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A Characterization of Products of
Projective Spaces

Gianluca Occhetta

Abstract. We give a characterization of products of projective spaces using unsplit covering families of

rational curves.

1 Introduction

Since Mori’s proof of the Hartshorne conjecture, families of rational curves have be-
come a fundamental tool in the study of higher dimensional complex varieties, as is

shown in Kollar’s book [8], the basic reference for most of the techniques and results
related to this subject.

Among these families a very special role is played by the so called unsplit families;
roughly speaking these are families of rational curves whose degenerations don’t split

up into reducible cycles (for a precise definition see Section 2).
It was soon realized that the existence of these families could be related to bounds

on the Picard number; for instance if on a variety X there exists an unsplit family of
rational curves such that the curves in the family passing through a point cover the

whole variety then ρX = 1 (see [2, Proof of Proposition 1.1]).
For Fano manifolds, which are covered by rational curves, Mukai [10] proposed

the following conjecture:

(M) ρX(rX − 1) ≤ dim X,

where rX is the index of X, i.e., the greatest integer m such that there exists L ∈
Pic(X) satisfying −KX = mL. In [11] Wiśniewski introduced the related notion of
pseudoindex iX of a Fano manifold, as the minimum anticanonical degree of rational
curves, and proved the following

Theorem Let X be a Fano manifold of index rX and pseudoindex iX .

(A) If 2iX > dim X + 2 then ρX = 1.

(B) If 2rX = dim X + 2 then ρX = 1 except if X ≃ (P
rX−1)2.

Recently [4], a generalized version of conjecture (M) has been proposed in the
following form:

(GM) ρX(iX − 1) ≤ dim X,
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with equality if and only if X ≃ (P
iX−1)ρX ; in [4], conjecture (GM) is proved for

dim X = 3, 4, for some families of toric Fano manifolds and for homogeneous Fano

manifolds.

Note that for iX = dim X + 1 this conjecture states that the only Fano manifold
with pseudoindex dim X + 1 is the projective space; this long-standing question re-
cently has been answered [5, 7].

This paper proposes a characterization of products of projective spaces which
arose from the study of the case 2iX = dim X + 2, i.e., our main result is the fol-
lowing:

Theorem 1.1 A smooth complex projective variety X of dimension n is isomorphic to a

product of projective spaces P
n(1) ×· · ·×P

n(k) if and only if there exist k unsplit covering

families of rational curves V 1, . . . ,V k of degrees n(1)+1, . . . , n(k)+1 with
∑

n(i) = n

such that the numerical classes of V 1, . . . ,V k are linearly independent in N1(X).

In particular it follows from this theorem that for a Fano manifold with 2iX =

dim X + 2, we have ρX = 1 except if X ≃ (P
iX−1)2.

2 Families of Rational Curves

We recall some of our basic definitions; our notation is consistent with the one in [8]

to which we refer the reader.

Let X be a projective variety and let Hom(P
1,X) be the scheme parametrizing

morphisms f : P
1 → X; let Hombir(P

1,X) ⊂ Hom(P
1,X) be the open subscheme

corresponding to morphisms which are birational onto their image. The group

Aut(P
1) acts on the normalization Homn

bir (P
1,X) and the quotient exists.

Definition 2.1 The space RatCurvesn(X) is the quotient of Homn
bir (P

1,X) by the
action of Aut(P

1) and the space Univ(X) is the quotient of Homn
bir (P

1,X) × P
1 by

the product action of Aut(P
1).

We have the following commutative diagram:

Homn
bir(P

1,X) × P
1 UX - Univ(X)

Homn
bir(P

1,X)

?
uX - RatCurvesn(X)

π
?

where uX and UX are principal Aut(P
1)-bundles and π is a P

1-bundle.

Definition 2.2 A family of rational curves is a closed irreducible subvariety V ⊂
RatCurvesn(X). The family V is called an unsplit family of rational curves if V is a
proper subvariety.
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272 G. Occhetta

Given a family of rational curves, we have the following basic diagram

U
i
- X

V

π
?

where i is the map induced by the evaluation ev : Homn
bir (P

1,X) × P
1 → X and π is

a P
1-bundle; we say that V is a covering family if i is dominant, otherwise we denote

the closure of i(U ) by Locus(V ). If V is proper, i.e., if the family is unsplit, then i is
a proper morphism [8, II.2.3]. Finally we denote by Vx the subfamily parametrizing

rational curves of the family V passing through x.

