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On the vanishing of local cohomology

in characteristic p > 0

Gennady Lyubeznik

Abstract

Let R be a d-dimensional regular local ring of characteristic p > 0 with maximal ideal
m, let I be an ideal of R and let A = R/I. We describe some properties of the local
cohomology module H i

I(R), in particular its vanishing, in terms of the Frobenius action
on the local cohomology module Hd−i

m (A).

1. Introduction

A. Grothendieck stated a problem [Gro67, p. 79] that in the language of local algebra says the
following. Let R be a commutative Noetherian local ring and let I ⊂ R be an ideal. If n is an
integer, find conditions under which H i

I(M) = 0 for all i > n and all R-modules M . Here H i
I(M)

is the ith local cohomology module of M with support in I.
This problem has stimulated a very fruitful line of research; important conditions for the van-

ishing of H i
I(M) for all i > n and all M have been found by Faltings [Fal80], Grothendieck [Gro67],

Hartshorne [Har68], Hartshorne and Speiser [HS77], Huneke and Lyubeznik [HL90], Ogus [Ogu73]
and Peskine and Szpiro [PS73].

It is known that H i
I(M) = 0 for all i > n and all R-modules M if and only if H i

I(R) = 0 for all
i > n (see [Har68, p. 413]). Accordingly, it would be enough to find conditions for the vanishing of
H i
I(R).
In the general case no reasonable necessary and sufficient conditions are known. However, if R

is regular and contains a field, necessary and sufficient conditions have been found by Ogus [Ogu73,
2.8] in characteristic zero and by Hartshorne and Speiser [HS77, 2.5b] in characteristic p > 0. One of
the main goals of this paper is to produce a considerably simpler necessary and sufficient condition
in characteristic p > 0.

Standard assumption. For the rest of the paper all rings are assumed to contain a field of
characteristic p > 0.

We now assume for the rest of this paper that R is a commutative Noetherian ring. Let I ⊂ R

be an ideal. We denote R/I by A. The natural ring homomorphism A
a�→ap−−−→ A induces a map f :

Hj
J(A) → Hj

J(A) on local cohomology groups of A with support in any ideal J of A. This map f

is called the action of the Frobenius on Hj
J(A); it is a homomorphism of abelian groups such that

f(ax) = apf(x) for all a ∈ A and all x ∈ Hj
J(A).

One of our main results is Corollary 3.2, which states the following.

Received 21 July 2004, accepted in final form 3 January 2005.
2000 Mathematics Subject Classification 13D45 (primary), 14B15 (secondary).
Keywords: local cohomology, characteristic p, Frobenius, cohomological dimension, projective varieties.

The author gratefully acknowledges NSF support.
This journal is c© Foundation Compositio Mathematica 2006.

https://doi.org/10.1112/S0010437X05001533 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X05001533


G. Lyubeznik

Theorem 1.1. Let R be a regular local ring of dimension n with maximal ideal m. Let I ⊂ R be an
ideal and let A = R/I. Then Hn−i

I (R) = 0 if and only if there is s such that f s : H i
m(A) → H i

m(A)
is the zero map (where f1 = f and f s = f s−1 ◦ f for s > 1).

In fact, even if Hn−i
I (R) does not vanish, a lot of information about its structure is encoded in

the Frobenius action on H i
m(A) and the aim of this paper is to decode some of this information. Our

Theorem 1.1 is a special case of a more general result (Theorem 3.1) that describes the support of
Hn−i
I (R) in terms of the Frobenius action on H i

m(A). Furthermore, we give a necessary and sufficient
criterion for Hn−i

I (R) to be supported at m (Corollary 3.3) and describe the structure of Hn−i
I (R)

in this case (Corollary 3.4), all in terms of the Frobenius action on H i
m(A).

Our Theorem 1.1 leads to a solution of Grothendieck’s problem in terms of the F -depth of A
(Definition 4.1) which we define as the smallest integer i such that f s does not send H i

m(A) to zero
for any s (we call it the F -depth by analogy with the usual depth of A which equals the smallest
i such that H i

m(A) �= 0). Namely, we prove that H i
I(M) = 0 for all i > r and all R-modules M if

and only if F -depthA � n− r (Theorem 4.3). This is a striking sharpening of the previously known
fact that if depthA � n− r, then H i

I(M) = 0 for all i > r and all R-modules M [PS73, Remarque,
p. 110].

In § 5 we apply our main results to closed subschemes Y of projective space P
n
k . In particular,

we express the cohomological dimension of P
n
k \ Y in terms of the F -depths of the local rings

OY,y at the closed points y ∈ Y and the Frobenius action on the cohomology groups H i(Y,OY )
(Corollary 5.4).

Our solution to Grothendieck’s problem is in terms of our notion of the F -depth of a local ring
A whereas Hartshorne and Speiser’s solution [HS77] is in terms of their notion of the F -depth of the
scheme SpecA (see Definition 6.1). Our definition of F -depthA is considerably simpler because it is
in terms of the Frobenius action on the (finitely many) local cohomology modules H i

m(A) whereas
Hartshorne and Speiser’s definition of the F -depth of SpecA is in terms of the Frobenius action on
the (infinitely many) local cohomology modules H i

p(Ap) as p runs through all the prime ideals of A.

