𝐾) ≤ P
(
𝐼∞ ∈ (𝐾 − 𝜀, 𝐾 + 𝜀)

)
≤ lim inf

𝑁→∞
P
(
𝐼𝑁 ∈ (𝐾 − 𝜀, 𝐾 + 𝜀)

)
= lim inf

𝑁→∞
𝜈𝑁

(
(𝐾 − 𝜀, 𝐾 + 𝜀)

)
≤ sup
𝑁 ∈N

����𝑑𝜈𝑁
𝑑𝜆

����
𝐿∞ (R)

· 𝜆
(
(𝐾 − 𝜀, 𝐾 + 𝜀)

)
� 𝜀

for any 𝜀 > 0. Since the choice of 𝜀 > 0 was arbitrary, we then conclude (2.17). �

3. Nonnormalizability of the focusing Gibbs measure with the quartic interaction

In this section, we present the proof of the nonnormalizability of the log-correlated Gibbs measure with
the focusing quartic interaction (Theorem 1.4).

3.1. Variational formulation

In order to prove (1.24) and (1.27), we use a variational formula for the partition function as in [64,
41]. Let us first introduce some notations. Fix a a probability space (Ω,F , P). Let 𝑊 (𝑡) be a cylindrical

17In particular, (2.16) is false when 𝑁 = 0.
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Brownian motion in 𝐿2 (T𝑑). Namely, we have

𝑊 (𝑡) =
∑
𝑛∈Z𝑑

𝐵𝑛 (𝑡)𝑒𝑛, (3.1)

where {𝐵𝑛}𝑛∈Z𝑑 is a sequence of mutually independent complex-valued18 Brownian motions such that
𝐵𝑛 = 𝐵−𝑛, 𝑛 ∈ Z𝑑 . Then, define a centered Gaussian process 𝑌 (𝑡) by

𝑌 (𝑡) = 〈∇〉−
𝑑
2 𝑊 (𝑡). (3.2)

Note that we have Law(𝑌 (1)) = 𝜇, where 𝜇 is the log-correlated Gaussian measure in (1.2). By setting
𝑌𝑁 = 𝜋𝑁𝑌 , we have Law(𝑌𝑁 (1)) = (𝜋𝑁 )∗𝜇, that is, the pushforward of 𝜇 under 𝜋𝑁 . In particular, we
have E[𝑌2

𝑁 (1)] = 𝜎𝑁 , where 𝜎𝑁 is as in (1.5). Here, the expectation E is with respect to the underlying
probability measure P.

Next, let H𝑎 denote the space of drifts, which are progressively measurable19 processes belonging
to 𝐿2 ([0, 1]; 𝐿2 (T𝑑)), P-almost surely. We now state the Boué–Dupuis variational formula [7, 68]; in
particular, see Theorem 7 in [68].

Lemma 3.1. Let Y be as in (3.2). Fix 𝑁 ∈ N. Suppose that 𝐹 : 𝐶∞(T𝑑) → R is measurable such that
E
[
|𝐹 (𝜋𝑁𝑌 (1)) |𝑝

]
< ∞ and E

[
|𝑒−𝐹 (𝜋𝑁𝑌 (1)) |𝑞

]
< ∞ for some 1 < 𝑝, 𝑞 < ∞ with 1

𝑝 + 1
𝑞 = 1. Then, we

have

− logE
[
𝑒−𝐹 (𝜋𝑁𝑌 (1))

]
= inf
𝜃 ∈H𝑎

E

[
𝐹 (𝜋𝑁𝑌 (1) + 𝜋𝑁 𝐼 (𝜃) (1)) + 1

2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
, (3.3)

where 𝐼 (𝜃) is defined by

𝐼 (𝜃) (𝑡) =
∫ 𝑡

0
〈∇〉−

𝑑
2 𝜃 (𝑡 ′)𝑑𝑡 ′ (3.4)

and the expectation E = EP is an expectation with respect to the underlying probability measure P.

In the following, we construct a drift 𝜃 depending on Y and the Boué–Dupuis variational formula
(Lemma 3.1) is suitable for this purpose since an expectation in (3.3) is taken with respect to the under-
lying probability measure P. Compare this with the variational formula in [31], where an expectation is
taken with respect to a shifted measure.

Before proceeding to the proof of Theorem 1.4, we state a lemma on the pathwise regularity bounds
of 𝑌 (1) and 𝐼 (𝜃) (1).

Lemma 3.2. (i) Let 𝜀 > 0. Then, given any finite 𝑝 ≥ 1, we have

E

[
‖𝑌𝑁 (1)‖ 𝑝𝑊 −𝜀,∞ + ‖ :𝑌2

𝑁 (1) : ‖ 𝑝𝑊 −𝜀,∞ +
�� :𝑌3

𝑁 (1) :
��𝑝
𝑊 −𝜀,∞

]
≤ 𝐶𝜀,𝑝 < ∞, (3.5)

uniformly in 𝑁 ∈ N.
(ii) For any 𝜃 ∈ H𝑎, we have

‖ I (𝜃) (1)‖2
𝐻

𝑑
2
≤
∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2 𝑑𝑡. (3.6)

Before proceeding to the proof of Lemma 3.2, recall the following orthogonality result [40, Lemma
1.1.1]; let f and g be jointly Gaussian random variables with mean zero and variances 𝜎 𝑓 and 𝜎𝑔. Then,

18By convention, we normalize 𝐵𝑛 such that Var(𝐵𝑛 (𝑡)) = 𝑡 . In particular, 𝐵0 is a standard real-valued Brownian motion.
19Namely, the map (𝑡 , 𝜔) ∈ [0, 1] × Ω ↦→ 𝜃 (𝑡 , 𝜔) ∈ 𝐿2 (T𝑑) is B[0,𝑡 ] ⊗ F𝑡 -measurable, where B[0,𝑡 ] denotes the Borel

sets in [0, 𝑡 ] and {F𝑡 }0≤𝑡≤1 denotes the filtration induced by the process Y.
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we have

E
[
𝐻𝑘 ( 𝑓 ; 𝜎 𝑓 )𝐻ℓ (𝑔; 𝜎𝑔)

]
= 𝛿𝑘ℓ 𝑘!

{
E[ 𝑓 𝑔]

}𝑘
, (3.7)

where 𝐻𝑘 (𝑥, 𝜎) denotes the Hermite polynomial of degree k with variance parameter 𝜎.

Proof. Part (i) is a direct consequence of pathwise regularities of the log-correlated Gaussian process Y
(and its Wick powers) whose law at time 𝑡 = 1 is given by 𝜇 in (1.2). See, for example, [48, Proposition
2.3] and [29, Proposition 2.1] for related results when 𝑑 = 2. For readers’ convenience, we present
details. Given 𝜀 > 0 and finite 𝑝 ≥ 1, let 𝑟 ≥ 𝑝 such that 𝜀𝑟 > 2𝑑. Then, from the Sobolev embedding
theorem and Minkowski’s integral inequality, we have���‖ :𝑌 𝑘𝑁 (1) : ‖𝑊 −𝜀,∞

���
𝐿𝑝 (Ω)

�
���‖ :𝑌 𝑘𝑁 (1) : ‖

𝑊 − 𝜀
2 ,𝑟

���
𝐿𝑝 (Ω)

≤
���‖〈∇〉− 𝜀

2 :𝑌 𝑘𝑁 (1, 𝑥) : ‖𝐿𝑝 (Ω)

���
𝐿𝑟𝑥

. (3.8)

On the other hand, from (1.6) and (3.7) with (3.1) and (3.2), we have

E
[

:𝑌 𝑘𝑁 (1, 𝑥) : :𝑌 𝑘𝑁 (1, 𝑦) :
]
= 𝑘!

{
E[𝑌𝑁 (1, 𝑥)𝑌𝑁 (1, 𝑦)]

}𝑘
= 𝑘!

∑
𝑛1 ,...,𝑛𝑘 ∈Z𝑑

|𝑛 𝑗 | ≤𝑁

𝑘∏
𝑗=1

1
〈𝑛 𝑗〉𝑑

𝑒𝑛1+···+𝑛𝑘 (𝑥 − 𝑦).

By applying the Bessel potentials 〈∇〉−
𝜀
2

𝑥 and 〈∇〉−
𝜀
2

𝑦 of order − 𝜀2 and then setting 𝑥 = 𝑦, we have

E
[
|〈∇〉−

𝜀
2 :𝑌 𝑘𝑁 (1, 𝑥) : |2

]
= 𝑘!

∑
𝑛1 ,...,𝑛𝑘 ∈Z𝑑

|𝑛 𝑗 | ≤𝑁

𝑘∏
𝑗=1

1
〈𝑛 𝑗〉𝑑 〈𝑛1 + · · · + 𝑛𝑘〉𝜀

� 1, (3.9)

uniformly in 𝑁 ∈ N. Then, (3.5) follows from (3.8), Lemma 2.3 and (3.9).
As for Part (ii), the estimate (3.6) follows from (3.4), Minkowski’s inequality and Cauchy–Schwarz’s

inequality. See the proof of Lemma 4.7 in [31] . �

3.2. Proof of Theorem 1.4

In this subsection, we present the proof of Theorem 1.4. Let us first discuss the divergence (1.27) for
any 𝐾 > 0. Given 𝐾, 𝐿 > 0 and 𝑁 ∈ N, define 𝑍𝐾,𝐿,𝑁 and 𝑍𝐾,𝐿 by

𝑍𝐾,𝐿,𝑁 = E𝜇
[

exp
(
min (𝑅𝑁 (𝑢), 𝐿)

)
· 1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

]
and

𝑍𝐾,𝐿 = E𝜇
[

exp
(
min (𝑅(𝑢), 𝐿)

)
· 1{ |

∫
T𝑑

:𝑢2: 𝑑𝑥 | ≤𝐾 }

]
.

Then, by the monotone convergence theorem, we have

𝑍𝐾 = lim
𝐿→∞

𝑍𝐾,𝐿 .
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Moreover, by the dominated convergence theorem together with the almost sure convergence20 of 𝑅𝑁 (𝑢)
(and

∫
T𝑑

: 𝑢2
𝑁 : 𝑑𝑥) to 𝑅(𝑢) (and

∫
T𝑑

: 𝑢2 : 𝑑𝑥, respectively) and Lemma 2.4 (which guarantees almost
sure convergence of 1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 } to 1{ |

∫
T𝑑

:𝑢2: 𝑑𝑥 | ≤𝐾 }), we obtain

𝑍𝐾,𝐿 = lim
𝑁→∞

𝑍𝐾,𝐿,𝑁 .