3 Chains of Rational Curves

In this section we give slight modifications of some results in [4] that we need for the
proof of Theorem 1.1.

Let X be a projective variety, V 1, . . . ,V k unsplit families of rational curves on X,
and Y a subset of X.

Definition 3.1 We denote by Locus(V 1, . . . ,V k)Y the set of points x ∈ X such that

there exist curves C1, . . . ,Ck with the following properties:

• Ci belongs to the family V i ,
• Ci ∩Ci+1 6= ∅,
• C1 ∩ Y 6= ∅ and x ∈ Ck.

i.e., Locus(V 1, . . . ,V k)Y is the set of points that can be joined to Y by a connected

chain of k curves belonging, respectively, to the families V 1, . . . ,V k.

The following lemma is well known (see for istance [8, IV.3.13.3]), but we give a
sketch of the proof since we will need it for the crucial Remark 3.3.

Lemma 3.2 Let Y ⊂ X be a closed subset and let V be an unsplit family of rational

curves. Then Locus(V )Y is closed and every curve contained in Locus(V )Y is numer-

ically equivalent to a linear combination with rational coefficients of curves in Y and

curves parametrized by V .

Proof Let U ,V , π and i be as in Definition 2.2 and let C be a curve contained in
Locus(V )Y . If C ⊂ Y or C is a curve parametrized by V we have nothing to prove, so
we can suppose that this is not the case.

In particular we have that i−1(C) contains an irreducible curve C ′ which is not
contained in a fiber of π and dominates C via i; let B ′ be the curve π(C ′) ⊂ V , let
ν : B → B ′ be the normalization of B ′, and let S be the normalization of B ×V U .
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By standard arguments it can be shown that S is a ruled surface over the curve B; we
thus have a diagram:

S
j
- X

B

p
?

Let f be a fiber of p and let CY be a curve in S which dominates B and whose
image via j is contained in Y ; such a curve exists since the image via j of every fiber

of p meets Y .
Since S is a ruled surface, every curve in S is algebraically equivalent to a linear

combination with rational coefficients of CY and f .
Therefore every curve in j(S) is algebraically equivalent in X to a linear combina-

tion with rational coefficients of j∗(CY ) and j∗( f ):

C ≡ λ j∗(CY ) + µ j∗( f ),

where j∗(CY ) is a curve in Y or is the zero cycle, and j∗( f ) is a curve of the family
V . Since algebraic equivalence implies numerical equivalence we conclude the proof.

Remark 3.3 Note that the proof of the above lemma actually yields that a curve C

in Locus(V )Y is algebraically equivalent to a linear combination with rational coeffi-

cients
λ j∗(CY ) + µ j∗( f )

such that λ ≥ 0; in fact, let CS be an irreducible curve in S which dominates C via j

as in the proof of the lemma. In S we write CS ≡ λCY + µ f and, intersecting with f

we have λ ≥ 0. To the author’s knowledge this was first noted by Wiśniewski in [3,

Proof of Lemma 1.4.5].

Corollary 3.4 Let V 1, . . . ,V k be unsplit families of rational curves and let x be a

point in X such that Locus(V 1, . . . ,V k)x is not empty. Then every curve contained

in Locus(V 1, . . . ,V k)x is numerically equivalent to a linear combination with rational

coefficients of curves in V 1, . . . ,V k.

Proof To prove the corollary we apply Lemma 3.2 k times, taking Y1 = x and Yi =

Locus(V 1, . . . ,V i−1)x.

If Y is a point and X is smooth, we have the following dimension bound which is
a generalization of [8, Proposition IV.2.6]

Theorem 3.5 ([4, Theorem 5.2]) Let V 1, . . . ,V k be linearly independent unsplit

families of rational curves on a smooth variety X and let x be a point in X such that

Locus(V 1, . . . ,V k)x is not empty. Then

dim Locus(V 1, . . . ,V k)x ≥ −
∑

KX ·V i − k.
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4 Products of Projective Spaces

In the proof of Theorem 1.1 we will use the following well-known lemmata:

Lemma 4.1 Let p : Y → B be a morphism from a smooth variety to a smooth curve,

such that ρ(Y/B) = 1 and the general fiber of p is a projective space. Then there exists

a vector bundle F of rank = dim Y on B such that Y = PB(F) and p is the natural

projection.

