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A Characterization of Products of
Projective Spaces

Gianluca Occhetta

Abstract. 'We give a characterization of products of projective spaces using unsplit covering families of
rational curves.

1 Introduction

Since Mori’s proof of the Hartshorne conjecture, families of rational curves have be-
come a fundamental tool in the study of higher dimensional complex varieties, as is
shown in Kollar’s book [8], the basic reference for most of the techniques and results
related to this subject.

Among these families a very special role is played by the so called unsplit families;
roughly speaking these are families of rational curves whose degenerations don’t split
up into reducible cycles (for a precise definition see Section 2).

It was soon realized that the existence of these families could be related to bounds
on the Picard number; for instance if on a variety X there exists an unsplit family of
rational curves such that the curves in the family passing through a point cover the
whole variety then px = 1 (see [2, Proof of Proposition 1.1]).

For Fano manifolds, which are covered by rational curves, Mukai [10] proposed
the following conjecture:

M) px(ry — 1) < dim X,

where rx is the index of X, i.e., the greatest integer m such that there exists L €
Pic(X) satistying —Kx = mL. In [11] Wisniewski introduced the related notion of
pseudoindex ix of a Fano manifold, as the minimum anticanonical degree of rational
curves, and proved the following

Theorem Let X be a Fano manifold of index rx and pseudoindex i.

(A) If2ix > dim X + 2 then px = 1.
(B) If2rx = dim X + 2 then px = 1 except if X ~ (Px—1)2,

Recently [4], a generalized version of conjecture (M) has been proposed in the
following form:

(GM) px(ix — 1) < dimX,
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with equality if and only if X ~ (P*~!)"%; in [4], conjecture (GM) is proved for
dim X = 3, 4, for some families of toric Fano manifolds and for homogeneous Fano
manifolds.

Note that for ix = dim X + 1 this conjecture states that the only Fano manifold
with pseudoindex dim X + 1 is the projective space; this long-standing question re-
cently has been answered [5, 7].

This paper proposes a characterization of products of projective spaces which
arose from the study of the case 2ix = dimX + 2, i.e,, our main result is the fol-
lowing:

Theorem 1.1 A smooth complex projective variety X of dimension n is isomorphic to a
product of projective spaces P x - - . x P"®) if and only if there exist k unsplit covering
families of rational curves V', ... V¥ of degreesn(1)+1, ... ,n(k)+1with > n(i) = n
such that the numerical classes of V', . . ., V¥ are linearly independent in Ny (X).

In particular it follows from this theorem that for a Fano manifold with 2ixy =
dim X + 2, we have px = 1 except if X ~ (Px~1)2,

2 Families of Rational Curves

We recall some of our basic definitions; our notation is consistent with the one in [8]
to which we refer the reader.

Let X be a projective variety and let Hom(P!, X) be the scheme parametrizing
morphisms f: P! — X; let Homy; (P!, X) € Hom(P!, X) be the open subscheme
corresponding to morphisms which are birational onto their image. The group
Aut(P') acts on the normalization Hom;. (P!, X) and the quotient exists.

Definition 2.1  The space RatCurves”(X) is the quotient of Hom{, (P!, X) by the
action of Aut(P') and the space Univ(X) is the quotient of Hom{, (P!, X) x P! by
the product action of Aut(IP!).

We have the following commutative diagram:

Hom{. (P!, X) x P! Ux Univ(X)

l ”

Homyy, (P', X) i RatCurves”(X)

where uy and Uy are principal Aut(P!)-bundles and = is a P!-bundle.

Definition 2.2 A family of rational curves is a closed irreducible subvariety V. C
RatCurves”(X). The family V is called an unsplit family of rational curves if V' is a
proper subvariety.
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Given a family of rational curves, we have the following basic diagram

<

where i is the map induced by the evaluation ev: Hom{; (P!, X) x P! — X and 7 is
a P'-bundle; we say that V is a covering family if i is dominant, otherwise we denote
the closure of i(U) by Locus(V). If V is proper, i.e., if the family is unsplit, then i is
a proper morphism [8, I1.2.3]. Finally we denote by V, the subfamily parametrizing
rational curves of the family V passing through x.

3 Chains of Rational Curves

In this section we give slight modifications of some results in [4] that we need for the
proof of Theorem 1.1.

Let X be a projective variety, Vi, vk unsplit families of rational curves on X,
and Y a subset of X.