Therefore, (1.27) follows once we prove the following divergence:

lim
𝐿→∞

lim inf
𝑁→∞

𝑍𝐾,𝐿,𝑁 = ∞, (3.10)

where 𝑅𝑁 (𝑢) is as in (1.8) with 𝜆 > 0 and 𝑘 = 4.
Noting that

𝑍𝐾,𝐿,𝑁 ≥ E𝜇
[

exp
(

min (𝑅𝑁 (𝑢), 𝐿) · 1{ |
∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

)]
− 1, (3.11)

the divergence (3.10) (and thus (1.24)) follows once we prove

lim
𝐿→∞

lim inf
𝑁→∞

E𝜇

[
exp

(
min (𝑅𝑁 (𝑢), 𝐿) · 1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

)]
= ∞. (3.12)

By the Boué–Dupuis variational formula (Lemma 3.1), we have

− logE𝜇
[

exp
(

min (𝑅𝑁 (𝑢), 𝐿) · 1{ |
∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

)]
= inf
𝜃 ∈H𝑎

E

[
− min

(
𝑅𝑁 (𝑌 (1) + 𝐼 (𝜃) (1)), 𝐿

)
× 1{ |

∫
T𝑑

:(𝜋𝑁𝑌 (1))2:+2(𝜋𝑁𝑌 (1)) (𝜋𝑁 𝐼 (𝜃) (1))+(𝜋𝑁 𝐼 (𝜃) (1))2𝑑𝑥 | ≤𝐾 } (3.13)

+ 1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
,

where 𝑌 (1) is as in (3.2). Here, E𝜇 and E denote expectations with respect to the Gaussian field 𝜇 in (1.2)
and the underlying probability measure P, respectively. In the following, we show that the right-hand
side of (3.13) tends to −∞ as 𝑁, 𝐿 → ∞. The main idea is to construct a drift 𝜃 such that 𝐼 (𝜃) looks like
‘−𝑌 (1)+ a perturbation’, where the perturbation term is bounded in 𝐿2 (T𝑑) but has a large 𝐿4-norm.21

• Part 1: We first present several preliminary results. The proofs of Lemmas 3.3 and 3.4 are presented in
Subsection 3.3. We first construct a perturbation term in the next lemma. Fix a large parameter 𝑀 � 1.
Let 𝑓 : R𝑑 → R be a real-valued Schwartz function with ‖ 𝑓 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) = 1 such that its Fourier

transform �̂� is supported on {𝜉 ∈ R𝑑 : |𝜉 | ≤ 1} with �̂� (0) = 0. Define a function 𝑓𝑀 on T𝑑 by

𝑓𝑀 = 𝑀− 𝑑
2

∑
𝑛∈Z𝑑
|𝑛 | ≤𝑀

�̂�
( 𝑛

𝑀

)
𝑒𝑛, (3.14)

where �̂� = FR𝑑 ( 𝑓 ) denotes the Fourier transform on R𝑑 defined in (1.14). Then, a direct computation
yields the following lemma.

20See, for example, [47, Proposition 1.1] together with the Borel–Cantelli lemma.
21While we do not make use of solitons in an explicit manner in this paper, one should think of this perturbation as something

like a soliton or a finite blowup solution (at a fixed time) with a highly concentrated profile whose 𝐿4-norm blows up while its
𝐿2-norm remains bounded. See Lemma 3.3.
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Lemma 3.3. Let 𝛼 > 0. Then, we have∫
T𝑑

𝑓 2
𝑀 𝑑𝑥 = 1 + 𝑂 (𝑀−𝛼), (3.15)∫

T𝑑
𝑓 4
𝑀 𝑑𝑥 = 𝑀𝑑 ‖ 𝑓 ‖4

𝐿4 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) + 𝑂 (𝑀−𝛼) ∼ 𝑀𝑑 , (3.16)∫

T𝑑
(〈∇〉−𝛼 𝑓𝑀 )2𝑑𝑥 ≤ 𝐶 ( 𝑓 )𝑀−𝑑−2+max(𝑑+2−2𝛼,0)

=

{
𝑀−2𝛼, for 𝛼 ≤ 𝑑

2 + 1,

𝑀−𝑑−2, for 𝛼 > 𝑑
2 + 1.

(3.17)

for any 𝑀 � 1 and some constant 𝐶 ( 𝑓 ) > 0.

See Lemma 5.13 in [41] for an analogous result on the construction of a perturbation term. While
Lemma 3.3 follows from a similar consideration, we present some details of the proof in Subsection 3.3.

In the next lemma, we construct an approximation 𝜁𝑀 to Y in (3.2) by solving stochastic differential
equations. Note that, in [41], such an approximation of 𝑌 (1) was constructed essentially by (a suitable
frequency truncation of) 𝑌 ( 1

2 ), which was sufficient to prove a divergence analogous to (3.12) for large
𝐾 � 1. In order to prove the divergence (3.12) for any 𝐾 > 0, we need to establish a more refined
approximation argument. For simplicity, we denote 𝑌 (1) and 𝜋𝑁𝑌 (1) by Y and 𝑌𝑁 , respectively, in the
following.

Lemma 3.4. Given 𝑀 � 1, define 𝜁𝑀 by its Fourier coefficients as follows. For |𝑛| ≤ 𝑀 , 𝜁𝑀 (𝑛, 𝑡) is a
solution of the following differential equation:

{
𝑑𝜁𝑀 (𝑛, 𝑡) = 〈𝑛〉− 𝑑

2 𝑀
𝑑
2 (𝑌 (𝑛, 𝑡) − 𝜁𝑀 (𝑛, 𝑡))𝑑𝑡

𝜁𝑀 |𝑡=0 = 0,
(3.18)

and we set 𝜁𝑀 (𝑛, 𝑡) ≡ 0 for |𝑛| > 𝑀 . Then, 𝜁𝑀 (𝑡) is a centered Gaussian process in 𝐿2 (T𝑑), which is
frequency localized on {|𝑛| ≤ 𝑀}, satisfying

E
[
𝜁2
𝑀 (𝑥)

]
= 𝜎𝑀 (1 + 𝑜(1)) ∼ log 𝑀, (3.19)

E

[
2
∫
T𝑑

𝑌𝑁 𝜁𝑀 𝑑𝑥 −
∫
T𝑑

𝜁2
𝑀 𝑑𝑥

]
= 𝜎𝑀 (1 + 𝑜(1)) ∼ log 𝑀, (3.20)

E

[��� ∫
T𝑑

: (𝑌𝑁 − 𝜁𝑀 )2 : 𝑑𝑥
���2] � 𝑀−𝑑 log 𝑀, (3.21)

E

[( ∫
T𝑑

𝑌𝑁 𝑓𝑀 𝑑𝑥
)2
]
+ E

[( ∫
T𝑑

𝜁𝑀 𝑓𝑀 𝑑𝑥
)2
]
� 𝑀−𝑑 , (3.22)

E

[ ∫ 1

0

��� 𝑑

𝑑𝑠
𝜁𝑀 (𝑠)

���2

𝐻
𝑑
2

𝑑𝑠

]
� 𝑀𝑑 (3.23)

for any 𝑁 ≥ 𝑀 � 1, where 𝜁𝑀 = 𝜁𝑀 |𝑡=1 and

: (𝑌𝑁 − 𝜁𝑀 )2 := (𝑌𝑁 − 𝜁𝑀 )2 − E
[
(𝑌𝑁 − 𝜁𝑀 )2] . (3.24)

Here, (3.19) is independent of 𝑥 ∈ T𝑑 .
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We now define 𝛼𝑀,𝑁 by

𝛼𝑀,𝑁 =

E

[
2
∫
T𝑑

𝑌𝑁 𝜁𝑀 𝑑𝑥 −
∫
T𝑑

𝜁2
𝑀 𝑑𝑥

]
∫
T𝑑

𝑓 2
𝑀 𝑑𝑥

(3.25)

for 𝑁 ≥ 𝑀 � 1. Then, from (3.15) and (3.20), we have

𝛼𝑀,𝑁 = 𝜎𝑀 (1 + 𝑜(1)) ∼ log 𝑀 (3.26)

for any 𝑁 ≥ 𝑀 � 1.

• Part 2: In this part, we prove the divergence (3.12). For 𝑀 � 1, we set 𝑓𝑀 , 𝜁𝑀 and 𝛼𝑀,𝑁 as in
(3.14), Lemma 3.4 and (3.25). For the minimization problem (3.13), we set a drift 𝜃 = 𝜃0 by

𝜃0 (𝑡) = 〈∇〉
𝑑
2

(
− 𝑑

𝑑𝑡
𝜁𝑀 (𝑡) + √

𝛼𝑀,𝑁 𝑓𝑀

)
(3.27)

such that

Θ0 = 𝐼 (𝜃0) (1) =
∫ 1

0
〈∇〉−

𝑑
2 𝜃0(𝑡) 𝑑𝑡 = −𝜁𝑀 + √

𝛼𝑀,𝑁 𝑓𝑀 . (3.28)

We also define 𝑄(𝑢) by

𝑄(𝑢) = 1
4

∫
T𝑑

𝑢4𝑑𝑥 and 𝑄R𝑑 (𝑣) =
1

4(2𝜋)𝑑

∫
R𝑑

𝑣4𝑑𝑥, (3.29)

for 𝑢 ∈ 𝐿4 (T𝑑) and 𝑣 ∈ 𝐿4 (R𝑑), respectively.
Let us first make some preliminary computations. By Cauchy’s inequality, we have

|𝜁𝑀 (√𝛼𝑀,𝑁 𝑓𝑀 )3 | ≤ 𝛿

4
𝛼2
𝑀,𝑁 𝑓 4

𝑀 + 1
𝛿

𝛼𝑀,𝑁 𝜁2
𝑀 𝑓 2

𝑀 ,

|𝜁3
𝑀

√
𝛼𝑀,𝑁 𝑓𝑀 | ≤ 𝛿

4
𝜁4
𝑀 + 1

𝛿
𝛼𝑀,𝑁 𝜁2

𝑀 𝑓 2
𝑀 (3.30)

for any 0 < 𝛿 < 1. Then, from (3.28), (3.29) and (3.30), we have

𝑄(Θ0) − 𝛼2
𝑀,𝑁𝑄( 𝑓𝑀 )

= −
∫
T𝑑

𝜁𝑀 (√𝛼𝑀,𝑁 𝑓𝑀 )3𝑑𝑥 + 3
2

∫
T𝑑

𝜁2
𝑀 (√𝛼𝑀,𝑁 𝑓𝑀 )2𝑑𝑥 (3.31)

−
∫
T𝑑

𝜁3
𝑀

√
𝛼𝑀,𝑁 𝑓𝑀 𝑑𝑥 + 𝑄(𝜁𝑀 )

≥ −𝛿𝛼2
𝑀,𝑁𝑄( 𝑓𝑀 ) − 𝐶𝛿𝛼𝑀,𝑁

∫
T𝑑

𝜁2
𝑀 𝑓 2

𝑀 𝑑𝑥 + (1 − 𝛿)𝑄(𝜁𝑀 )

≥ −𝛿𝛼2
𝑀,𝑁𝑄( 𝑓𝑀 ) − 𝐶𝛿𝛼𝑀,𝑁

∫
T𝑑

𝜁2
𝑀 𝑓 2

𝑀 𝑑𝑥
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for any 0 < 𝛿 < 1. From (3.26), (3.19) in Lemma 3.4 and (3.15) in Lemma 3.3, we have

E

[
𝛼𝑀,𝑁

∫
T𝑑

𝜁2
𝑀 𝑓 2

𝑀 𝑑𝑥

]
= 𝛼𝑀,𝑁

∫
T𝑑
E[𝜁2

𝑀 (𝑥)] 𝑓 2
𝑀 (𝑥)𝑑𝑥

∼ (log 𝑀)2‖ 𝑓𝑀 ‖2
𝐿2 � (log 𝑀)2 (3.32)

for any 𝑁 ≥ 𝑀 � 1. Therefore, it follows from (3.31), (3.32) and (3.26) with (3.29) and (3.16) that for
any measurable set E with P(𝐸) > 0 and any 𝐿 � 𝜆 · 𝛼2

𝑀,𝑁𝑄( 𝑓𝑀 ), we have

E

[
min

(
𝛾𝜆𝑄(Θ0), 𝐿

)
· 1𝐸

]
≥ 𝛾𝜆(1 − 𝛿)𝛼2

𝑀,𝑁𝑄( 𝑓𝑀 )P(𝐸) − 𝛾𝐶 ′
𝛿 (log 𝑀)2

= 𝛾𝜆(1 − 𝛿)𝜎2
𝑀𝑀𝑑𝑄R𝑑 ( 𝑓 )P(𝐸) (1 + 𝑜(1)) (3.33)

for any 𝑁 ≥ 𝑀 � 1.
Recall from (3.14) that �̂�𝑀 is supported on {|𝑛| ≤ 𝑀}. Then, by Lemma 3.2 (ii) with (3.28), (3.27),

(3.23) in Lemma 3.4, (3.26) and (3.15) in Lemma 3.3, we have

E
[
‖Θ0‖2

𝐻
𝑑
2

]
≤ E

[ ∫ 1

0
‖𝜃0 (𝑡)‖2

𝐿2 𝑑𝑡

]
� E

[ ∫ 1

0

��� 𝑑

𝑑𝑠
𝜁𝑀 (𝑠)

���2

𝐻
𝑑
2

𝑑𝑠

]
+ 𝑀𝑑𝛼𝑀,𝑁 ‖ 𝑓𝑀 ‖2

𝐿2 (3.34)

� 𝑀𝑑 log 𝑀.