Our techniques are quite elementary. While our proofs came out of the circle of ideas around
our theory of F -modules [Lyu97], we do not use F -modules in this paper. Our proof of Theorem 1.1
and our solution to Grothendieck’s problem use nothing beyond some fairly standard commutative
algebra and local cohomology.

In § 6, the last section of this paper, we discuss connections between our notion of the F -depth
of A and Hartshorne and Speiser’s notion of the F -depth of SpecA. We prove that they coincide
for local rings A that admit a surjection from a regular local ring (Corollary 6.3). However, the
only known (to us) way to prove this fact is via ours and Hartshorne and Speiser’s solutions to
Grothendieck’s problem. The two definitions are quite different from each other and we are unaware
of any other way to connect them. Finally, we use our results to settle a question left open in
[HS77, p. 61] (Theorem 6.4).

2. Preliminaries

In this section we have collected some material that is well known to the experts but it is difficult to
find it in the literature in the form in which we need it. Throughout this section R is a commutative
Noetherian regular ring containing a field of characteristic p > 0.

Let R(e) be the additive group of R regarded as an R-bimodule with the usual left R-action and
with the right R-action defined by r′r = rp

e
r′ for all r ∈ R, r′ ∈ R(e). The Frobenius functor

F : R-mod → R-mod
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of Peskine and Szpiro [PS73, I.1.2] is defined by

F (M) = R(1) ⊗RM

F (M
φ−→ N) = (R(1) ⊗RM

id⊗Rφ−−−−→ R(1) ⊗R N)

for all R-modules M and all R-module homomorphisms φ, where F (M) acquires its R-module
structure via the left R-module structure on R(1). It is not hard to see that the map R(1) ⊗R

R(e−1) r1⊗r2 �→r1r
p
2 ·1−−−−−−−−−→ R(e) is an isomorphism of bimodules. Hence F e, the eth iteration of the

Frobenius morphism, is given by

F (M) = R(e) ⊗RM

F (M
φ−→ N) = (R(e) ⊗RM

id⊗Rφ−−−−→ R(e) ⊗R N).

Since R is regular, a theorem of Kunz [Kun69, 2.1] implies that F is exact.

If M is a free R-module, F t(M) ∼= M for every t. An explicit isomorphism is given by Σiri ⊗
aiei �→ Σiria

pt

i ei where the set {e1, e2, . . . } is an R-basis of M . In particular we have an isomorphism
F t(R) → R given by r ⊗ a �→ rap

t
for r ∈ R(t), a ∈ R. If I ⊂ R is an ideal, this isomorphism sends

F t(I) ⊂ F t(R) onto I [pt], the ideal of R generated by the ptth powers of the elements of I, and
thereby induces an isomorphism

φt : F t(R/I) = R(t) ⊗R R/I
r⊗a�→rãpt

−−−−−−→ R/I [pt], (1)

where r ∈ R(t), a ∈ R/I and ã ∈ R/I [pt] is any lifting of a. Let

α : F (R/I) = R(1) ⊗R R/I → R/I (2)

be the R-module homomorphism defined by r ⊗ a �→ rap for r ∈ R(1) and a ∈ R/I. Then F t(α) :
F t+1(R/I) → F t(R/I) is defined by r⊗a �→ r⊗ap and we have the following commutative diagram,
where the map in the top row is the natural surjection and the vertical maps are isomorphisms.

R/I [pt+1] �� R/I [pt]

F t+1(R/I)

φt+1

��

F t(α) �� F t(R/I)

φt

��

(3)

Applying the functor ExtjR(−, R) to (3) we get the commutative diagram

ExtjR(R/I [pt], R)

��

ξt �� ExtjR(R/I [pt+1], R)

��

ExtjR(F t(R/I), R) �� ExtjR(F t+1(R/I), R)

(4)

in which the vertical maps are isomorphisms.
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Let η : M ′ → M be an R-module homomorphism between finitely generated R-modules and
let η̃ : HomR(M,R) → HomR(M ′, R) be the induced map. We have the following commutative
diagram

HomR(R(t) ⊗RM,R) �� HomR(R(t) ⊗RM
′, R)

R(t) ⊗R HomR(M,R)

��

F t(η̃) �� R(t) ⊗R HomR(M ′, R)

��

(5)

in which the top map is induced by F t(η) : F t(M ′) → F t(M) and the vertical maps are R-module
isomorphisms which send 1 ⊗ ϕ to the map sending 1 ⊗ x to ϕ(x)p

t ∈ R, where ϕ ∈ HomR(M,R)
and x ∈M (respectively, ϕ ∈ HomR(M ′, R) and x ∈M ′).

To see that the vertical maps in (5) are indeed isomorphisms note that it is enough to show
this for the left map, as the right map is completely analogous. It is straightforward that the left
map is an isomorphism if M ∼= R, hence also if M is a finite free R-module. For a general finitely
generated M there is an exact sequence L1 → L0 → M → 0 where L0 and L1 are finite free R-
modules. This induces the following commutative diagram in which H(−) denotes HomR(−, R) for
brevity.