Definition 3.1 We denote by Locus(V'!, ..., V¥)y the set of points x € X such that
there exist curves Cy, . . ., Cy with the following properties:

* C; belongs to the family V7,
° Ci N Ci+1 # @,
e CiNY #@andx € Cy.

i.e., Locus(V', ... VF)y is the set of points that can be joined to Y by a connected
chain of k curves belonging, respectively, to the families V!, ..., V¥,

The following lemma is well known (see for istance [8, IV.3.13.3]), but we give a
sketch of the proof since we will need it for the crucial Remark 3.3.

Lemma 3.2 LetY C X be a closed subset and let V be an unsplit family of rational
curves. Then Locus(V)y is closed and every curve contained in Locus(V)y is numer-
ically equivalent to a linear combination with rational coefficients of curves in Y and
curves parametrized by V.

Proof Let U,V, w and i be as in Definition 2.2 and let C be a curve contained in
Locus(V)y. If C C Y or C is a curve parametrized by V we have nothing to prove, so
we can suppose that this is not the case.

In particular we have that i~!(C) contains an irreducible curve C’ which is not
contained in a fiber of m and dominates C via i; let B’ be the curve w(C’) C V, let
v: B — B’ be the normalization of B’, and let S be the normalization of B xy U.
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By standard arguments it can be shown that S is a ruled surface over the curve B; we
thus have a diagram:

p

B

Let f be a fiber of p and let Cy be a curve in S which dominates B and whose
image via j is contained in Y; such a curve exists since the image via j of every fiber
of p meets Y.

Since S is a ruled surface, every curve in S is algebraically equivalent to a linear
combination with rational coefficients of Cy and f.

Therefore every curve in j(S) is algebraically equivalent in X to a linear combina-
tion with rational coefficients of j.(Cy) and j.(f):

C = Aju(Cy) + pju(f),

where j,.(Cy) is a curve in Y or is the zero cycle, and j.(f) is a curve of the family
V. Since algebraic equivalence implies numerical equivalence we conclude the proof.
|

Remark 3.3  Note that the proof of the above lemma actually yields that a curve C
in Locus(V )y is algebraically equivalent to a linear combination with rational coeffi-
cients

Aj(Cy) + pji(f)

such that A > 0; in fact, let Cg be an irreducible curve in S which dominates C via j
as in the proof of the lemma. In S we write Cs = ACy + uf and, intersecting with f
we have A > 0. To the author’s knowledge this was first noted by Wi$niewski in [3,
Proof of Lemma 1.4.5].

Corollary 3.4  Let V',... V¥ be unsplit families of rational curves and let x be a
point in X such that Locus(V', ..., V), is not empty. Then every curve contained
in Locus(VY, ... V5, is numerically equivalent to a linear combination with rational
coefficients of curvesin V', ... VK

Proof To prove the corollary we apply Lemma 3.2 k times, taking Y; = xand Y; =
Locus(V!,...,Vi=h).,. [ ]

If Y is a point and X is smooth, we have the following dimension bound which is
a generalization of [8, Proposition IV.2.6]

Theorem 3.5 ([4, Theorem 5.2])  Let V', ..., V¥ be linearly independent unsplit
families of rational curves on a smooth variety X and let x be a point in X such that
Locus(V!, ..., V), is not empty. Then

dim Locus(V', ..., V¥, > — ZKX Vi~ k.
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4 Products of Projective Spaces

In the proof of Theorem 1.1 we will use the following well-known lemmata:

Lemma 4.1 Let p: Y — B be a morphism from a smooth variety to a smooth curve,
such that p(Y /B) = 1 and the general fiber of p is a projective space. Then there exists
a vector bundle & of rank = dimY on B such that Y = P(F) and p is the natural
projection.

Lemma 4.2 LetY = Ppi(E) be the projectivization of a vector bundle of rank r+1 over
P!, Then the Mori cone NE(Y) is generated by the class of a line l in a fiber of the natural
projection p: Y — P! and the class of a section whose intersection with the tautological
line bundle ¢ is minimal (a minimal section). Moreover, denoting by Cy a minimal
section, any curve whose numerical class is a multiple of [Cy] is (set-theoretically) the
union of disjoint minimal sections.

Proof of Theorem 1.1 The “only if” part of the theorem is clear, taking as V' the
family of lines in P"(; to prove the “if” part first of all we observe that, in the as-
sumptions of the theorem, we have py = k.