Lastly, recall the following identity (see [48, (1.18)]):

𝐻𝑘 (𝑥 + 𝑦; 𝜎) =
𝑘∑
ℓ=0

(
𝑘
ℓ

)
𝑥𝑘−ℓ𝐻ℓ (𝑦; 𝜎), (3.35)

which follows from a Taylor expansion with the differentiation rule [32, p. 159]: 𝐻𝑘 (𝑥; 𝜎) =
𝑘𝐻𝑘−1 (𝑥; 𝜎). Then, from (1.8) with 𝑘 = 4 and (3.35), we have

𝑅𝑁 (𝑌 + Θ0) = 𝜆

4

∫
T𝑑

:𝑌4
𝑁 : 𝑑𝑥 + 𝜆

∫
T𝑑

:𝑌3
𝑁 : Θ0𝑑𝑥 + 3𝜆

2

∫
T𝑑

:𝑌2
𝑁 : (Θ0)2𝑑𝑥

+ 𝜆

∫
T𝑑

𝑌𝑁 (Θ0)3𝑑𝑥 + 𝜆

4

∫
T𝑑
(Θ0)4𝑑𝑥, (3.36)

where we used

𝜋𝑁Θ
0 = Θ0 (3.37)

for 𝑁 ≥ 𝑀 ≥ 1. We now state a lemma, controlling the second, third and fourth terms on the right-hand
side of (3.36). We present the proof of this lemma in Subsection 3.3.
Lemma 3.5. There exist small 𝜀 > 0 and a constant 𝑐0 = 𝑐0(𝜀) > 0 such that for any 𝛿 > 0, we have���� ∫

T𝑑
:𝑌3
𝑁 : Θ0𝑑𝑥

���� ≤ 𝑐(𝛿)‖ :𝑌3
𝑁 : ‖2

𝑊 −𝜀,∞ + 𝛿‖Θ0‖2
𝐻

𝑑
2

, (3.38)���� ∫
T𝑑

:𝑌2
𝑁 : (Θ0)2𝑑𝑥

���� ≤ 𝑐(𝛿)‖ :𝑌2
𝑁 : ‖4

𝑊 −𝜀,∞ + 𝛿
(
‖Θ0‖2

𝐻
𝑑
2
+ ‖Θ0‖4

𝐿4

)
, (3.39)���� ∫

T𝑑
𝑌𝑁 (Θ0)3𝑑𝑥

���� ≤ 𝑐(𝛿)‖𝑌𝑁 ‖𝑐0
𝑊 −𝜀,∞ + 𝛿

(
‖Θ0‖2

𝐻
𝑑
2
+ ‖Θ0‖4

𝐿4

)
, (3.40)

uniformly in 𝑁 ∈ N.
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Fix small 𝛿0 > 0. Then, from (3.36) and Lemma 3.5, we have

𝑅𝑁 (𝑌 + Θ0) ≥ (1 − 𝛿0)𝜆𝑄(Θ0)

− 𝑐(𝛿0)𝜆
(
‖ :𝑌3

𝑁 : ‖2
𝑊 −𝜀,∞ + ‖ :𝑌2

𝑁 : ‖4
𝑊 −𝜀,∞ + ‖𝑌𝑁 ‖𝑐0

𝑊 −𝜀,∞

)
(3.41)

− 𝑐𝛿0𝜆‖Θ0‖2
𝐻

𝑑
2
− |𝑅𝑁 (𝑌 ) |.

We are now ready to put everything together. With (3.37) in mind, suppose that for any 𝐾 > 0 and
small 𝛿1 > 0, there exists 𝑀0 = 𝑀0 (𝐾, 𝛿1) ≥ 1 such that

P

(��� ∫
T𝑑
(: 𝑌2

𝑁 : +2𝑌𝑁Θ
0 + (Θ0)2)𝑑𝑥

��� ≤ 𝐾

)
≥ 1 − 𝛿1, (3.42)

uniformly in 𝑁 ≥ 𝑀 ≥ 𝑀0. Then, it follows from (3.13), (3.41), (3.33), Lemma 3.2 (3.34), (1.9)
(controlling |𝑅𝑁 (𝑌 ) |, uniformly in 𝑁 ∈ N), and (3.26) with (3.37) that there exist constants 𝐶1, 𝐶2 > 0
such that

− logE𝜇
[

exp
(

min (𝑅𝑁 (𝑢), 𝐿) · 1{ |
∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

)]
≤ E

[
− min

(
𝑅𝑁 (𝑌 + Θ0), 𝐿

)
× 1{ |

∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ0+(Θ0)2)𝑑𝑥 | ≤𝐾 } +

1
2

∫ 1

0
‖𝜃0 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
≤ E

[
− min

(
(1 − 𝛿0)𝜆𝑄(Θ0), 𝐿

)
· 1{ |

∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ0+(Θ0)2)𝑑𝑥 | ≤𝐾 }

+ 𝑐(𝛿0)𝜆
(
‖ :𝑌3

𝑁 : ‖2
𝑊 −𝜀,∞ + ‖ :𝑌2

𝑁 : ‖4
𝑊 −𝜀,∞ + ‖𝑌𝑁 ‖𝑐0

𝑊 −𝜀,∞

)
+ 𝑐𝛿0𝜆‖Θ0‖2

𝐻
𝑑
2
+ |𝑅𝑁 (𝑌 ) | +

1
2

∫ 1

0
‖𝜃0 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
≤ −(1 − 𝛿0) (1 − 𝛿) (1 − 𝛿1)𝜆𝛼2

𝑀,𝑁𝑀𝑑𝑄R𝑑 ( 𝑓 ) (1 + 𝑜(1))
+ 𝐶1 (𝛿0, 𝜆)𝑀𝑑 log 𝑀 + 𝐶2 (𝛿0, 𝜆)

= −(1 − 𝛿0) (1 − 𝛿) (1 − 𝛿1)𝜆𝜎2
𝑀𝑀𝑑𝑄R𝑑 ( 𝑓 ) (1 + 𝑜(1)) (3.43)

for any 𝑁 ≥ 𝑀 ≥ 𝑀0 (𝐾, 𝛿1) and 𝐿 � 𝜆 · 𝛼2
𝑀,𝑁𝑄( 𝑓𝑀 ) ∼ 𝜆𝑀𝑑 (log 𝑀)2. Therefore, we obtain

lim
𝐿→∞

lim inf
𝑁→∞

E𝜇

[
exp

(
min (𝜆𝑅𝑁 (𝑢), 𝐿)

)
· 1{ |

∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥 | ≤𝐾 }

]
≥ exp

(
(1 − 𝛿0) (1 − 𝛿) (1 − 𝛿1)𝜆𝜎2

𝑀𝑀𝑑𝑄R𝑑 ( 𝑓 ) (1 + 𝑜(1))
)
−→ ∞, (3.44)

as 𝑀 → ∞. This proves (3.12) by assuming (3.42).
It remains to prove (3.42) for any 𝐾 > 0 and small 𝛿1 > 0. From (3.28), we have

E

[��� ∫
T𝑑

(
: 𝑌2
𝑁 : +2𝑌𝑁Θ

0 + (Θ0)2
)
𝑑𝑥
���2]

= E

[��� ∫
T𝑑

: 𝑌2
𝑁 : 𝑑𝑥 − 2

∫
T𝑑

𝑌𝑁 𝜁𝑀 𝑑𝑥 +
∫
T𝑑

𝜁2
𝑀 𝑑𝑥 + 𝛼𝑀,𝑁

∫
T𝑑

𝑓 2
𝑀 𝑑𝑥 (3.45)

+ 2√𝛼𝑀,𝑁

∫
T𝑑
(𝑌𝑁 − 𝜁𝑀 ) 𝑓𝑀 𝑑𝑥

���2] .
https://doi.org/10.1017/fms.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.28


Forum of Mathematics, Sigma 23

From (3.26) and (3.22) in Lemma 3.4, we have

E

[���√𝛼𝑀,𝑁

∫
T𝑑
(𝑌𝑁 − 𝜁𝑀 ) 𝑓𝑀 𝑑𝑥

���2] � 𝑀−𝑑 log 𝑀. (3.46)

On other hand, from (3.25) and (3.24), we have

∫
T𝑑

:𝑌2
𝑁 : 𝑑𝑥 − 2

∫
T𝑑

𝑌𝑁 𝜁𝑀 𝑑𝑥 +
∫
T𝑑

𝜁2
𝑀 𝑑𝑥 + 𝛼𝑀,𝑁

∫
T𝑑

𝑓 2
𝑀 𝑑𝑥

=
∫
T𝑑
(𝑌𝑁 − 𝜁𝑀 )2 − E

[
(𝑌𝑁 − 𝜁𝑀 )2]𝑑𝑥 (3.47)

=
∫
T𝑑

: (𝑌𝑁 − 𝜁𝑀 )2 : 𝑑𝑥.

Hence, from (3.45), (3.46) and (3.47) with (3.21) in Lemma 3.4, we obtain

E

[��� ∫
T𝑑

(
: 𝑌2
𝑁 : +2𝑌𝑁Θ

0 + (Θ0)2
)
𝑑𝑥
���2] � 𝑀−𝑑 log 𝑀.

Therefore, by Chebyshev’s inequality, given any 𝐾 > 0 and small 𝛿1 > 0, there exists 𝑀0 = 𝑀0 (𝐾, 𝛿1) ≥ 1
such that

P

(��� ∫
T𝑑
(: 𝑌2

𝑁 : +2𝑌𝑁Θ
0 + (Θ0)2)𝑑𝑥

��� > 𝐾

)
≤ 𝐶

𝑀−𝑑 log 𝑀

𝐾2 < 𝛿1

for any 𝑀 ≥ 𝑀0 (𝐾, 𝛿1). This proves (3.42).

• Part 3: In this last part, we establish the exact divergence rate (1.25) of 𝑍𝐾,𝑁 . From (3.44) with
𝑀 = 𝑁 , we already have

log 𝑍𝐾,𝑁 ≥ (1 − 𝛿0) (1 − 𝛿) (1 − 𝛿1)𝜆𝜎2
𝑁𝑁𝑑𝑄R𝑑 ( 𝑓 ) (1 + 𝑜(1)) (3.48)

as 𝑁 → ∞, for any small 𝛿, 𝛿0, 𝛿1 > 0 and any Schwartz function f with ‖ 𝑓 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) = 1,

supp( �̂� ) ⊂ {|𝜉 | ≤ 1} and �̂� (0) = 0. Since Schwartz functions with supp( �̂� ) ⊂ {|𝜉 | ≤ 1} and �̂� (0) = 0
are dense in 𝐿2 (R𝑑)∩

{
𝑓 : supp( �̂� ) ⊂ {|𝜉 | ≤ 1}

}
, there exists a sequence { 𝑓𝑛}𝑛∈N of Schwartz functions

with ‖ 𝑓𝑛‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) = 1 and supp( �̂�𝑛) ⊂ {|𝜉 | ≤ 1} which are almost optimizers for Bernstein’s

inequality (1.26) on R𝑑 , namely, we have

lim
𝑛→∞

𝑄R𝑑 ( 𝑓𝑛) =
𝐶𝐵
4

.