0 �� H(R(t) ⊗RM) �� H(R(t) ⊗R L0) �� H(R(t) ⊗R L1)

0 �� R(t) ⊗R H(M)

��

�� R(t) ⊗R H(L0)

��

�� R(t) ⊗R H(L1)

Since the vertical maps in the middle and on the right are isomorphisms and the rows are exact, the
vertical map on the left is also an isomorphism. However, this is the same map as the left vertical
map in the diagram (5).

The commutative diagram (5) establishes an isomorphism of functors

F t(HomR((−), R)) → HomR(F t(−), R) (6)

on the category of finitely generated R-modules. Since F t is exact and takes finite free resolutions
to finite free resolutions, we have an induced isomorphism of functors

ψt : F t(ExtjR((−), R)) → ExtjR(F t(−), R) (7)

on the category of finitely generated modules. Thus we get the commutative diagram

ExtjR(F t(R/I), R) �� ExtjR(F t+1(R/I), R)

F t(ExtjR(R/I,R))

ψt

��

F t(β) �� F t+1(ExtjR(R/I,R))

ψt+1

��

(8)

in which the top row is the same as the bottom row of (4) and

β : ExtjR(R/I,R) → F (ExtjR(R/I,R))

is the composition ExtjR(R/I,R) α̃−→ ExtjR(F (R/I), R)
ψ−1

1−−→ F (ExtjR(R/I,R)) where α̃ is induced
by the map α : F (R/I) → R/I of (2).
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Lemma 2.1. There is a commutative diagram

ExtjR(R/I,R)

id

��

ξ0 �� ExtjR(R/I [p], R)

��

ξ1 �� ExtjR(R/I [p2], R)

��

ξ2 �� · · ·

ExtjR(R/I,R)
β �� F (ExtjR(R/I,R))

F (β) �� F 2(ExtjR(R/I,R))
F 2(β) �� · · ·

in which the vertical maps are isomorphisms. The module Hj
I (R) is isomorphic to the limit of the

inductive system in the bottom row of this diagram.

Proof. The vertical maps in the tth square of the diagram are obtained by composing the vertical
maps in diagram (4) with the inverses of the vertical maps in diagram (8). This proves the existence
of the diagram.

Since for every s there is t such that Is ⊃ I [pt] and for every t there is s such that I [pt] ⊃ Is, it
follows from [Gro67, 2.8] that Hj

I (R) is the limit of the inductive system in the top row. However,
all vertical maps are isomorphisms.

We recall that an action of the Frobenius on an R-module M is an additive map f : M → M
such that f(rx) = rpf(x) for all r ∈ R and x ∈M . We also recall that if m is an ideal of R generated
by g1, . . . , gn ∈ R, then H i

m(M) is the ith cohomology module of the Čech complex

C•(M) = 0 →M →
⊕

Mgi →
⊕
i<j

Mgigj →
⊕
i<j<k

Mgigjgk
→ · · · (see [BS98, 5.1.5]).

Finally, we let A = R/I and recall that the natural action of the Frobenius f : H i
m(A) → H i

m(A)
is induced by the map f̃ : C•(A) → C•(A) in the category of complexes of abelian groups which
sends Agi1

···gij
to itself via

a

(gi1 · · · gij )q
�→ ap

(gi1 · · · gij )pq
.

We denote byH i
m(A)f

t
the A-submodule ofH i

m(A) generated by the image of the map f t : H i
m(A) →

H i
m(A).

Lemma 2.2. We have that H i
m(A)f

t
is the image of the map H i

m(R/I [pt]) → H i
m(A) induced by the

natural surjection σt : R/I [pt] → R/I = A.

Proof. The map of complexes of abelian groups f̃ t defined just before the statement of Lemma 2.2
is the composition C•(A) θ−→ R(t) ⊗R C

•(A)
ψ−→ C•(A) where θ is the map of complexes of abelian

groups defined by x �→ 1⊗ x and ψ is the map of complexes of R-modules defined by r⊗ x �→ rxp
t
.

Since R(t) is a flat right R-module, the action of the Frobenius H i(f̃ t) on H i
m(A) is the composition

H i
m(A)

Hi(θ)−−−→ R(t) ⊗RH
i
m(A)

Hi(ψ)−−−−→ H i
m(A), hence the R-module generated by the image of H i(f̃ t)

is the same as the image of H i(ψ).
For every R-module M there is a natural isomorphism of complexes of R-modules ωM : M ⊗R

C•(R) → C•(M) defined by m⊗ x �→ mx. We have a commutative diagram

R(t) ⊗R A⊗R C
•(R)

id

��

φt⊗RC
•(R) �� (R/I [pt]) ⊗R C

•(R)
ω

R/I[pt]
�� C•(R/I [pt])

C•(σt)

��
R(t) ⊗R A⊗R C

•(R)
R(t)⊗RωA �� R(t) ⊗R C

•(A)
ψ �� C•(A)
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where C•(σt) is induced by the natural surjection σt : R/I [pt] → R/I and φt is defined in (1). Since
all the maps in this commutative diagram, except ψ and C•(σt), are isomorphisms and the map
H i
m(R/I [pt]) → H i

m(A) induced by the natural surjection σt : R/I [pt] → R/I = A is nothing but
H i(C•(σt)), we are done.