Lemma 4.2 Let Y = PP1 (E) be the projectivization of a vector bundle of rank r+1 over

P
1. Then the Mori cone NE(Y ) is generated by the class of a line l in a fiber of the natural

projection p : Y → P
1 and the class of a section whose intersection with the tautological

line bundle ξE is minimal (a minimal section). Moreover, denoting by C0 a minimal

section, any curve whose numerical class is a multiple of [C0] is (set-theoretically) the

union of disjoint minimal sections.

Proof of Theorem 1.1 The “only if” part of the theorem is clear, taking as V i the

family of lines in P
n(i); to prove the “if” part first of all we observe that, in the as-

sumptions of the theorem, we have ρX = k.

In fact, since on X there exists k numerically independent curves we have ρX ≥ k.
On the other hand Locus(V 1, . . . ,V k)x is not empty for every x ∈ X since the families
V j are covering families, and by Theorem 3.5 we have

dim Locus(V 1, . . . ,V k)x ≥ −
∑

KX ·V i − k = n,

so X = Locus(V 1, . . . ,V k)x and ρX ≤ k by Corollary 3.4.

We will now proceed by induction on the Picard number ρX . If ρX = 1 then
X ≃ P

n by [7, Theorem 1.1] or [5, Corollary 0.4]; so let us suppose that ρX = k. We
denote by NE(X) the Mori cone of X, i.e., the cone in N1(X) generated by the classes

of effective curves on X.

Step 1 NE(X) = R+[V 1] + · · · + R+[V k].

For every point x ∈ X and for every permutation i(1), . . . , i(k) of the integers
1, . . . , k we have X = Locus(V i(1), . . . ,V i(k))x. In fact, Locus(V i(1), . . . ,V i(k))x is not
empty since the families V j are covering families, and by Theorem 3.5 we have

dim Locus(V i(1), . . . ,V i(k))x ≥ −
∑

KX ·V i − k = n.

Now let C be an effective curve in X; by Corollary 3.4 and Remark 3.3, for every
permutation i(1), . . . , i(k) we find coefficients λi(1), . . . , λi(k), with λi(1) ≥ 0 such
that

[C] = λi(1)[Ci(1)] + · · · + λi(k)[Ci(k)].

Since V 1, . . . ,V k are independent in N1(X), the decomposition of [C] is unique and
we get that λi( j) ≥ 0 for all j ∈ 1, . . . , k. It follows that NE(X) = R+[V 1] + · · · +
R+[V k]; moreover by the Kleiman criterion −KX is ample, so X is a Fano manifold.

https://doi.org/10.4153/CMB-2006-028-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-028-3


A Characterization of Products of Projective Spaces 275

Notation We will usually denote by ϕσ : X → Yσ the contraction corresponding to
the extremal face σ. If τ ( σ is a (possibly empty) subface, then ϕσ : X → Yσ factors

through ϕτ : X → Yτ and a morphism Yτ → Yσ which we will call ψτσ .

Note that, if τ = ∅ then Yτ = X and ψτσ = ϕσ.

Step 2 Every extremal contraction of X is equidimensional and its general fiber is a
product of projective spaces.

By Step 1 the cone NE(X) is k-dimensional and it is spanned by k extremal rays,

so to every subset I ⊂ {1, . . . , k} corresponds an extremal face, spanned by the rays
indexed by I and an extremal contraction.

Let σ = 〈Ri1
· · ·Ril

〉 be an extremal face of NE(X) and let σ⊥ be the face spanned
by the extremal rays of NE(X) which are not in σ; these two faces are clearly disjoint.

We claim that for every fiber Gσ of ϕσ we have

(1) dim Gσ =

∑

j=1,...,l

n(i j);

since Gσ ⊇ Locus(V i1 , . . . ,V il )x, by Theorem 3.5 we know that

dim Gσ ≥ −
∑

j=1,...,l

KX ·V i j − l =

∑

j=1,...,l

n(i j).