Therefore, by inserting 𝑓𝑛 in (3.48) and taking 𝑛 → ∞ and 𝛿, 𝛿0, 𝛿1 → 0, we obtain

lim inf
𝑁→∞

log 𝑍𝐾,𝑁

𝜎2
𝑁𝑁𝑑

≥ 𝜆
𝐶𝐵
4

. (3.49)
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Hence, it remains to prove the upper bound. In view of (3.13), we have

log 𝑍𝐾,𝑁 ≤ sup
𝜃 ∈H𝑎

E

[
𝑅𝑁 (𝑌 + Θ)

× 1{ |
∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ𝑁 +Θ2

𝑁 )𝑑𝑥 | ≤𝐾 } −
1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
≤ sup
𝜃 ∈L2

𝑡,𝑥

E

[
𝑅𝑁 (𝑌 + Θ)

× 1{ |
∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ𝑁 +(Θ𝑁 )2)𝑑𝑥 | ≤𝐾 } −

1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
(3.50)

≤ sup
Θ∈H

𝑑
2
𝑥

E

[
𝑅𝑁 (𝑌 + Θ) · 1{ |

∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ𝑁 +(Θ𝑁 )2)𝑑𝑥 | ≤𝐾 } −

1
2
‖Θ𝑁 ‖2

𝐻
𝑑
2

]
,

where Θ = 𝐼 (𝜃) (1) in the first two lines and Θ𝑁 = 𝜋𝑁Θ. Here, the space L2
𝑡 ,𝑥 denotes the space of

drifts, which are stochastic processes belonging to 𝐿2 ([0, 1]; 𝐿2 (T𝑑))P-almost surely (namely, they do
not have be adapted), and the space H

𝑑
2
𝑥 denotes the space of 𝐻

𝑑
2 (T𝑑)-valued random variables.

For any Θ ∈ H
𝑑
2
𝑥 , let 𝑉 = 𝑌 + Θ. Then, with 𝑉𝑁 = 𝜋𝑁𝑉 , we have

Θ𝑁 = −𝑌𝑁 +𝑉𝑁 , (3.51)

and thus we see that∫
T𝑑
(: 𝑌2

𝑁 : +2𝑌𝑁Θ𝑁 + Θ2
𝑁 )𝑑𝑥 ≤ 𝐾 is equivalent to

∫
T𝑑

𝑉2
𝑁 𝑑𝑥 ≤ 𝐾 + 𝜎𝑁 , (3.52)

where 𝜎𝑁 = E
[
𝑌2
𝑁

]
is as in (1.5). Hence, from (3.50), a change of variables Θ𝑁 = −𝑌𝑁 + 𝑉𝑁 , (3.52)

and the almost optimal Bernstein inequality (Lemma 2.2), we have

log 𝑍𝐾,𝑁 ≤ sup
Θ∈H

𝑑
2
𝑥

E

[
𝑅𝑁 (𝑌 + Θ) · 1{ |

∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ𝑁 +(Θ𝑁 )2)𝑑𝑥 | ≤𝐾 }

]

≤ sup
𝑉𝑁 ∈H

𝑑
2
𝑥

E

[
𝑅𝑁 (𝑉) · 1{

∫
T𝑑
𝑉 2
𝑁 𝑑𝑥≤𝐾+𝜎𝑁 }

]

≤ sup
𝑉𝑁 ∈H

𝑑
2
𝑥

E

[
𝜆

𝐶B
4

𝑁𝑑 (1 + 𝑜(1))‖𝑉𝑁 ‖4
𝐿2 · 1{

∫
T𝑑
𝑉 2
𝑁 𝑑𝑥≤𝐾+𝜎𝑁 }

]
+ 𝑂 (𝜆𝜎2

𝑁 ) (3.53)

≤ 𝜆
𝐶𝐵
4

𝑁𝑑 (1 + 𝑜(1)) (𝐾 + 𝜎𝑁 )2 + 𝑂 (𝜆𝜎2
𝑁 ) = 𝜆

𝐶𝐵
4

𝑁𝑑𝜎2
𝑁 (1 + 𝑜(1))

as 𝑁 → ∞, where, in the third step, we used

𝑅𝑁 (𝑉) = 𝜆

4
𝑉4
𝑁 − 3𝜆

2
𝜎𝑁𝑉2

𝑁 + 3𝜆

4
𝜎2
𝑁 ≤ 𝜆

4
𝑉4
𝑁 + 3𝜆

4
𝜎2
𝑁 .

Therefore, combining this with (3.49), we conclude (1.25).

Remark 3.6. The perturbation (at the level of Θ0 in (3.28)) is given by 𝑓𝑀 (modulo the logarithmic
factor √𝛼𝑀,𝑁 ). We point out that Lemma 3.3 shows that 𝑓𝑀 looks like a highly concentrated profile
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whose 𝐿4-norm (in fact, any 𝐿 𝑝-norm for 𝑝 > 2) blows up while its 𝐿2-norm is 𝑂 (1) as 𝑀 → ∞. Note
that the blowup of 𝐿4-norm (3.16) was crucially used in (3.33), which led to the desired divergence
rate 𝑀𝑑 (log 𝑀)2 in (3.44). Moreover, the uniform (in M) bound (3.15) on the 𝐿2-norm 𝑓𝑀 played an
essential role in (3.32) and (3.34) to guarantee that the terms in (3.32) and (3.34) grow at a slower rate
than 𝑀𝑑 (log 𝑀)2.

3.3. Proofs of the auxiliary lemmas

In this subsection, we present the proofs of Lemmas 3.3, 3.4 and 3.5.
We first briefly discuss the proof of Lemma 3.3.

Proof of Lemma 3.3. Define a function 𝐹𝑀 on R𝑑 by setting

𝐹𝑀 (𝑥) = 𝑀
𝑑
2 𝑓 (𝑀𝑥).

Then, from the Poisson summation formula (1.13) with (3.14), we have

𝑓𝑀 (𝑥) =
∑
𝑚∈Z𝑑

𝐹𝑀 (𝑥 + 2𝜋𝑚) =
∑
𝑚∈Z𝑑

𝑇𝑚 𝑓 (𝑥), (3.54)

where 𝑇𝑚 𝑓 (𝑥) = 𝑀
𝑑
2 𝑓 (𝑀 (𝑥 + 2𝜋𝑚)).

Recall our convention of the normalized Lebesgue measure on T𝑑 . Since f is a Schwartz function,
we have

∫
T𝑑
(𝑇0 𝑓 (𝑥))𝑘𝑑𝑥 =

𝑀𝑑 ( 𝑘2 −1)

(2𝜋)𝑑

∫
R𝑑

1[−𝜋𝑀,𝜋𝑀 )𝑑 (𝑥) 𝑓 𝑘 (𝑥)𝑑𝑥

=
𝑀𝑑 ( 𝑘2 −1)

(2𝜋)𝑑

∫
R𝑑

𝑓 𝑘 (𝑥)𝑑𝑥 + 𝑂 (𝑀−𝛼) (3.55)

for any 𝛼 > 0. On the other hand, from (3.54), for 𝑘 ∈ N, we have

∫
T𝑑

𝑓 𝑘𝑀 (𝑥)𝑑𝑥 =
∫
T𝑑

( ∑
𝑚∈Z𝑑

𝑇𝑚 𝑓 (𝑥)
) 𝑘

𝑑𝑥

=
∫
T𝑑
(𝑇0 𝑓 )𝑘 (𝑥)𝑑𝑥 + l.o.t.. (3.56)

Here, l.o.t. consists of the sum of the terms of the form

∫
T𝑑

𝑘∏
𝑗=1

𝑇𝑚 𝑗 𝑓 (𝑥)𝑑𝑥,

where 𝑚 𝑗 ≠ 0 for at least one j. It follows from the fast decay of the Schwartz function f that, for any
𝜅 > 0, there exists 𝐶 > 0 such that

|𝑇𝑚 𝑓 (𝑥) | = 𝑀
𝑑
2 | 𝑓 (𝑀 (𝑥 + 2𝜋𝑚)) | ≤ 𝐶 (𝑀𝑚)−𝜅
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for any 𝑚 ∈ Z𝑑 \ {0}; see the proof of Lemma 5.13 in [41]. As a consequence, by summing over
𝑚 𝑗 ∈ Z𝑑 , 𝑗 = 1, . . . , 𝑘 (not all zero), we obtain

| l.o.t.| � 𝑀−𝛼 . (3.57)

Therefore, from (3.55), (3.56) and (3.57) with ‖ 𝑓 ‖𝐿2 (R𝑑 , 𝑑𝑥

(2𝜋)𝑑
) = 1, we conclude (3.15) and (3.16).

Next, we prove (3.17). Since f is a Schwartz function with �̂� (0) = 0, it follows from the fundamental
theorem of calculus that

| �̂� (𝜉) | = | �̂� (𝜉) − �̂� (0) | ≤ 𝐶 𝑓 |𝜉 | (3.58)

for any 𝜉 ∈ R𝑑 . By Plancherel’s identity with (3.14) and (3.58), we have∫
T𝑑
(〈∇〉−𝛼 𝑓𝑀 )2𝑑𝑥 = 𝑀−𝑑

∑
𝑛∈Z𝑑
|𝑛 | ≤𝑀

��� �̂� ( 𝑛

𝑀

)���2 1
〈𝑛〉2𝛼

≤ 𝐶2
𝑓 𝑀−𝑑−2

∑
𝑛∈Z𝑑
|𝑛 | ≤𝑀

1
〈𝑛〉2(𝛼−1)

� 𝐶2
𝑓 𝑀−𝑑−2+max(𝑑+2−2𝛼,0) .

This prove (3.17). �

Next, we present the proof of the approximation lemma (Lemma 3.4).

Proof of Lemma 3.4. Let

𝑋𝑛 (𝑡) = 𝑌𝑁 (𝑛, 𝑡) − 𝜁𝑀 (𝑛, 𝑡), |𝑛| ≤ 𝑀. (3.59)

Then, from (3.2) and (3.18), we see that 𝑋𝑛 (𝑡) satisfies the following stochastic differential equation:

⎧⎪⎪⎨⎪⎪⎩
𝑑𝑋𝑛 (𝑡) = −〈𝑛〉− 𝑑

2 𝑀
𝑑
2 𝑋𝑛 (𝑡)𝑑𝑡 + 1

〈𝑛〉
𝑑
2

𝑑𝐵𝑛 (𝑡)

𝑋𝑛 (0) = 0

for |𝑛| ≤ 𝑀 . By solving this stochastic differential equation, we have

𝑋𝑛 (𝑡) =
1

〈𝑛〉 𝑑
2

∫ 𝑡

0
𝑒−〈𝑛〉

− 𝑑
2 𝑀

𝑑
2 (𝑡−𝑠)𝑑𝐵𝑛 (𝑠). (3.60)

Then, from (3.59) and (3.60), we have

𝜁𝑀 (𝑛, 𝑡) = 𝑌𝑁 (𝑛, 𝑡) − 1
〈𝑛〉 𝑑

2

∫ 𝑡

0
𝑒−〈𝑛〉

− 𝑑
2 𝑀

𝑑
2 (𝑡−𝑠)𝑑𝐵𝑛 (𝑠) (3.61)

for |𝑛| ≤ 𝑀 . Hence, from (3.61), the independence of {𝐵𝑛}𝑛∈Z𝑑 ,22 Ito’s isometry and (3.2), we have

22Here, we are referring to the independence modulo the condition 𝐵𝑛 = 𝐵−𝑛, 𝑛 ∈ Z𝑑 . Similar comments apply in the
following.
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E
[
|𝜁𝑀 (𝑥) |2