3. The main results

LetM be an R-module with an action of the Frobenius f : M →M and let Mft
be the R-submodule

of M generated by the set f t(M) ⊂M . We set M∗ =
⋂
tM

ft
to be the intersection of all the Mft

.
Our main results in this paper are the following theorem and its corollaries.

Theorem 3.1. Let R be a regular local ring of dimension n with maximal ideal m. Let I ⊂ R be
an ideal and let A = R/I. The support of the module Hn−i

I (R) is the Zariski closed subset V (J) of
SpecR whose defining ideal J is the annihilator ideal of H i

m(A)∗.

Proof. Let M = Extn−iR (R/I,R), let β : M → F (M) be as in Lemma 2.1 and let βt : M → F t(M),
for any t, be the composition

M
β−→ F (M)

F (β)−−−→ · · · F t−1(β)−−−−−→ F t(M).

Considering that imβt ⊂ F t(M) while imF (βt) ⊂ F t+1(M), we conclude that the map F t(β) :
F t(M) → F t+1(M) induces a map

β̄ : imβt → imF (βt) ∼= F (im βt)

where the last isomorphism follows from the exactness of the functor F . The resulting commutative
diagram

M

βt

��

β �� F (M)

F (βt)

��

F (β) �� F 2(M)

F 2(βt)

��

F 2(β) �� · · ·

im βt
β̄ �� F (imβt)

F (β̄) �� F 2(imβt)
F 2(β̄) �� · · ·

induces a map from the limit of the inductive system of the top row to the limit of the inductive
system of the bottom row. This map is surjective because each vertical arrow is surjective. The map
is injective because the kernel of every vertical arrow F r(βt) : F r(M) → F r(imβt) goes to zero after
t steps in the top row (the composition of those t steps is nothing but F r(βt) : F r(M) → F r+t(M)).
Hence, this map is an isomorphism. By Lemma 2.1, Hn−i

I (R) is isomorphic to the limit of the top
row. Hence, Hn−i

I (R) is isomorphic to the limit of the bottom row.
The ascending chain ker β1 ⊂ kerβ2 ⊂ · · · of submodules of M eventually stabilizes because M

is finitely generated, hence Noetherian. From now on we assume for the rest of the proof that s
is such that ker βs = ker βs+1. Setting t = s in the bottom row of the diagram we conclude that
Hn−i
I (R) is isomorphic to the limit of the inductive system

imβs
β̄ �� F (imβs)

F (β̄) �� F 2(imβs)
F 2(β̄) �� · · · . (9)

Equality ker βs = ker βs+1 implies that the natural map imβs → im βs+1 is an isomorphism. Since
β̄ is the composition of the natural map imβs → imβs+1 with the natural inclusion imβs+1 →
imF (βs) followed by the isomorphism imF (βs) ∼= F (im βs), we find that β̄ is injective. Since F is
exact, F r(β̄) is injective for all r, so all the maps in (9) are injective.

Hence, the support of the limit of this inductive system is the union of the supports of the
modules in it. However, the support of F r(im βs) coincides with the support of imβs, for if P is a
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prime of R, then (F r(im βs))P = F r((imβs)P ) and if M is anR-module, for example, M = (imβs)P ,
then F r(M) = 0 if and only if M = 0. Hence, the support of Hn−i

I (R) coincides with the support
of imβs. Since imβs is a finitely generated module, its support is the closed subset V (J) of SpecR
where J is the annihilator ideal of imβs.

It remains to show that the same ideal J is the annihilator ideal of H i
m(A)∗. Let D be the Matlis

duality functor in the category of R-modules. If M is a finitely generated R-module with annihilator
ideal J ⊂ R, then D(M) is an Artinian R-module with the same annihilator ideal. Thus it is enough
to prove that D(im βs) ∼= H i

m(A)∗.
For any t let

χt : Extn−iR (R/I,R) → Extn−iR (R/I [pt], R)

be the map induced by the natural surjection R/I [pt] → R/I. Since the two inductive systems in
the top and bottom rows of the diagram of Lemma 2.1 are isomorphic and χt = ξt−1 ◦ · · · ◦ ξ1 ◦ ξ0,
the commutative diagram of Lemma 2.1 implies that kerβt ∼= kerχt and imβt ∼= imχt for every t.
Hence, it is enough to prove that D(imχs) ∼= H i

m(A)∗.
Local duality [Gro67, 6.3] implies an isomorphism of functors

D(Extn−iR (−, R)) ∼= H i
m(−)

on the category of finitely generated R-modules, so applying Matlis duality to the map χt we get
the map

D(χt) : H i
m(R/I [pt]) → H i

m(R/I).
Clearly D(χt) is the map induced on local cohomology by the natural surjection R/I [pt] → R/I,
because χt is induced by this natural surjection and local duality is functorial. Hence, imD(χt) ∼=
H i
m(A)f

t
by Lemma 2.2. Since kerβt ∼= kerχt for every t and ker βs = ker βs+1, we conclude

that kerχs = kerχs+1. Exactness and contravariance of D imply that we have imD(χs) ∼=
imD(χs+1), and therefore H i

m(A)f
s

= H i
m(A)f

s+1
. This implies H i

m(A)∗ = H i
m(A)f

s
, hence

H i
m(A)∗ ∼= imD(χs).