Let x be a point of Gσ and let Gσ⊥ be the fiber of ϕσ⊥ passing through x; we have

dim Gσ⊥ ≥ −
∑

j=l+1,...,k

KX ·V i j − (k − l) =

∑

j=l+1,...,k

n(i j).

Moreover, since the numerical class of every curve in Gσ lies in σ and the numerical
class of every curve in Gσ⊥ lies in σ⊥ we have dim(Gσ ∩Gσ⊥) = 0, so that, by Serre’s
inequality, dim Gσ + dim Gσ⊥ ≤ n. Hence

n =

∑

j=1,...,k

n(i j) ≤ dim Gσ + dim Gσ⊥ ≤ n,

forcing

dim Gσ =

∑

j=1,...,l

n(i j).

In particular, if we take Gσ to be a general fiber of ϕσ, then Gσ is smooth and satisfies
the assumptions of Theorem 1.1, and so we have Gσ ≃ P

n(i1) × · · · × P
n(il) by the

induction assumption.
We note here, for later use, that from the proof of Step 2 it follows that

(2) dim Yσ = dim X − dim Gσ = dim Gσ⊥ .

Step 3 Let Σ be an extremal face of NE(X) of dimension s < k and let σ ⊂ Σ be a
subface of codimension one; then ψσΣ : Yσ → YΣ is a projective bundle outside a set
of codimension two in YΣ.
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Recall that ϕΣ = ψσΣ ◦ϕσ and that both ϕΣ and ϕσ are equidimensional and with
connected fibers, so alsoψσΣ is equidimensional and has connected fibers. Since Yσ is

a normal variety, also the general fiber ofψσΣ is normal; we claim that it is a projective
space.

To prove the claim let y be a general point of YΣ, let Gy be the fiber of ψσΣ over y,
let Fy be the fiber of ϕΣ over y, and consider the following diagram:

Fy

Gy

ϕσ|Fy
?

ψσΣ

- y

ϕ
Σ

-

By Step 2 we know that Fy is a product of s projective spaces; the morphism ϕσ|Fy
is a

proper morphism with connected fibers onto a normal variety, so it is a contraction
of Fy . But on a product of projective spaces the only contractions are projections onto
some factors. Since the general fiber of ϕσ is a product of s − 1 projective spaces, the

claim follows.
To prove that ψσΣ is a projective bundle outside a set of codimension two we have

to prove that for a general curve B ⊂ YΣ the variety Y B
σ := ψ−1

σΣ
(B) is a projective

bundle over B. To show this last statement, by Lemma 4.1, it is enough to prove that

Y B
σ is smooth.

Let θ and Θ be two subfaces of NE(X) such that θ ⊂ Θ ⊂ Σ, and consider the
following commutative diagram:

X

YΣ

ϕΣ

?

Yθ
ψθΘ -

�

ϕ θ

ψ θΣ
-

YΘ

ϕ
Θ

-

�

ψ
Θ
Σ

Take dim YΣ − 1 general very ample divisors on YΣ; by Bertini’s theorem their inter-
section is a smooth curve B and also XB = ϕ−1

Σ
(B) is smooth.

We can consider the restriction to XB of the previous diagram, where for the re-

stricted morphisms we keep the same notation we used for the original ones and
where Y B

θ := ψ−1
θΣ (B) and Y B

Θ
:= ψ−1

ΘΣ
(B).

XB

B

ϕΣ

?

Y B
θ

ψθΘ -

�

ϕ θ

ψ θΣ
-

Y B
Θ

ϕ
Θ

-

�

ψ
Θ
Σ
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We will show that, for every extremal face Θ ( Σ in NE(X), associated extremal
contraction ϕΘ : X → YΘ and restricted morphism ϕΘ : XB → Y B

Θ
the target variety

Y B
Θ

is smooth. In particular it will follow that Y B
σ is smooth.

We proceed by induction on the dimension of Θ; if dim Θ = 0 then ϕΘ does not
contract anything and XB is smooth.