]
=

∑
|𝑛 | ≤𝑀

(
E
[
|𝑌𝑁 (𝑛) |2

]
− 2

〈𝑛〉𝑑

∫ 1

0
𝑒−〈𝑛〉

− 𝑑
2 𝑀

𝑑
2 (1−𝑠)𝑑𝑠

+ 1
〈𝑛〉𝑑

∫ 1

0
𝑒−2〈𝑛〉−

𝑑
2 𝑀

𝑑
2 (1−𝑠)𝑑𝑠

)
(3.62)

= 𝜎𝑀 + 𝑂
( ∑
|𝑛 | ≤𝑀

1
〈𝑛〉 𝑑

2
· 1

𝑀
𝑑
2

)
= 𝜎𝑀 (1 + 𝑜(1))

for any 𝑀 � 1. This proves (3.19).
By Parseval’s theorem, (3.61), (3.19) and proceeding as in (3.62), we have

E

[
2
∫
T𝑑

𝑌𝑁 𝜁𝑀 𝑑𝑥 −
∫
T𝑑

𝜁2
𝑀 𝑑𝑥

]
= E

[
2

∑
|𝑛 | ≤𝑀

𝑌𝑁 (𝑛)𝜁𝑀 (𝑛) −
∑

|𝑛 | ≤𝑀
|𝜁𝑀 (𝑛) |2

]

= E

[ ∑
|𝑛 | ≤𝑀

|𝜁𝑀 (𝑛) |2 +
∑

|𝑛 | ≤𝑀

(
2

〈𝑛〉 𝑑
2

∫ 1

0
𝑒−〈𝑛〉

− 𝑑
2 𝑀

𝑑
2 (1−𝑠)𝑑𝐵𝑛 (𝑠)

)
𝜁𝑀 (𝑛)

]
= 𝜎𝑀 (1 + 𝑜(1)) + 𝑂

( ∑
|𝑛 | ≤𝑀

1
〈𝑛〉 𝑑

2
· 1

𝑀
𝑑
2

)
= 𝜎𝑀 (1 + 𝑜(1))

for any 𝑁 ≥ 𝑀 � 1. This proves (3.20).
Note that 𝑌 (𝑛) − 𝜁𝑀 (𝑛) is a mean-zero Gaussian random variable. Then, from (3.61) and Ito’s

isometry, we have

E

[(
|𝑌𝑁 (𝑛)−𝜁𝑀 (𝑛) |2 − E

[
|𝑌 (𝑛) − 𝜁𝑀 (𝑛) |2

] )2
]
�
(
E
[
|𝑌𝑁 (𝑛) − 𝜁𝑀 (𝑛) |2

] )2

=
1

〈𝑛〉2𝑑

( ∫ 1

0
𝑒−2〈𝑛〉−

𝑑
2 𝑀

𝑑
2 (1−𝑠)𝑑𝑠

)2
∼ 1

〈𝑛〉𝑑
· 1

𝑀𝑑
. (3.63)

Hence, from Plancherel’s identity, (3.24), the independence of {𝐵𝑛}𝑛∈Z𝑑 , the independence of{
|𝑌𝑁 (𝑛) |2 − E

[
|𝑌𝑁 (𝑛) |2

]}
𝑀< |𝑛 | ≤𝑁 and

{
|𝑌𝑁 (𝑛) − 𝜁𝑀 (𝑛) |2 − E

[
|𝑌𝑁 (𝑛) − 𝜁𝑀 (𝑛) |2

]}
|𝑛 | ≤𝑀 ,

(3.2), and (3.63), we have

E

[��� ∫
T𝑑

: (𝑌𝑁 − 𝜁𝑀 )2 : 𝑑𝑥
���2]

=
∑

𝑀< |𝑛 | ≤𝑁
E

[(
|𝑌𝑁 (𝑛) |2 − E

[
|𝑌𝑁 (𝑛) |2

] )2
]

+
∑

|𝑛 | ≤𝑀
E

[(
|𝑌𝑁 (𝑛) − 𝜁𝑀 (𝑛) |2 − E

[
|𝑌𝑁 (𝑛) − 𝜁𝑀 (𝑛) |2

] )2
]

�
∑

𝑀< |𝑛 | ≤𝑁

1
〈𝑛〉2𝑑 +

∑
|𝑛 | ≤𝑀

1
〈𝑛〉𝑑

1
𝑀𝑑
� 𝑀−𝑑 log 𝑀.

This proves (3.21).
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From (3.17) and (3.2), we have

E

[( ∫
T𝑑

𝑌𝑁 𝑓𝑀 𝑑𝑥
)2
]
= E

[( ∑
|𝑛 | ≤𝑀

𝑌𝑁 (𝑛) �̂�𝑀 (𝑛)
)2
]
=

∑
|𝑛 | ≤𝑀

1
〈𝑛〉𝑑

| �̂�𝑀 (𝑛) |2

≤
∫
T𝑑

(
〈∇〉−

𝑑
2 𝑓𝑀 (𝑥)

)2
𝑑𝑥 � 𝑀−𝑑 . (3.64)

From (3.60), Ito’s isometry and (3.17), we have

E

[( ∑
|𝑛 | ≤𝑀

𝑋𝑛 (1) �̂�𝑀 (𝑛)
)2
]
= E

[���� ∑
|𝑛 | ≤𝑀

(
1

〈𝑛〉 𝑑
2

∫ 1

0
𝑒−〈𝑛〉

− 𝑑
2 𝑀

𝑑
2 (1−𝑠)𝑑𝐵𝑛 (𝑠)

)
�̂�𝑀 (𝑛)

����2
]

� 𝑀− 𝑑
2

∑
|𝑛 | ≤𝑀

1
〈𝑛〉 𝑑

2
| �̂�𝑀 (𝑛) |2 (3.65)

� 𝑀−𝑑 .

Hence, (3.22) follows from (3.64) and (3.65) with (3.61).
Lastly, from (3.18), (3.59) and (3.60) and Ito’s isometry, we have

E

[ ∫ 1

0

��� 𝑑

𝑑𝑠
𝜁𝑀 (𝑠)

���2

𝐻
𝑑
2

𝑑𝑠

]
= 𝑀𝑑

E

[ ∫ 1

0

���𝜋𝑀 (𝑌𝑁 (𝑠)) − 𝜁𝑀 (𝑠)
���2

𝐿2
𝑑𝑠

]
= 𝑀𝑑

E

[ ∫ 1

0

( ∑
|𝑛 | ≤𝑀

|𝑋𝑛 (𝑠) |2
)
𝑑𝑠

]

= 𝑀𝑑
∑

|𝑛 | ≤𝑀

1
〈𝑛〉𝑑

∫ 1

0

∫ 𝑠

0
𝑒−2〈𝑛〉−

𝑑
2 𝑀

𝑑
2 (𝑠−𝑠′)𝑑𝑠′𝑑𝑠

� 𝑀𝑑
∑

|𝑛 | ≤𝑀

1
〈𝑛〉 𝑑

2
· 1

𝑀
𝑑
2

� 𝑀𝑑 ,

yielding (3.23). This completes the proof of Lemma 3.4. �

Finally, we present the proof of Lemma 3.5.

Proof of Lemma 3.5. From the duality and Cauchy’s inequality, we have���� ∫
T𝑑

:𝑌3
𝑁 : Θ0𝑑𝑥

���� ≤ ‖ :𝑌3
𝑁 : ‖𝑊 −𝜀,∞ ‖Θ0‖𝑊 𝜀,1 ≤ ‖ :𝑌3

𝑁 : ‖𝑊 −𝜀,∞ ‖Θ0‖
𝐻

𝑑
2

≤ 𝑐(𝛿)‖ :𝑌3
𝑁 : ‖2

𝑊 −𝜀,∞ + 𝛿‖Θ0‖2
𝐻

𝑑
2

. (3.66)

This yields (3.38).
From the fractional Leibniz rule (Lemma 2.1 (ii)), we have���� ∫

T𝑑
:𝑌2
𝑁 : (Θ0)2𝑑𝑥

���� ≤ ‖ :𝑌2
𝑁 : ‖𝑊 −𝜀,∞ ‖(Θ0)2‖𝑊 𝜀,1

≤ ‖ :𝑌2
𝑁 : ‖𝑊 −𝜀,∞ ‖(Θ0)2‖

𝑊 𝜀, 4
3

(3.67)

� ‖ :𝑌2
𝑁 : ‖𝑊 −𝜀,∞ ‖Θ0‖

𝐻
𝑑
2
‖Θ0‖𝐿4 .

Then, the second estimate (3.39) follows from Young’s inequality.
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Lastly, we consider (3.40). From the fractional Leibniz rule (Lemma 2.1 (ii)) (with 1
1+𝛿 = 1

2+𝛿0
+ 1

4 +
1
4

for small 𝛿, 𝛿0 > 0), Sobolev’s inequality, and the interpolation (Lemma 2.1 (i)), we have���� ∫
T𝑑

𝑌𝑁 (Θ0
𝑁 )

3𝑑𝑥

���� ≤ ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖〈∇〉𝜀 (Θ0
𝑁 )

3‖𝐿1+𝛿

� ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖Θ0
𝑁 ‖𝑊 𝜀,2+𝛿0 ‖Θ0

𝑁 ‖
2
𝐿4 (3.68)

� ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖Θ0
𝑁 ‖

𝛽

𝐻
𝑑
2
‖Θ0

𝑁 ‖
3−𝛽
𝐿4

for some small 𝛽 > 0. Then, the third estimate (3.40) follows from Young’s inequality since 𝛽2 +
3−𝛽

4 < 1
for small 𝛽 > 0. This completes the proof of Lemma 3.5. �

4. Construction of the Gibbs measure with the cubic interaction

In this section, we present the proof of Theorem 1.9. We prove the uniform exponential integrability
(1.32) via the variational formulation. Since the argument is identical for any finite 𝑝 ≥ 1, we only
present details for the case 𝑝 = 1. Moreover, the precise value of 𝜆 ∈ R \ {0} does not play any role and
thus we set 𝜆 = 3 in the following.

In view of the Boué–Dupuis formula (Lemma 3.1), it suffices to establish a lower bound on

W𝑁 (𝜃) = E
[
− 𝑅�

𝑁 (𝑌 (1) + 𝐼 (𝜃) (1)) + 1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
, (4.1)

uniformly in 𝑁 ∈ N and 𝜃 ∈ H𝑎. We set 𝑌𝑁 = 𝜋𝑁𝑌 = 𝜋𝑁𝑌 (1) and Θ𝑁 = 𝜋𝑁Θ = 𝜋𝑁 𝐼 (𝜃) (1).
From (1.30) and (3.35), we have

𝑅�
𝑁 (𝑌 + Θ) =

∫
T𝑑

:𝑌3
𝑁 : 𝑑𝑥 + 3

∫
T𝑑

:𝑌2
𝑁 : Θ𝑁 𝑑𝑥 + 3

∫
T𝑑

𝑌𝑁Θ
2
𝑁 𝑑𝑥

+
∫
T𝑑

Θ3
𝑁 𝑑𝑥 − 𝐴

{ ∫
T𝑑

(
:𝑌2
𝑁 : +2𝑌𝑁Θ𝑁 + Θ2

𝑁

)
𝑑𝑥

}2
. (4.2)

Hence, from (4.1) and (4.2), we have

W𝑁 (𝜃) = E
[
−
∫
T𝑑

:𝑌3
𝑁 : 𝑑𝑥 − 3

∫
T𝑑

:𝑌2
𝑁 : Θ𝑁 𝑑𝑥 − 3

∫
T𝑑

𝑌𝑁Θ
2
𝑁 𝑑𝑥

−
∫
T𝑑

Θ3
𝑁 𝑑𝑥 + 𝐴

{ ∫
T𝑑

(
:𝑌2
𝑁 : +2𝑌𝑁Θ𝑁 + Θ2

𝑁

)
𝑑𝑥

}2
(4.3)

+ 1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
.