In fact, since on X there exists k numerically independent curves we have px > k.
On the other hand Locus(V'', ..., V¥, isnot empty for every x € X since the families
V7 are covering families, and by Theorem 3.5 we have

dim Locus(V',..., V5, > —ZKX-Vi —k=mn,

so X = Locus(V!,...,V¥), and px < kby Corollary 3.4.

We will now proceed by induction on the Picard number px. If px = 1 then
X ~ P" by [7, Theorem 1.1] or [5, Corollary 0.4]; so let us suppose that px = k. We
denote by NE(X) the Mori cone of X, i.e., the cone in N;(X) generated by the classes
of effective curves on X.

Step 1 NE(X) = Ry [V!] +--- + R, [VF].

For every point x € X and for every permutation i(1),...,i(k) of the integers
1,...,kwehave X = Locus(V'V ... Vi®)_ In fact, Locus(V'®, ... Vi®) isnot
empty since the families V/ are covering families, and by Theorem 3.5 we have

dim Locus(V'V, ..., vi®) > — ZKX Vi—k=n.

Now let C be an effective curve in X; by Corollary 3.4 and Remark 3.3, for every
permutation i(1), ..., i(k) we find coefficients A1), . . ., i), with Ajqy > 0 such
that

[C] = A [Cip] + -+ X [Ciw |-

Since V!,..., V¥ are independent in N (X), the decomposition of [C] is unique and
we get that \jj) > O forall j € 1,... k. It follows that NE(X) = R [V'] +--- +
R [V*]; moreover by the Kleiman criterion —Ky is ample, so X is a Fano manifold.
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Notation We will usually denote by ¢, : X — Y,, the contraction corresponding to
the extremal face 0. If 7 C o is a (possibly empty) subface, then ¢, : X — Y, factors
through ¢, : X — Y, and a morphism Y, — Y,, which we will call ¢,

Note that, if 7 = @ then Y, = X and ¢, = @,

Step 2 Every extremal contraction of X is equidimensional and its general fiber is a
product of projective spaces.

By Step 1 the cone NE(X) is k-dimensional and it is spanned by k extremal rays,
so to every subset I C {1,...,k} corresponds an extremal face, spanned by the rays
indexed by I and an extremal contraction.

Let o = (R;,- - -R;,) be an extremal face of NE(X) and let o be the face spanned
by the extremal rays of NE(X) which are not in o; these two faces are clearly disjoint.

We claim that for every fiber G, of ¢, we have

(1) dim G, = nlij);

j=1,..]

since G, D Locus(V", ..., Vi), by Theorem 3.5 we know that

Let x be a point of G, and let G, be the fiber of ¢, passing through x; we have

dimG,e >~ Y Kx-Vi—(k=D= Y ).

Moreover, since the numerical class of every curve in G, lies in ¢ and the numerical
class of every curve in G, lies in 0 we have dim(G, N G,.) = 0, so that, by Serre’s
inequality, dim G, + dim G,+ < n. Hence

n= Z n(i;) < dim G, +dim G, < n,

forcing

In particular, if we take G, to be a general fiber of ¢, then G, is smooth and satisfies
the assumptions of Theorem 1.1, and so we have G, ~ P"i) x ... x P by the
induction assumption.

We note here, for later use, that from the proof of Step 2 it follows that

(2) dimY, = dimX — dim G, = dimG, . .

Step 3 Let X be an extremal face of NE(X) of dimension s < kand let 0 C X be a
subface of codimension one; then ¢, : Y, — Yy is a projective bundle outside a set
of codimension two in Y.
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Recall that ¢y, = 9,5 0, and that both ¢y, and ¢, are equidimensional and with
connected fibers, so also 1),y is equidimensional and has connected fibers. Since Y, is
anormal variety, also the general fiber of 1),y is normal; we claim that it is a projective
space.

To prove the claim let y be a general point of Yy, let G, be the fiber of 1,5 over y,
let F,, be the fiber of ¢y, over y, and consider the following diagram:

E,
©
Gy Y

By Step 2 we know that F, is a product of s projective spaces; the morphism ¢, |5 isa
proper morphism with connected fibers onto a normal variety, so it is a contraction
of F,. But on a product of projective spaces the only contractions are projections onto
some factors. Since the general fiber of ¢, is a product of s — 1 projective spaces, the
claim follows.