It is worth pointing out that one could have replaced chunks of the above proof of Theorem 3.1
with references to our old results on F -modules [Lyu97, 4.2, 4.8]. This would have shortened the
proof but only at the cost of making it considerably less transparent.

Corollary 3.2. Let R, I and A be as in Theorem 3.1. Then Hn−i
I (R) = 0 if and only if there is s

such that f s : H i
m(A) → H i

m(A) is the zero map.

Proof. Clearly, Hn−i
I (R) = 0 if and only if the unit ideal is a defining ideal of the support of

Hn−i
I (R). According to Theorem 3.1, this happens if and only if the unit ideal is the annihilator

ideal of H i
m(A)∗. However, the unit ideal annihilates a module if and only if the module is zero.

Hence, Hn−i
I (R) = 0 if and only if H i

m(A)∗ = 0.

The descending chain H i
m(A) ⊃ H i

m(A)f ⊃ H i
m(A)f

2 ⊃ · · · eventually stabilizes since H i
m(A) is

Artinian. Thus, H i
m(A)∗ = H i

m(A)f
s

for some s. Hence Hn−i
I (R) = 0 if and only if H i

m(A)f
s

= 0 for
some s, i.e. if and only if f s : H i

m(A) → H i
m(A) is the zero map.

We note that if M is an R-module and SuppM ⊂ SpecR is the support of M , then SuppM ⊂
{m} if and only if either M = 0 (i.e. SuppM is the empty set) or M �= 0 and SuppM = {m}.
Corollary 3.3. Let R, I and A be as in 3.1. Then SuppHn−i

I (R) ⊂ {m} if and only if H i
m(A)∗

has finite length.

Proof. We have that H i
m(A)∗ is a submodule of the Artinian module H i

m(A), hence Artinian itself.
By Theorem 3.1, Hn−i

I (R) is supported at m if and only if the annihilator ideal of H i
m(A)∗
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is m-primary. However, an Artinian module is annihilated by an m-primary ideal if and only if
the module has finite length.

Corollary 3.4. Let R, I andA be as in Theorem 3.1. If SuppHn−i
I (R) ⊂ {m}, thenHn−i

I (R) ∼= Ev,
whereE is the injective hull ofR/m in the category of R-modules and v = dimR/mH

i
m(A)∗/mH i

m(A)∗

is the minimum number of generators of H i
m(A)∗.

Proof. It has been shown in the course of proof of Theorem 3.1 that Hn−i
I (R) is the limit of

inductive system (9) in which all the maps are injective. Since D(imβs) ∼= H i
m(A)∗, exactness and

contravariance of Matlis duality imply that the minimum number of generators of H i
m(A)∗ equals

the dimension of the socle of imβs as (R/m)-vector space.
We claim that for any R-module M the dimensions of the socles of M and F r(M) coincide.

Indeed, we have an exact sequence

0 → Socle(M) →M
m�→⊕xim−−−−−−→Mn,

where m ∈ M and x1, . . . , xn ∈ m generate the maximal ideal m of R. Applying the exact functor
F r we get an exact sequence

0 → F r(Socle(M)) → F r(M)
m�→⊕xpr

i m−−−−−−−→ F r(M)n,

where m ∈ F r(M). Thus, the annihilator of the ideal (xp
r

1 , . . . , x
pr

n ) in F r(M) is F r(Socle(M))
and, therefore, the socle of F r(M) coincides with the socle of F r(Socle(M)). However, Socle(M) ∼=
(R/m)q where q = dimR/m Socle(M), hence F r(Socle(M)) ∼= F r(R/m)q. However, F r(R/m) ∼=
R/(xp

r

1 , . . . , x
pr

n ) and the socle of this module is isomorphic to R/m and generated by (x1 · · · xn)pr−1.
Hence, the socle of F r(M) is isomorphic to a direct sum of q copies of the socle of F r(R/m), i.e.
has dimension q over R/m. This proves the claim.

The claim implies that the dimensions of the socles of all the modules in (9) are the same. The
injectivity of the maps in (9) implies that the induced maps on the socles are all isomorphisms, hence
the socle of imβs maps isomorphically onto the socle of Hn−i

I (R). However, Hn−i
I (R) is a direct sum

of copies of E (this fact has been originally proven in [HS77, Corollary 2.4] in characteristic p > 0;
a characteristic-free proof is given in [Lyu00, Corollary 2]). Since E has one-dimensional socle, the
dimension of the socle of Hn−i

I (R) equals the number of copies of E in this direct sum.

4. The F -depth of a local ring: an application to Grothendiek’s problem

In this section we define the F -depth of a local ring, use it to give a solution to Grothendieck’s
problem and discuss some of its elementary properties.

Definition 4.1. Let A be a local ring with maximal ideal m. The F -depth of A is the smallest i
such that f s does not send H i

m(A) to zero for any s.

The next lemma shows that this is well defined because the set of integers i such that f s does
not send H i

m(A) to zero for any s, is non-empty.

Lemma 4.2. Let A and m be as in Definition 4.1. Then f s does not send HdimA
m (A) to zero for

any s. In particular, 0 � F -depthA � dimA.