In the following, we first state a lemma, controlling the terms appearing in (4.3). We present the proof
of this lemma at the end of this section.

Lemma 4.1. (i) There exist small 𝜀 > 0 and a constant 𝑐 > 0 such that���� ∫
T𝑑

:𝑌2
𝑁 : Θ𝑁 𝑑𝑥

���� ≤ 𝑐‖ :𝑌2
𝑁 : ‖2

𝑊 −𝜀,∞ + 1
100

‖Θ𝑁 ‖2
𝐻

𝑑
2

, (4.4)
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���� ∫
T𝑑

𝑌𝑁Θ
2
𝑁 𝑑𝑥

���� ≤ 𝑐‖𝑌𝑁 ‖6
𝑊 −𝜀,∞ + 1

100

(
‖Θ𝑁 ‖2

𝐻
𝑑
2
+ ‖Θ𝑁 ‖4

𝐿2

)
, (4.5)���� ∫

T𝑑
Θ3
𝑁 𝑑𝑥

���� ≤ 1
100

‖Θ𝑁 ‖2
𝐻

𝑑
2
+ 𝐴

100
‖Θ𝑁 ‖4

𝐿2 (4.6)

for any sufficiently large 𝐴 > 0, uniformly in 𝑁 ∈ N.
(ii) Let 𝐴 > 0. Given any small 𝜀 > 0, there exists 𝑐 = 𝑐(𝜀, 𝐴) > 0 such that

𝐴

{ ∫
T𝑑

(
:𝑌2
𝑁 : +2𝑌𝑁Θ𝑁 + Θ2

𝑁

)
𝑑𝑥

}2

≥ 𝐴

4
‖Θ𝑁 ‖4

𝐿2 −
1

100
‖Θ𝑁 ‖2

𝐻
𝑑
2
− 𝑐

{
‖𝑌𝑁 ‖𝑐𝑊 −𝜀,∞ +

( ∫
T𝑑

:𝑌2
𝑁 : 𝑑𝑥

)2}
, (4.7)

uniformly in 𝑁 ∈ N.

As in [3, 31, 45, 41], the main strategy is to establish a pathwise lower bound on W𝑁 (𝜃) in (4.3),
uniformly in 𝑁 ∈ N and 𝜃 ∈ H𝑎, by making use of the positive terms:

U𝑁 (𝜃) = E
[

𝐴

4
‖Θ𝑁 ‖4

𝐿2 +
1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
(4.8)

coming from (4.3) and (4.7). From (4.3) and (4.8) together with Lemmas 4.1 and 3.2, we obtain

inf
𝑁 ∈N

inf
𝜃 ∈H𝑎

W𝑁 (𝜃) ≥ inf
𝑁 ∈N

inf
𝜃 ∈H𝑎

{
− 𝐶0 +

1
10

U𝑁 (𝜃)
}
≥ −𝐶0 > −∞. (4.9)

Then, the uniform exponential integrability (1.32) follows from (4.9) and Lemma 3.1. This proves
Theorem 1.9.

We conclude this section by presenting the proof of Lemma 4.1.

Proof of Lemma 4.1. (i) The estimate (4.4) follows from replacing :𝑌3
𝑁 : in (3.66) by :𝑌2

𝑁 :.
With small 𝛿 > 0, it follows from the fractional Leibniz rule (Lemma 2.1 (ii)) and Sobolev’s inequality

as in (3.68) that ���� ∫
T𝑑

𝑌𝑁Θ
2
𝑁 𝑑𝑥

���� ≤ ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖Θ2
𝑁 ‖𝑊 𝜀,1+𝛿

≤ ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖Θ𝑁 ‖2
𝐻 𝜀

� ‖𝑌𝑁 ‖𝑊 −𝜀,∞ ‖Θ𝑁 ‖𝛽
𝐻

𝑑
2
‖Θ𝑁 ‖2−𝛽

𝐿2

for some small 𝛽 > 0. Then, the second estimate (4.5) follows from Young’s inequality since 𝛽2 +
2−𝛽

4 < 1.
As for the third estimate (4.6), it follows from Sobolev’s inequality, Lemma 2.1 (i) and Cauchy’s

inequality that ���� ∫
T𝑑

Θ3
𝑁 𝑑𝑥

���� ≤ 𝐶‖Θ𝑁 ‖3
𝐻

𝑑
6
≤ 𝐶‖Θ𝑁 ‖

𝐻
𝑑
2
‖Θ𝑁 ‖2

𝐿2

≤ 1
100

‖Θ𝑁 ‖2
𝐻

𝑑
2
+ 𝐴

100
‖Θ𝑁 ‖4

𝐿2 ,

where 𝐴 > 0 is sufficiently large.
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(ii) The bound (4.7) follows from a slight modification of Lemma 5.8 in [41]. Noting that

(𝑎 + 𝑏 + 𝑐)2 ≥ 1
2

𝑐2 − 2(𝑎2 + 𝑏2)

for any 𝑎, 𝑏, 𝑐 ∈ R, we have

𝐴

{ ∫
T𝑑

(
:𝑌2
𝑁 : +2𝑌𝑁Θ𝑁 + Θ2

𝑁

)
𝑑𝑥

}2

≥ 𝐴

2

( ∫
T𝑑

Θ2
𝑁 𝑑𝑥

)2
− 2𝐴

{( ∫
T𝑑

:𝑌2
𝑁 : 𝑑𝑥

)2
+
( ∫
T𝑑

𝑌𝑁Θ𝑁 𝑑𝑥

)2}
. (4.10)

From Lemma 2.1 (i) and Young’s inequality, we have���� ∫
T𝑑

𝑌𝑁Θ𝑁 𝑑𝑥

����2 ≤ ‖𝑌𝑁 ‖2
𝑊 −𝜀,∞ ‖Θ𝑁 ‖2

𝑊 𝜀,1 ≤ ‖𝑌𝑁 ‖2
𝑊 −𝜀,∞ ‖Θ𝑁 ‖2

𝐻 𝜀

� ‖𝑌𝑁 ‖2
𝑊 −𝜀,∞ ‖Θ𝑁 ‖

2− 4𝜀
𝑑

𝐿2 ‖Θ𝑁 ‖
4𝜀
𝑑

𝐻
𝑑
2

(4.11)

≤ 𝑐‖𝑌𝑁 ‖
2𝑑

𝑑−2𝜀
𝑊 −𝜀,∞ + 1

8
‖Θ𝑁 ‖4

𝐿2 +
1

200𝐴
‖Θ𝑁 ‖2

𝐻
𝑑
2

.

Hence, (4.7) follows from (4.10) and (4.11). �

Remark 4.2. In considering the construction of the Gibbs measure with the cubic interaction, it is
possible to consider the following renormalized potential energy with a general power 𝛾 > 0 on the
Wick-ordered 𝐿2-norm:

𝑅
�,𝛾
𝑁 (𝑢) = 𝜆

3

∫
T𝑑

:𝑢3
𝑁 : 𝑑𝑥 − 𝐴

( ∫
T𝑑

:𝑢2
𝑁 : 𝑑𝑥

)𝛾
, (4.12)

where the coupling constant 𝜆 ∈ R \ {0} denotes the strength of cubic interaction as in (1.30). When
𝛾 = 2, 𝑅

�,𝛾
𝑁 (𝑢) reduces to 𝑅�

𝑁 (𝑢) in (1.30).
In the following, let us briefly discuss the optimality of the power 𝛾 = 2 in Theorem 1.9. In view of

(4.5) and (4.6), we need to control the term ‖Θ𝑁 ‖4
𝐿2 , which forces us to choose 𝛾 ≥ 2 in (4.12). When

𝛾 = 2, it is also necessary to choose A sufficiently large because of (4.5). When 𝛾 < 2 or when 𝛾 = 2
and A is sufficiently small, the taming by the Wick-ordered 𝐿2-norm in (4.12) is too weak to control the
terms mentioned above, and thus we expect an analogous nonnormalizability result to hold by repeating
the proof of Theorem 1.4.

A. On the Gibbs measure for the two-dimensional Zakharov system

In this appendix, we give a brief discussion on Gibbs measures for the following scalar Zakharov system
on T𝑑: {

𝑖𝜕𝑡𝑢 + Δ𝑢 = 𝑢𝑤

𝑐−2𝜕2
𝑡 𝑤 − Δ𝑤 = Δ (|𝑢 |2).

(A.1)

This is a coupled system of Schrödinger and wave equations. The unknown u for the Schrödinger part
is complex-valued, while the unknown w for the wave part is real-valued. By introducing the velocity
field �𝑣:

𝜕𝑡𝑤 = −𝑐2∇ · �𝑣,
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we can rewrite (A.1) as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝜕𝑡𝑢 + Δ𝑢 = 𝑢𝑤

𝜕𝑡𝑤 = −𝑐2∇ · �𝑣
𝜕𝑡 �𝑣 = −∇𝑤 − ∇(|𝑢 |2).

(A.2)

Note that (A.2) is a Hamiltonian system with the Hamiltonian

𝐻 (𝑢, 𝑤, �𝑣) = 1
2

∫
T𝑑

(
|∇𝑢 |2 + |𝑢 |2𝑤

)
𝑑𝑥 + 1

4

∫
T𝑑

𝑤2𝑑𝑥 + 𝑐2

4

∫
T𝑑

|�𝑣 |2𝑑𝑥. (A.3)

Moreover, the wave energy, namely, the 𝐿2-norm of the Schrödinger component:

𝑀 (𝑢) =
∫
T𝑑

|𝑢 |2𝑑𝑥

is known to be conserved. See [18].
By setting 𝑊 = 1√

2
𝑤 and �𝑉 = (𝑉1, . . . , 𝑉𝑑) = 𝑐√

2
�𝑣, we can rewrite the Hamiltonian in (A.3) as

𝐻 (𝑢, 𝑊, �𝑉) = 1
2

∫
T𝑑

(
|∇𝑢 |2 +

√
2|𝑢 |2𝑊

)
𝑑𝑥 + 1

2

∫
T𝑑

𝑊2𝑑𝑥 + 1
2

∫
T𝑑

| �𝑉 |2𝑑𝑥. (A.4)

Then, the Gibbs measure for the system (A.2) is formally given by

𝑑𝜌 = 𝑍−1𝑒−𝐻 (𝑢,𝑊 , �𝑉 )− 1
2𝑀 (𝑢)𝑑𝑢 𝑑𝑊 𝑑 �𝑉

= 𝑍−1𝑒𝑄 (𝑢,𝑊 )𝑑𝜇1 (𝑢)𝑑𝜇0(𝑊)
𝑑∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 ), (A.5)

where the potential 𝑄(𝑢, 𝑊) is given by

𝑄(𝑢, 𝑊) = − 1
√

2

∫
T𝑑

|𝑢 |2𝑊𝑑𝑥, (A.6)

the measure 𝜇1 denotes the complex-valued version of the massive Gaussian free field on T𝑑 with the
density formally given by

𝑑𝜇1 = 𝑍−1𝑒
− 1

2 ‖𝑢 ‖
2
𝐻1 𝑑𝑢 = 𝑍−1

∏
𝑛∈Z𝑑

𝑒−
1
2 〈𝑛〉

2 |𝑢 (𝑛) |2 𝑑�̂�(𝑛),

and 𝜇0 denotes the white noise measure defined as the pushforward measure 𝜇0 = (〈∇〉 𝑑
2 )∗𝜇, with 𝜇

as in (1.2). In view of the conservation of the Hamiltonian 𝐻 (𝑢, 𝑊, �𝑉) and the wave energy 𝑀 (𝑢), the
Gibbs measure 𝜌 in (A.5) expected to be invariant under the Zakharov dynamics.