To prove that 9, is a projective bundle outside a set of codimension two we have
to prove that for a general curve B C Yy, the variety Y2 := ¢ (B) is a projective
bundle over B. To show this last statement, by Lemma 4.1, it is enough to prove that
Y8 is smooth.

Let 8 and © be two subfaces of NE(X) such that # C © C X, and consider the
following commutative diagram:

- ()

;Y(_)

Take dim Yy, — 1 general very ample divisors on Yy; by Bertini’s theorem their inter-
section is a smooth curve B and also X2 = o Y(B) is smooth.

We can consider the restriction to X? of the previous diagram, where for the re-
stricted morphisms we keep the same notation we used for the original ones and
where YGB = %_21 (B) and Y(g = 1/)5%(3).
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We will show that, for every extremal face © C ¥ in NE(X), associated extremal
contraction pg: X — Yg and restricted morphism pg: X® — Y& the target variety
Y8 is smooth. In particular it will follow that Y2 is smooth.

We proceed by induction on the dimension of ©; if dim ©® = 0 then ¢g does not
contract anything and X? is smooth.

Now let §# C ¥ be an extremal face of NE(X) of dimension t — 1 < s — 1, let
R C ¥ be an extremal ray independent from 6, let © be the face spanned by § and R
and finally let w the face spanned by all the rays in > but R.

We have a commutative diagram

yp Yoo, ys

Yow l %\ lil}@z

B
Yw wa B

The general fiber of ¢h,5;: Y2 — Bis a projective space, so over an open Zariski subset
U of B the morphism 1,5 is a projective bundle. We take H to be the closure of a
hyperplane section of 1,5, defined over the open set U and H = w(;wl(H ). Since Yff
is smooth by induction, J{ is a Cartier divisor, which restricts to O(1) on the general
fiber of Yy, S0 Yye is a projective bundle globally by [6, Lemma 2.12] and so Yg is
smooth.

Step 4 Let 3 be a (k — 1)-dimensional face of NE(X) obtained by removing a ray R;,
and let ¢y : X — Yy, be the associated contraction. Then Yy, ~ PdimY¥s,

Let R;, be aray in ¥ and o the (possibly empty) subface of ¥ obtained removing
the ray R;,; finallylet 7 =< o, R;, >.

The contraction ¢, factors through ¢, and a morphism v, : Y, — Y, the con-
traction ¢y, factors through ¢, and a morphism ¢,5: Y, — Yy and both the mor-
phisms 1, and 1,5, are, by Step three, projective bundles outside a set of codimen-
sion two.

The situation is illustrated by the commutative diagram

G C Y, Y,
Yor
/(/)UE |G l wUZ l
Yy = Yy

where G is a general fiber of 1, and so a projective space.

Note that, by equations (1) and (2) we have dimY, = n(i;) + n(i;), dimYy =
n(i;) and dim Y, = n(i,); it follows that dim G = dim Yy, so that ),y restricted to
G is dominating.

First of all we will prove that v,y restricted to G is not ramified outside a subset
of codimension two.
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Let I be a general line in G such that its image C := 1,5 (I) C Yy, is not contained
in the branch locus of 1,5, and such that, over C, the morphism 1,5, is a projective
bundle. Let v: P! — C C Yy be the normalization of C and let Y¢ be the fiber
product Ye = P! x¢ Y,:

Yo —— Y,

| e

P! —— Yy
v
The variety Yc is a projective bundle over P!, so by Lemma 4.2 its cone of curves
NE(Y¢) is generated by the class of a line in a fiber of p and by the class of a minimal
section Cj.

The cone of curves NE(Y,,) is generated by the class of a line in a fiber of 1,5 and
by the class of a line in a fiber of ¥, i.e., the class of I.

The morphism # induces a map of spaces of cycles Ni(Y¢c) — N;(Y,) which
allows us to identify NE(Y¢) with a subcone of NE(Y,,). Since 7(Y¢) contains lines
in the fibers of 1,» and contains /, a line in G, we have an identification NE(Y¢) ~
NE(Y,,).

In particular GNZ(Y¢), which is a curve whose numerical class in Y,, is a multiple
of [1], is the image of a curve I' whose numerical class in Y¢ is a multiple of [Cy].