Proof. Let dimA = d and let x1, . . . xd ∈ A be a system of parameters. The module Hd
m(A) is

generated by the elements (x1 · · · xd)−j as j runs through all positive integers, where (x1 · · · xd)−j
is the image of the element (x1 · · · xd)−j ∈ Ax1···xd

under the natural surjection Ax1···xd
→ Hd

m(A).
However, f s((x1 · · · xd)−j) = (x1 · · · xd)−psj and these elements also generate Hd

m(A) as j runs
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through all positive integers. Since the set f s(Hd
m(A)) generates the A-module Hd

m(A), this set
cannot be zero.

Our solution to Grothendieck’s problem is as follows (for Hartshorne and Speiser’s solution, see
Theorem 6.2 below).

Theorem 4.3. Let R be a regular local ring, let I be an ideal of R, let A = R/I, let n = dimR
and let r be an integer. Then H i

I(M) = 0 for all i > r and all R-modules M if and only if
F -depthA � n− r.

Proof. We have H i
I(M) = 0 for all i > r and all R-modules M if and only if H i

I(R) = 0 for all
i > r (see [Har68, p. 413]). Now we are done by Corollary 3.2 considering that i > r if and only if
n− i < n− r.

The F -depth is an interesting characteristic of a local ring A and the rest of this section is
devoted to a discussion of some of its elementary properties. We note the close similarity between
the F -depth and the usual depth of A which equals the minimum integer i such that H i

m(A) �= 0.
Another similarity is given by the following proposition which shows that the F -depth, like the
usual depth, is preserved under completion.

Proposition 4.4. Let A be a local ring. Then F -depthA = F -depth Â where Â is the completion
of A with respect to the maximal ideal m.

Proof. We have H i
m(A) ∼= H i

m̂(Â) and the action of the Frobenius is the same in both cases.

However, the following proposition indicates a striking difference because the usual depth of A
may be very different from the depth of Ared = A/

√
(0).

Proposition 4.5. Let A be a local ring. Then F -depthA = F -depthAred.

Proof. We have F -depth(A) = F -depth(Â) and F -depth(Ared) = F -depth(Âred) by the previous
proposition. Since Â is complete and contains a field of characteristic p > 0, there is a surjection
R → Â with kernel ideal I ⊂ R, where R is a complete regular local ring containing a field of
characteristic p > 0. Composing this surjection with the surjection φ : Â → Âred which is the
completion of the natural surjection A → Ared we get a surjection R → Âred with kernel ideal
J ⊂ R. Since φ is a surjection, I ⊂ J . Since the kernel of φ is a nilpotent ideal of Â, we conclude
that J ⊂ √

I. This implies that Hj
I (R) ∼= Hj

J(R) for all j. Now we are done by Theorem 4.3
considering that Â ∼= R/I and Âred

∼= R/J .

Next we give necessary and sufficient conditions for small values of the F -depth of A (recall that
F -depth(A) � 0 by Lemma 4.2).

Corollary 4.6. Let A be a local ring. Then:

(a) F -depthA > 0 if and only if dimA > 0;

(b) F -depthA > 1 if and only if dimA � 2 and the punctured spectrum of A is formally
geometrically connected.

‘The punctured spectrum of A is formally geometrically connected’ means that the punctured

spectrum of Ã = ̂̂
A

sh , the completion of the strict Henselization of the completion of A, is connected.
In particular, if A is complete with separably closed residue field, this simply means that the
punctured spectrum of A is connected.
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Proof. (a) If dimA = 0, then m is a nilpotent ideal, so H0
m(A) = A. However, f s never vanishes on

A because f s(1) = 1, hence F -depthA = 0. If dimA > 0, then H0
m(A) is a nilpotent ideal of A,

hence annihilated by f s for some s.
(b) We have dimA = dim Â, so by Proposition 4.4 we may replace A by Â, i.e. we may assume

that A is complete. Hence, there is a surjection R→ A with kernel ideal I ⊂ R where R is a complete
regular local ring containing a field. In this case HdimR−i

I (R) = 0 for i < 2 if and only if dimA � 2

and the punctured spectrum of R̃/IR̃ = Ã is connected where R̃ = ̂̂
Rsh ; this result was originally

proven in characteristic 0 by Ogus [Ogu73, Corollary 2.11] and in characteristic p > 0 by Peskine and
Szpiro [PS73, III, 5.5] and later a completely characteristic-free proof was given in [HL90, 2.9].

A similar necessary and sufficient topological criterion for F -depthA > 2 is unlikely to exist.
Indeed, at the end of the next section we give an example of a local ring A such that F -depthA > 2
if and only if 3|(p − 2) while the topology of SpecA seems to be ‘the same’ in all characteristics
since A is the local ring at the vertex of the affine cone over ‘the same’ variety Y .

It should be pointed out that results such as [Fal80, Korollar 1–4] and [HL90, 5.1] on the vanishing
of Hj

I (R) for high j lead to corresponding lower bounds on F -depthA via Theorem 4.3. However,
of course, it would be very interesting to do the opposite, i.e. prove that F -depthA > r and then
via Theorem 4.3 obtain a (previously unknown) vanishing of Hj

I (R) for j > dimR− r. With a view
toward obtaining such results, the F -depth of a local ring emerges as a promising object of study.