Now let θ ( Σ be an extremal face of NE(X) of dimension t − 1 < s − 1, let

R ⊂ Σ be an extremal ray independent from θ, let Θ be the face spanned by θ and R

and finally let ω the face spanned by all the rays in Σ but R.
We have a commutative diagram

Y B
θ

ψθΘ - Y B
Θ

Y B
ω

ψθω
?

ψωΣ

- B

ψΘΣ

?

ψ
θΣ

-

The general fiber ofψωΣ : Y B
ω → B is a projective space, so over an open Zariski subset

U of B the morphism ψωΣ is a projective bundle. We take H to be the closure of a
hyperplane section of ψωΣ defined over the open set U and H = ψ−1

θω (H). Since Y B
θ

is smooth by induction, H is a Cartier divisor, which restricts to O(1) on the general
fiber of ψθΘ, so ψθΘ is a projective bundle globally by [6, Lemma 2.12] and so Y B

Θ
is

smooth.

Step 4 Let Σ be a (k − 1)-dimensional face of NE(X) obtained by removing a ray Ri1

and let ϕΣ : X → YΣ be the associated contraction. Then YΣ ≃ P
dim YΣ .

Let Ri2
be a ray in Σ and σ the (possibly empty) subface of Σ obtained removing

the ray Ri2
; finally let τ =< σ,Ri1

>.
The contraction ϕτ factors through ϕσ and a morphism ψστ : Yσ → Yτ , the con-

traction ϕΣ factors through ϕσ and a morphism ψσΣ : Yσ → YΣ and both the mor-
phisms ψστ and ψσΣ are, by Step three, projective bundles outside a set of codimen-

sion two.
The situation is illustrated by the commutative diagram

X

G ⊂ Yσ

ϕσ
?

ψστ
- Yτ

ϕ
τ

-

YΣ

ψσΣ|G
?

= YΣ

ψσΣ

?

where G is a general fiber of ψστ and so a projective space.
Note that, by equations (1) and (2) we have dim Yσ = n(i1) + n(i2), dim YΣ =

n(i1) and dim Yτ = n(i2); it follows that dim G = dim YΣ, so that ψσΣ restricted to
G is dominating.

First of all we will prove that ψσΣ restricted to G is not ramified outside a subset
of codimension two.
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Let l be a general line in G such that its image C := ψσΣ(l) ⊂ YΣ is not contained
in the branch locus of ψσΣ and such that, over C , the morphism ψσΣ is a projective

bundle. Let ν : P
1 → C ⊂ YΣ be the normalization of C and let YC be the fiber

product YC = P
1 ×C Yσ :

YC
ν̄

- Yσ

P
1

p
?

ν
- YΣ

ψσΣ

?

The variety YC is a projective bundle over P
1, so by Lemma 4.2 its cone of curves

NE(YC ) is generated by the class of a line in a fiber of p and by the class of a minimal
section C0.

The cone of curves NE(Yσ) is generated by the class of a line in a fiber of ψσΣ and
by the class of a line in a fiber of ψστ , i.e., the class of l.

The morphism ν̄ induces a map of spaces of cycles N1(YC ) → N1(Yσ) which

allows us to identify NE(YC ) with a subcone of NE(Yσ). Since ν̄(YC ) contains lines
in the fibers of ψσΣ and contains l, a line in G, we have an identification NE(YC ) ≃
NE(Yσ).

In particular G∩ ν̄(YC ), which is a curve whose numerical class in Yσ is a multiple
of [l], is the image of a curve Γ whose numerical class in YC is a multiple of [C0].

By Lemma 4.2 the curve Γ is the union of disjoint minimal sections, so G ∩ ν̄(YC )

consists of the images via ν̄ of disjoint minimal sections. These images are disjoint
curves since ν̄ is one to one on the fibers of p, so every point in C has the same
number of preimages via ψσΣ|G.

Now, recalling that C was not contained in the branch locus of ψσΣ|G, we can con-
clude that ψσΣ|G is not ramified outside a subset of codimension two, for otherwise,

the ramification divisor would be effective, hence ample on G and so it would meet
l, a contradicition. We now prove that YΣ is a quotient of a projective space; if we
remove the ramification and branch sets of ψσΣ|G, the finite map

ψσΣ|G\ Ram : G\Ram → YΣ\Br

is a topological covering.