As in the case of the focusing NLS, the main issue in constructing the Gibbs measure 𝜌 in (A.5)
comes from the focusing nature of the potential, that is, the potential 𝑄(𝑢, 𝑊) is unbounded from above.
In a seminal paper [33], Lebowitz, Rose and Speer constructed the Gibbs measure 𝜌 when 𝑑 = 1, by
inserting a cutoff in terms of the conserved wave energy 𝑀 (𝑢) = ‖𝑢‖2

𝐿2 , which was then proved to be
invariant under (A.2) on T (and thus (A.1)) by Bourgain [9].

Then, a natural question is to consider the construction of the Gibbs measure 𝜌 in the two-dimensional
setting.23 Before doing this, let us recall the relation between the Zakharov system and the focusing

23In a recent work [58], the second author studied the construction of the Gibbs measure for the Zakharov–Yukawa system on
T

2 (i.e., Δ in (A.1) is replaced by −(−Δ)𝛾 , 𝛾 < 1) and showed that the renormalized Gibbs measure is indeed normalizable when
𝛾 < 1. See [58] for details.
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cubic NLS. By sending the wave speed c in (A.1) to ∞, the Zakharov system converges, at a formal
level, to the focusing cubic NLS. See, for example, [51, 37] for rigorous convergence results on R𝑑 .
When 𝑑 = 2, Theorem 1.4 states that the (renormalized) Gibbs measure for the focusing cubic NLS
on T2 is not normalizable, even with a Wick-ordered 𝐿2-cutoff. This suggests that, when 𝑑 = 2, the
Gibbs measure 𝜌 in (A.5) for the Zakharov system may not be constructible even with a Wick-ordered
𝐿2-cutoff on the Schrödinger component u.

Given 𝑁 ∈ N, define the following renormalized truncated potential energy:

𝑄𝑁 (𝑢, 𝑊) = − 1
√

2

∫
T2

: |𝑢𝑁 |2 : 𝑊𝑑𝑥, (A.7)

where 𝑢𝑁 = 𝜋𝑁 𝑢 as in Subsection 1.1 and : |𝑢𝑁 |2 := |𝑢𝑁 |2 − 𝜎𝑁 . We then define the renormalized
truncated Gibbs measure 𝜌𝑁 on T2, endowed with a Wick-ordered 𝐿2-cutoff, by

𝑑𝜌𝑁 = 𝑍−1
𝑁 1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑄𝑁 (𝑢,𝑊 )𝑑𝜇1 (𝑢)𝑑𝜇0(𝑊)
2∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 ).

By integrating in (𝑉1, 𝑉2) and then in W, we have∬
1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑄𝑁 (𝑢,𝑊 )𝑑𝜇0 (𝑊)
2∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 )

= 1{ |
∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }

∫
exp

(
− 1
√

2

∑
𝑛∈Z2

F (: |𝑢𝑁 |2 :) (𝑛)𝑊 (𝑛)
)
𝑑𝜇0 (𝑊)

= 1{ |
∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }

∫
R

exp
(
− 1
√

2
F (: |𝑢𝑁 |2 :) (0) 𝑔0

)
𝑒−

1
2 𝑔

2
0

√
2𝜋

𝑑𝑔0 (A.8)

×
∏
𝑛∈Λ

1
𝜋

∫
C

exp
(
−
√

2 Re
(
F (|𝑢𝑁 |2) (𝑛) 𝑔𝑛

))
𝑒−|𝑔𝑛 |

2
𝑑𝑔𝑛,

where {𝑔𝑛}𝑛∈Z2 is as in (1.3)24 and Λ denotes the index set given by Λ = (Z × Z+) ∪ (Z+ × {0}) such
that Z2 = Λ ∪ (−Λ) ∪ {0}. Here, we used the fact that F (: |𝑢𝑁 |2 :) (𝑛) = F (|𝑢𝑁 |2) (𝑛) for 𝑛 ≠ 0. Then,
recalling the moment generating function E[𝑒𝑡𝑋 ] = 𝑒

1
2 𝜎𝑡

2 for 𝑋 ∼ NR(0, 𝜎), we have

(A.8) = 1{ |
∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 } exp

(
1
4
(
F (: |𝑢𝑁 |2 :) (0)

)2
)

×
∏
𝑛∈Λ

1
𝜋

∫
C

exp
(
−
√

2 Re
(
F (|𝑢𝑁 |2) (𝑛)

)
Re 𝑔𝑛

−
√

2 Im
(
F (|𝑢𝑁 |2) (𝑛)

)
Im 𝑔𝑛

)
𝑒−|𝑔𝑛 |

2
𝑑𝑔𝑛 (A.9)

≥ 1{ |
∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 } exp

(
1
4
��𝜋≠0 |𝑢𝑁 |2

��2
𝐿2 − 𝐶𝐾2

)
,

where 𝜋≠0 is the projection onto nonzero frequencies.

24In particular, 𝑔0 is a standard real-valued Gaussian random variables where Re 𝑔𝑛 and Im 𝑔𝑛, 𝑛 ∈ Λ, are independent
real-valued Gaussian random variables with mean 0 and variance 1

2 .
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Let {ℎ𝑛}𝑛∈Z2 be a sequence of mutually independent standard complex-valued Gaussian random
variables. Then, we have

∫ ��𝜋≠0 |𝑢𝑁 |2
��2
𝐿2 𝑑𝜇1 = E

[ ∑
𝑛1−𝑛2+𝑛3−𝑛4=0

|𝑛 𝑗 | ≤𝑁
𝑛1−𝑛2≠0

ℎ𝑛1

〈𝑛1〉
ℎ𝑛2

〈𝑛2〉
ℎ𝑛3

〈𝑛3〉
ℎ𝑛4

〈𝑛4〉

]

=
∑

|𝑛1 | ≤𝑁

1
〈𝑛1〉2

∑
|𝑛3 | ≤𝑁
𝑛3≠𝑛1

1
〈𝑛3〉2 ∼ (log 𝑁)2 −→ ∞, (A.10)

as 𝑁 → ∞. Then, from (A.10), the interpolation of the 𝐿𝑝-spaces and Lemma 2.3, we have

log 𝑁 ∼
��‖𝜋≠0 |𝑢𝑁 |2‖𝐿2

��
𝐿2 (𝜇1) ≥

��‖𝜋≠0 |𝑢𝑁 |2‖𝐿2
��
𝐿1 (𝜇1)

≥

��‖𝜋≠0 |𝑢𝑁 |2‖𝐿2
��3
𝐿2 (𝜇1)��‖𝜋≠0 |𝑢𝑁 |2‖𝐿2
��2
𝐿4 (𝜇1)

∼ log 𝑁. (A.11)

Also, from Lemma 2.3 and (1.5), we have

��‖𝑢𝑁 ‖𝐿4
𝑥

��
𝐿2 (𝜇1) �

��‖𝑢𝑁 ‖𝐿2 (𝜇1)
��
𝐿4
𝑥
∼ 𝜎

1
2
𝑁 ∼ (log 𝑁)

1
2 . (A.12)

Hence, given sufficiently small 𝜀 � 𝜂 > 0, it follows from Lemma 3.1, Cauchy’s inequality, Sobolev’s
inequality, (A.11) and (A.12) that

− log
( ∫

exp
(
− 𝜂

��𝜋≠0 |𝑢𝑁 |2
��
𝐿2

)
𝑑𝜇1 (𝑢)

)
= inf
𝜃 ∈H𝑎

E

[
𝜂
��𝜋≠0 |𝜋𝑁𝑌 (1) + 𝜋𝑁 𝐼 (𝜃) (1) |2

��
𝐿2 +

1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
≥ inf
𝜃 ∈H𝑎

E

[
𝜂
(��𝜋≠0 |𝜋𝑁𝑌 (1) |2

��
𝐿2 − 2‖𝜋𝑁𝑌 (1)𝜋𝑁 𝐼 (𝜃) (1)‖𝐿2

− ‖𝜋𝑁 𝐼 (𝜃) (1)‖2
𝐿4

)
+ 1

2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
≥ inf
𝜃 ∈H𝑎

E

[
𝜂
(��𝜋≠0 |𝜋𝑁𝑌 (1) |2

��
𝐿2 − 𝜀‖𝜋𝑁𝑌 (1)‖2

𝐿4

)
+ 1

4

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
� 𝜂(log 𝑁).

Therefore, we obtain ∫
exp

(
− 𝜂

��𝜋≠0 |𝑢𝑁 |2
��
𝐿2

)
𝑑𝜇1 (𝑢) ≤ exp(−𝑐𝜂 log 𝑁)

for some constant 𝑐 > 0. Then, by Chebyshev’s inequality, we conclude that, for any 𝑀 > 0,

𝜇1

(��𝜋≠0 |𝑢𝑁 |2
��
𝐿2 > 𝑀

)
≥ 1 − exp

(
𝜂(𝑀 − 𝑐 log 𝑁)

)
−→ 1, (A.13)

as 𝑁 → ∞.
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We also note that, given any 𝐾 > 0, there exists a constant 𝑐𝐾 > 0 such that

𝜇1

(��� ∫
T2

: |𝑢𝑁 |2 : 𝑑𝑥
��� ≤ 𝐾

)
≥ 𝑐𝐾 , (A.14)

uniformly in 𝑁 ∈ N. Indeed, for 𝐿 = 𝐿(𝐾) > 0 (to be chosen later), as in (3.11), we have

E𝜇1

[
𝑒𝐿 · 1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }

]
≥ E𝜇1

[
exp

(
𝐿 · 1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }

) ]
− 1. (A.15)

Now, by repeating the argument in Subsection 3.2, in particular, (3.34) and (3.42) with 𝑀 = 𝑀0 (𝐾),
we have

− logE𝜇1

[
exp

(
𝐿 · 1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }

) ]
≤ E

[
− 𝐿 · 1{ |

∫
T𝑑

(:𝑌 2
𝑁 :+2𝑌𝑁Θ0+(Θ0)2)𝑑𝑥 | ≤𝐾 } +

1
2

∫ 1

0
‖𝜃0 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
(A.16)

≤ −1
2

𝐿 + 𝐶𝑀𝑑
0 log 𝑀0 ≤ −1

4
𝐿

by choosing 𝐿 = 𝐿(𝑀0) = 𝐿(𝐾) � 1 sufficiently large. From (A.15) and (A.16), we then obtain

𝜇1

(��� ∫
T2

: |𝑢𝑁 |2 : 𝑑𝑥
��� ≤ 𝐾

)
≥ 𝑒

1
4 𝐿 − 1
𝑒𝐿

=: 𝑐𝐾 ,

yielding (A.14).
Therefore, from (A.8), (A.9), (A.13) and (A.14), we obtain, for any 𝐾 > 0,

lim
𝑁→∞

∭
1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑄𝑁 (𝑢,𝑊 )𝑑𝜇1 (𝑢)𝑑𝜇0(𝑊)
2∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 )

≥ lim inf
𝑁→∞

∫
1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 } exp

(
1
4
��𝜋≠0 |𝑢𝑁 |2

��2
𝐿2 − 𝐶𝐾2

)
𝑑𝜇1 (𝑢)

≥ lim inf
𝑁→∞

(
𝑐𝐾 − exp

(
𝜂(𝑀 − 𝑐 log 𝑁)

) )
exp

(
1
4

𝑀2 − 𝐶𝐾2
)

= 𝑐𝐾 exp
(

1
4

𝑀2 − 𝐶𝐾2
)
−→ ∞

by taking 𝑀 → ∞. This shows the nonnormalizability of the Gibbs measure for the Zakharov system
on T2 even if we apply the Wick renormalization on the potential energy 𝑄(𝑢, 𝑊) in (A.6) and endow
the measure with a Wick-ordered 𝐿2-cutoff on the Schrödinger component.