5. The projective case

Let k be a field of characteristic p > 0, let Y ⊂ P
n
k be a closed subscheme of projective n-space over k,

let R = k[X0, . . . ,Xn] be the homogeneous coordinate ring of P
n
k , let I ⊂ R be the homogeneous

defining ideal of Y and let m = (X0, . . . ,Xn) be the irrelevant ideal.
In this section we prove projective analogs of Corollaries 3.2, 3.3 and 3.4 (Theorems 5.2, 5.1 and

5.3, respectively) and apply Theorems 5.1 and 5.2 to express the cohomological dimension of P
n
k \Y

in terms of the F -depths of the local rings at the closed points of Y and the Frobenius actions on
the cohomology groups of OY (Corollaries 5.4 and 5.5).

Theorem 5.1. Let R,m, Y and I be as above. Then SuppHn−j
I (R) ⊂ {m} if and only if for every

closed point y ∈ Y there exists s such that f s acts as the zero map on Hj
my(OY,y), where OY,y is

the local ring of Y at y and my is the maximal ideal of OY,y.

Proof. Hn−j
I (R) is a graded module, so SuppHn−j

I (R) ⊂ {m} if and only if its localization at
every one-dimensional homogeneous prime containing I is zero. Let P ⊂ R be a one-dimensional
homogeneous prime containing I and let y ∈ Y be the corresponding closed point. ThenHn−j

I (R)P =
0 if and only if Hn−j

I (OPn
k ,y

) = 0, where I is the stalk of the defining ideal I of Y in OPn
k ,y

. There
is a natural surjection OPn

k ,y
→ OY,y with kernel I, so we are done by Corollary 3.2.

It has been known that:

(i) Hs
I (R) = 0 if s > n+ 1 (see [Gro67, 1.12]);

(ii) Hn+1
I (R) = 0 if and only if Y is non-empty [Har68, 3.1];

(iii) Hn
I (R) = 0 if and only if dimY > 0 and Y is geometrically connected (i.e. Y ⊗k k̄ is connected,

where k̄ is the algebraic closure of k) [Har68, 7.5].

These facts provide characteristic-free necessary and sufficient criteria for the vanishing of
Hn−j
I (R) for j < 1. While characteristic-free criteria for j � 1 are not known, Theorem 5.2 gives a

characteristic p > 0 necessary and sufficient criterion in the case that j � 1.
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Let A = R/I be the homogeneous coordinate ring of Y . The homomorphism of rings A a�→ap−−−→ A
induces a morphism OY → OY in the category of sheaves of abelian groups on Y , which, in turn,
induces a Frobenius map f : H i(Y,OY ) → H i(Y,OY ).

Theorem 5.2. Let Y,R, I and m be as above and assume j � 1. Then Hn−j
I (R) = 0 if and only if

the following two conditions hold.

(a) For every closed point y ∈ Y there exists s such that f s acts as the zero map on Hj
my(OY,y),

where OY,y is the local ring of Y at y and my is the maximal ideal of OY,y.

(b) There is s such that f s : Hj(Y,OY ) → Hj(Y,OY ) is the zero map.

Proof. Since I is a homogeneous ideal, the vanishing of Hn−j
I (R) is equivalent to the vanishing of

Hn−j
I (R)m = Hn−j

Im
(Rm), which by Corollary 3.2 is equivalent to the vanishing of Hj+1

m (Am)∗ (note
that dimRm = n+ 1, hence dimRm − (n− j) = j + 1).

By Theorem 5.1, condition (a) is equivalent to SuppHn−j
I (R) ⊂ {m}. Thus, it is enough to

prove that if SuppHn−j
I (R) ⊂ {m}, then the vanishing of Hj+1

m (Am)∗ is equivalent to condition (b).
Accordingly, we assume that SuppHn−j

I (R) ⊂ {m}.
Since Hn−j

Im
(Rm) = Hn−j

I (R)m, we conclude that SuppHn−j
Im

(Rm) ⊂ {m}. Since Rm/Im = Am,
Corollary 3.3 implies that Hj+1

m (Am)∗ has finite length. However, SuppHj+1
m (A) ⊂ {m}, hence

Hj+1
m (A) = Hj+1

m (A)m = Hj+1
m (Am) and, therefore, Hj+1

m (Am)∗ ∼= Hj+1
m (A)∗. Hence, Hj+1

m (A)∗ has
finite length.

Since Hj+1
m (A)∗ is a graded R-module, there is a positive integer L such that a homogeneous

element of Hj+1
m (A)∗ of degree d is non-zero only if −L < d < L. Let i be such that pi � L. If x ∈

Hj+1
m (A)∗ is a homogeneous element of degree d �= 0, then f i(x) is a homogeneous element of degree

pid and either pid � L or pid � −L in which case f i(x) = 0, so f i(Hj+1
m (A)∗) = f i(Hj+1

m (A)∗0), where
Hj+1
m (A)∗0 is the degree zero piece of Hj+1

m (A)∗. Since f i(Hj+1
m (A)∗) = f i(Hj+1

m (A)∗0) ⊂ Hj+1
m (A)∗0

generates Hj+1
m (A)∗ as an A-module, Hj+1

m (A)∗ is generated as an A-module by Hj+1
m (A)∗0. Hence,

Hj+1
m (A)∗ = 0 if and only if Hj+1

m (A)∗0 = 0, i.e. if and only if f s : Hj+1
m (A)∗0 → Hj+1

m (A)∗0 is the zero
map for some s.