Since the covering space, P
dim G\ {set of codimension two}, is simply connected,

this is just the universal cover of YΣ\Br. The deck transformation group of this cover-
ing defines birational maps of P

dim G, which are isomorphisms outside a set of codi-

mension two and therefore the strict transform of divisors is defined and it is the
identity on the Picard group; it follows that the deck transformations are linear trans-
formations. In particular ψσΣ|G : P

dim G → YΣ is just a quotient by a finite subgroup
of PGL(dim G).

Finally, we can conclude that YΣ is smooth by [1, Proposition 1.3], which asserts

that if the target of an extremal equidimensional contraction has quotient singular-
ities, then it is smooth. We can thus apply a result of Lazarsfeld [9, Theorem 4.1]
which shows that the only smooth variety dominated by a projective space is the pro-
jective space itself, and conclude that YΣ ≃ P

dim YΣ .
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Final step X = P
n(1) × · · · × P

n(k). We finish the proof using the notation of Step 4
and denoting by R the ray Ri1

. By the smoothness of YΣ and the purity of the branch

locus we have that ϕΣ restricted to G is one to one; this implies that the line bundle
H = ϕ∗

Σ
OP(1) restricts to OP(1) on the fibers of ϕR, and so ϕR is a projective bundle

by [6, Lemma 2.12].

In particular we get that YR is smooth, and so, by the induction hypothesis, it is a

product of projective spaces.

We can write X = PYR
(ER) where ER is vector bundle on YR of rank n(i1) + 1.

We claim that the restriction of ER to every line in YR is trivial; in fact, let l be a line
in YR and let El be the restriction of ER to l; P(El) has a morphism onto YΣ ≃ P

dim YΣ ;

since n(i1) = dim YΣ < dim P(El) = n(i1) + 1 this is possible only if P(El) ≃ P
1 ×

P
dim YΣ (otherwise P(El) has morphisms either on P

1 or onto a variety of dimension
equal to the dimension of P(El)).

Now we proceed by induction on the rank of ER to prove that ER is a trivial bundle,

following [2, Proof of Proposition 1.2].

Let GΣ be a general fiber of ϕΣ and consider the pullback ϕ̃R : P(ϕ∗
Σ
ER) → GΣ, as

in the following diagram:

P(ϕ∗
RER)

ϕ̃R|GΣ
- X = P(ER)

GΣ

ϕ̃R
?

ϕR|GΣ

- YR

ϕR
?

By the universal property of the fiber product, the P-bundle ϕ̃R admits a section
s : GΣ → P(ϕ∗

REi) such that ϕ̃R|GΣ
◦ s is the embedding of GΣ into X, and so there

exists a sequence of vector bundles over GΣ

0 −→ E
′
R −→ ϕ∗

ΣER −→ OGΣ
−→ 0

with E ′
R trivial on every line in GΣ. By induction we get that E ′

R is trivial, and, since
H1(GΣ,OGΣ

) = 0, the above sequence splits; we conclude the proof using [2, Lemma

1.2.2].

Corollary 4.3 Let X be a Fano manifold of pseudoindex iX . If 2iX ≥ dim X + 2 then

ρX = 1 except if X ≃ (P
iX−1)2.

Proof Since X is a Fano manifold, through every point of X there exists a rational
curve of anticanonical degree ≤ dim X + 1, hence there exists an irreducible compo-
nent V 1 ⊂ RatCurvesn

d(X) of anticanonical degree d ≤ dim X + 1 which is a covering
family; note that, by our assumptions on the pseudoindex, the family V 1 is an unsplit

family.

Let R be an extremal ray of X which does not contract curves of V 1; and let V 2 be
the family of rational curves corresponding to a minimal degree curve whose numer-
ical class is in R; if such a ray does not exist, then ρX = 1 and we are done.
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By Theorem 3.5 we have

dim X ≥ dim Locus(V 1,V 2)x ≥ −
∑

KX .V
i − 2 ≥ 2iX − 2 ≥ dim X.

We get that −KX .V
1 = −KX.V

2 = iX − 1, Locus(V 1,V 2)x = X and that V 2 is a

covering family, so we can apply Theorem 1.1.

Acknowledgements I wish to thank Jarosław Wiśniewski for some helpful sugges-
tions.
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