Another way would be to apply a change of variables as in the one-dimensional case due to Bourgain
[9]. Namely, rewrite the Hamiltonian in (A.4) as in the one-dimensional case by Bourgain [9]:

𝐻 (𝑢, 𝑊, �𝑉) = 1
2

∫
T2

|∇𝑢 |2𝑑𝑥 − 1
4

∫
T2

|𝑢 |4𝑑𝑥 + 1
2

∫
T2
(𝑊 +

√
2|𝑢 |2)2𝑑𝑥 + 1

2

∫
T2

| �𝑉 |2𝑑𝑥.

By introducing a new variable 𝑊 = 𝑊 +
√

2|𝑢 |2, we arrive at

𝐻 (𝑢, 𝑊, �𝑉) = 1
2

∫
T2

|∇𝑢 |2𝑑𝑥 − 1
4

∫
T2

|𝑢 |4𝑑𝑥 + 1
2

∫
T2

𝑊2𝑑𝑥 + 1
2

∫
T2

| �𝑉 |2𝑑𝑥.

Then, we apply the Wick renormalization to the potential energy.
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In this formulation, we consider the renormalized truncated Gibbs measure �̃�𝑁 defined by

𝑑�̃�𝑁 = 𝑍−1
𝑁 1{ |

∫
T2 : |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑅𝑁 (𝑢)𝑑𝜇1 (𝑢)𝑑𝜇0(𝑊)
2∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 ),

where the renormalized truncated potential energy 𝑅𝑁 is defined by

𝑅𝑁 (𝑢) =
1
4

∫
T2

: |𝑢𝑁 |4 : 𝑑𝑥.

Note that, in the complex-valued setting, the Wick-ordered fourth power is given by

: |𝑢𝑁 |4 := |𝑢𝑁 |4 − 4𝜎𝑁 |𝑢𝑁 |2 + 2𝜎2
𝑁 .

See [47]. Then, by integrating in 𝑊 and �𝑉 and then by applying Theorem 1.4 (in the complex-valued
setting), we have

sup
𝑁 ∈N

∭
1{ |

∫
: |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑅𝑁 (𝑢)𝑑𝜇1 (𝑢)𝑑𝜇0(𝑊)
2∏
𝑗=1

𝑑𝜇0 (𝑉 𝑗 )

= sup
𝑁 ∈N

∫
1{ |

∫
: |𝑢𝑁 |2:𝑑𝑥 | ≤𝐾 }𝑒

𝑅𝑁 (𝑢)𝑑𝜇1 (𝑢) = ∞

for any 𝐾 > 0. This shows the nonnormalizability of the limiting Gibbs measure in this formulation.

Remark A.1. In the renormalization (A.7), we added the term 𝜎𝑁√
2

∫
T2 𝑊𝑑𝑥 = 𝜎𝑁

2

∫
T2 𝑤𝑑𝑥. Note that

the spatial mean of w is conserved under the flow of the system (A.2). Thus, by imposing the spatial
mean-zero condition on w, we can write 𝑄𝑁 (𝑢, 𝑊) in (A.7) as

𝑄𝑁 (𝑢, 𝑊) = − 1
√

2

∫
T2

: |𝑢𝑁 |2 : 𝑊𝑑𝑥 = − 1
√

2

∫
T2

|𝑢𝑁 |2𝑊𝑑𝑥,

showing that this term is self-renormalizing, and thus the renormalization (A.7) does not affect the
system (A.2).

B. Focusing quartic Gibbs measures with smoother Gaussian fields

In this appendix, we briefly discuss the construction of the focusing Gibbs measure 𝜌𝛼 in (1.37) with
a smoother base Gaussian measure 𝜇𝛼 in (1.36). We only discuss the uniform exponential integrability
bound (1.35). Since the precise value of 𝜆 ∈ R\ {0} does not play any role, we set 𝜆 = 4 in the following.
As before, we also assume 𝑝 = 1 for simplicity.

Fix 𝛼 > 𝑑
2 . The Gaussian measure 𝜇𝛼 in (1.37) is the induced probability measure under the map:

𝜔 ∈ Ω ↦−→ 𝑢(𝜔) =
∑
𝑛∈Z𝑑

𝑔𝑛 (𝜔)
〈𝑛〉𝛼 𝑒𝑛,

where {𝑔𝑛}𝑛∈Z𝑑 is as in (1.3). In particular, a typical function u in the support of 𝜇 belongs to 𝐿∞(T𝑑).
We define 𝑌 𝛼 by

𝑌 𝛼 (𝑡) = 〈∇〉−𝛼𝑊 (𝑡),
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where W is as in (3.1). Then, in view of the Boué–Dupuis formula (Lemma 3.1), it suffices to establish
a lower bound on

W𝛼
𝑁 (𝜃) = E

[
− 𝑅

�,𝛾
𝑁 (𝑌 𝛼 (1) + 𝐼𝛼 (𝜃) (1)) + 1

2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
, (B.1)

uniformly in 𝑁 ∈ N and 𝜃 ∈ H𝑎, where 𝑅
�,𝛾
𝑁 (𝑢) and 𝐼𝛼 (𝜃) are defined by

𝑅
�,𝛾
𝑁 (𝑢) =

∫
T𝑑

𝑢4
𝑁 𝑑𝑥 − 𝐴

( ∫
T𝑑

𝑢2
𝑁 𝑑𝑥

)𝛾
(B.2)

for some 𝛾 > 0 (to be chosen later) and

𝐼𝛼 (𝜃) (𝑡) =
∫ 𝑡

0
〈∇〉−𝛼𝜃 (𝑡 ′)𝑑𝑡 ′.

For simplicity of notation, we set 𝑌 𝛼𝑁 = 𝜋𝑁𝑌 𝛼 = 𝜋𝑁𝑌 𝛼 (1) and Θ𝛼𝑁 = 𝜋𝑁Θ𝛼 = 𝜋𝑁 𝐼𝛼 (𝜃) (1).
From (B.1) and (B.2), we have

W𝛼
𝑁 (𝜃) = E

[
−
∫
T𝑑
(𝑌 𝛼𝑁 )

4𝑑𝑥 − 4
∫
T𝑑
(𝑌 𝛼𝑁 )

3Θ𝛼𝑁 𝑑𝑥 − 6
∫
T𝑑
(𝑌 𝛼𝑁 )

2(Θ𝛼𝑁 )
2𝑑𝑥

− 4
∫
T𝑑

𝑌 𝛼𝑁 (Θ
𝛼
𝑁 )

3𝑑𝑥 −
∫
T𝑑
(Θ𝛼𝑁 )

4𝑑𝑥 + 𝐴

{ ∫
T𝑑

(
𝑌 𝛼𝑁 + Θ𝛼𝑁

)2
𝑑𝑥

}2

+ 1
2

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2
𝑥
𝑑𝑡

]
.

Let us first state a lemma, analogous to Lemma 4.1.

Lemma B.1. (i) Let 𝛼 > 𝑑
2 . Then, there exists 𝑐 > 0 such that���� ∫
T𝑑
(𝑌 𝛼𝑁 )

3Θ𝛼𝑁 𝑑𝑥

���� ≤ 𝑐‖𝑌 𝛼𝑁 ‖
6
𝐿∞ + 1

100
‖Θ𝛼𝑁 ‖

2
𝐿2 , (B.3)���� ∫

T𝑑
(𝑌 𝛼𝑁 )

2(Θ𝛼𝑁 )
2𝑑𝑥

���� ≤ 𝑐‖𝑌 𝛼𝑁 ‖
4
𝐿∞ + 1

100
‖Θ𝛼𝑁 ‖

4
𝐿2 , (B.4)���� ∫

T𝑑
𝑌 𝛼𝑁 (Θ

𝛼
𝑁 )

3𝑑𝑥

���� ≤ 𝑐‖𝑌 𝛼𝑁 ‖
4
𝐿∞ + 1

100
‖Θ𝛼𝑁 ‖

4
𝐿4 , (B.5)���� ∫

T𝑑
(Θ𝛼𝑁 )

4𝑑𝑥

���� ≤ 1
100

‖Θ𝛼𝑁 ‖
2
𝐻 𝛼 + 𝐴

100
‖Θ𝛼𝑁 ‖

8𝛼−2𝑑
2𝛼−𝑑
𝐿2 (B.6)

for any sufficiently large 𝐴 > 0, uniformly in 𝑁 ∈ N.
(ii) Let 𝐴, 𝛾 > 0. Then, there exists 𝑐 = 𝑐(𝐴, 𝛾) > 0 such that

𝐴

{ ∫
T𝑑

(
𝑌 𝛼𝑁 + Θ𝛼𝑁

)2
𝑑𝑥

}𝛾
≥ 𝐴

4
‖Θ𝛼𝑁 ‖

2𝛾
𝐿2 − 𝑐‖𝑌 𝛼𝑁 ‖

2𝛾
𝐿∞ , (B.7)

uniformly in 𝑁 ∈ N.

Set

𝛾 =
4𝛼 − 𝑑

2𝛼 − 𝑑
. (B.8)
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Then, by arguing as in Section 4 with Lemma B.1,25 the almost sure 𝐿∞-regularity of 𝑌 𝛼 and a variant
of (3.6) for Θ𝛼 = 𝐼𝛼 (𝜃) (1):

‖Θ𝛼‖2
𝐻 𝛼 ≤

∫ 1

0
‖𝜃 (𝑡)‖2

𝐿2 𝑑𝑡,

we obtain the following uniform lower bound:

inf
𝑁 ∈N

inf
𝜃 ∈H𝑎

W𝛼
𝑁 (𝜃) ≥ −𝐶0 > −∞. (B.9)

Then, the uniform exponential integrability (1.35) follows from (B.9) and Lemma 3.1.
We now present the proof of Lemma B.1.

Proof of Lemma B.1. (i) The estimates (B.3), (B.4) and (B.5) follow from Hölder’s and Young’s in-
equalities. As for the fourth estimate (B.6), it follows from Sobolev’s inequality, Lemma 2.1 (i) and
Young’s inequality that ���� ∫

T𝑑
(Θ𝛼𝑁 )

4𝑑𝑥

���� ≤ 𝐶‖Θ𝛼𝑁 ‖
4
𝐻

𝑑
4
≤ 𝐶‖Θ𝛼𝑁 ‖

𝑑
𝛼

𝐻 𝛼 ‖Θ𝛼𝑁 ‖
4− 𝑑

𝛼

𝐿2

≤ 1
100

‖Θ𝛼𝑁 ‖
2
𝐻 𝛼 + 𝐴

100
‖Θ𝛼𝑁 ‖

8𝛼−2𝑑
2𝛼−𝑑
𝐿2

for sufficiently large 𝐴 > 0.
(ii) Note that

|𝑎 + 𝑏 + 𝑐 |𝛾 ≥ 1
2
|𝑐 |𝛾 − 𝐶𝛾 (|𝑎 |𝛾 + |𝑏 |𝛾) (B.10)

for any 𝑎, 𝑏, 𝑐 ∈ R. Then, the bound (B.7) follows from (B.10) and���� ∫
T𝑑

𝑌 𝛼𝑁Θ
𝛼
𝑁 𝑑𝑥

����𝛾 ≤ 𝑐‖𝑌 𝛼𝑁 ‖
2𝛾
𝐿∞ + 1

100𝐶𝛾
‖Θ𝛼𝑁 ‖

2𝛾
𝐿2 . �

Remark B.2. Let 𝛾 be as in (B.8). Then, we have 𝛾 > 2. Moreover, we have 𝛾 → ∞ as 𝛼 → 𝑑
2 +,

indicating an issue at 𝛼 = 𝑑
2 even if we disregard a renormalization required for 𝛼 = 𝑑

2 .
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