By Lemma 4.2 the curve I' is the union of disjoint minimal sections, so GN7(Y¢)
consists of the images via 7 of disjoint minimal sections. These images are disjoint
curves since 7 is one to one on the fibers of p, so every point in C has the same
number of preimages via ¢;xg.

Now, recalling that C was not contained in the branch locus of ¢, we can con-
clude that 9,y G is not ramified outside a subset of codimension two, for otherwise,
the ramification divisor would be effective, hence ample on G and so it would meet
I, a contradicition. We now prove that Yy is a quotient of a projective space; if we
remove the ramification and branch sets of 1,5 6> the finite map

Yo3|G\ Ram : G\ Ram — Y5 \Br

is a topological covering.

Since the covering space, P4im S\ {set of codimension two}, is simply connected,
this is just the universal cover of Yy, \ Br. The deck transformation group of this cover-
ing defines birational maps of P4™ G, which are isomorphisms outside a set of codi-
mension two and therefore the strict transform of divisors is defined and it is the
identity on the Picard group; it follows that the deck transformations are linear trans-
formations. In particular ¢,y PdimG Yy is just a quotient by a finite subgroup
of PGL(dim G).

Finally, we can conclude that Yy, is smooth by [1, Proposition 1.3], which asserts
that if the target of an extremal equidimensional contraction has quotient singular-
ities, then it is smooth. We can thus apply a result of Lazarsfeld [9, Theorem 4.1]
which shows that the only smooth variety dominated by a projective space is the pro-
jective space itself, and conclude that Yy, ~ |pdim Yz
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Final step X = P"V x ... x P"®_We finish the proof using the notation of Step 4
and denoting by R the ray R;, . By the smoothness of Yy, and the purity of the branch
locus we have that y, restricted to G is one to one; this implies that the line bundle
H = p50p(1) restricts to Op(1) on the fibers of g, and so @y is a projective bundle
by [6, Lemma 2.12].

In particular we get that Yy is smooth, and so, by the induction hypothesis, it is a
product of projective spaces.

We can write X = Py, (Er) where €y is vector bundle on Yy of rank n(i;) + 1.

We claim that the restriction of Eg to every line in Yy is trivial; in fact, let  be a line
in Yy and let €; be the restriction of € to [; P(€;) has a morphism onto Yy, ~ [pdim Y,
since n(i;) = dim Yy, < dimIP(€;) = n(i;) + 1 this is possible only if P(&;) ~ P! x
PdimYs (otherwise P(€;) has morphisms either on P! or onto a variety of dimension
equal to the dimension of P(&;)).

Now we proceed by induction on the rank of Eg to prove that Eg is a trivial bundle,
following [2, Proof of Proposition 1.2].

Let Gy, be a general fiber of oy, and consider the pullback @r: P(p%Er) — G, as
in the following diagram:

—_—

¥R
P(eher) — 2 X = P(Ep)
@El PR
Gy, Yr
PR|Gy

By the universal property of the fiber product, the P-bundle pr admits a section
s: Gy — P(p}€&;) such that @}E o s is the embedding of Gy, into X, and so there
exists a sequence of vector bundles over Gy

0— & — p5&r — O, — 0

with € trivial on every line in Gy. By induction we get that £j is trivial, and, since
H'(Gsx;, Og,) = 0, the above sequence splits; we conclude the proof using [2, Lemma
1.2.2]. =

Corollary 4.3 Let X be a Fano manifold of pseudoindex ix. If 2ix > dimX + 2 then
px = Lexcept if X ~ (P'x~1)2,

Proof Since X is a Fano manifold, through every point of X there exists a rational
curve of anticanonical degree < dim X + 1, hence there exists an irreducible compo-
nent V! C RatCurves/j(X) of anticanonical degree d < dim X + 1 which is a covering
family; note that, by our assumptions on the pseudoindex, the family V! is an unsplit
family.

Let R be an extremal ray of X which does not contract curves of V!; and let V2 be
the family of rational curves corresponding to a minimal degree curve whose numer-
ical class is in R; if such a ray does not exist, then px = 1 and we are done.
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By Theorem 3.5 we have
dim X > dim Locus(V',V?), > — Z Ky.Vi —2>2iy —2 > dimX.

We get that —Kx.V! = —Kx.V? = ix — 1, Locus(V!,V?), = X and that V2 is a

covering family, so we can apply Theorem 1.1. ]
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