Set U = SpecA \ {m}. There is an isomorphism Hj+1
m (A) ∼= Hj(U,OU ) for all j � 1 (see

[Gro67, 2.2]). The standard map π : U → Y is an affine morphism. Hence, we get an isomorphism
Hj(U,OU ) ∼= Hj(Y, π∗OU ). However, π∗OU

∼= ⊕
ν∈ZOY (ν), hence Hj+1

m (A) ∼= ⊕
ν∈ZH

j(Y,OY (ν)).
This is a degree-preserving isomorphism of graded A-modules; the degree ν piece of the A-module⊕

ν∈ZH
j(Y,OY (ν)) is Hj(Y,OY (ν)).

Hence, we have an isomorphism Hj+1
m (A)0 ∼= Hj(Y,OY ) which, as is not hard to see, respects

the action of the Frobenius on both sides.

Let E be the injective hull of R/m in the category of R-modules. If SuppHn
I (R) ⊂ {m}, then

Hn
I (R) ∼= Ec−1 where c is the number of connected components of Y (this is a consequence,

by induction on c using the Mayer–Vietoris sequence, of item (iii) following the proof of The-
orem 5.1). The following theorem describes the structure of Hn−j

I (R) in the case where j � 1
and SuppHn−j

I (R) ⊂ {m}. This may be regarded as a generalization of Theorem 5.2 to the case
v = dimkH

j(Y,OY )∗ > 0.
The k-linear spans of f t(Hj(Y,OY )), as t runs through all positive integers, form a descending

chain of k-vector subspaces of Hj(Y,OY ) since f t+1(Hj(Y,OY )) ⊂ f t(Hj(Y,OY )). Since Hj(Y,OY )
is finite-dimensional, this chain eventually stabilizes. Let Hj(Y,OY )∗ be the k-linear span of
f t(Hj(Y,OY )) for all sufficiently large t.

Theorem 5.3. Let k, Y,R, I,m and E be as above and assume j � 1. If SuppHn−j
I (R) ⊂ {m},

then Hn−j
I (R) ∼= Ev, where v = dimkH

j(Y,OY )∗.
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Proof. Since SuppHn−j
I (R) ⊂ {m} we conclude as in the proof of the preceding theorem that

Hj+1
m (A)∗ is generated as an A-module by Hj+1

m (A)∗0. Hence, Hj+1
m (A)∗/mHj+1

m (A)∗ ∼= Hj+1
m (A)∗0 ∼=

Hj(Y,OY )∗ and we are done by Corollary 3.4.

Theorems 5.1 and 5.3 provide some supporting evidence for a positive answer to the open
question whether the qth Bass number of the module Hn−j

I (R) with respect to m depends only
on the integers q, j and the variety Y but is independent of the embedding Y ↪→ P

n
k (see [Lyu02,

p. 133]). Indeed, the action of the Frobenius on Hj
my(OY,y) is independent of the embedding, as is

v = dimkH
j(Y,OY )∗ while the qth Bass number of Ev with respect to m depends only on q (it is 0

if q > 0 and v if q = 0).
The rest of this section deals with applications to the cohomological dimension of P

n
k \ Y .

The cohomological dimension of a scheme U , denoted cdU , is the largest integer i such that there
exists a quasi-coherent sheaf F on U with H i(U,F) �= 0. It follows from [Har68, pp. 412–413]
that cd(Pnk \ Y ) < t if and only if H i

I(R) = 0 for all i > t. In particular, items (i)–(iii) following the
proof of Theorem 5.1 imply that:

(i) cd(Pnk \ Y ) < n+ 1 for all Y ;
(ii) cd(Pnk \ Y ) < n if and only if Y is non-empty;
(iii) cd(Pnk \ Y ) < n− 1 if and only if Y is geometrically connected and dimY > 0.

These facts provide characteristic-free necessary and sufficient conditions for cd(Pnk \Y ) < n− r
where r < 2. While characteristic-free conditions for r � 2 are not known, we can now give a
characteristic p > 0 necessary and sufficient condition for cd(Pnk \ Y ) < n − r where r � 2 (for
a corresponding result of Hartshorne and Speiser, cf. [HS77, 4.2]).

Corollary 5.4. If r � 2, then cd(Pnk \Y ) < n−r if and only if the following three conditions hold:

(a) Y is geometrically connected and dimY > 0;
(b) F -depthOY,y � r for every closed point y ∈ Y ;

(c) for every j such that 0 < j < r there is some s such that the map f s : Hj(Y,OY ) → Hj(Y,OY )
is zero.

Proof. cd(Pnk \Y ) < n−r if and only if Hn−j
I (R) = 0 provided n−j > n−r, i.e. j < r. According to

item (iii) following the proof of Theorem 5.1, the vanishing of Hn
I (R) is equivalent to condition (a).

The vanishing of Hn−j
I (R) for a fixed j such that 0 < j < r is equivalent to the two conditions

of Theorem 5.2. Hence, the vanishing of Hn−j
I (R) for all j such that 0 < j < r is equivalent to

conditions (b) and (c).

The case r = 2 deserves to be stated separately (cf. [HS77, p. 75, 2c]).

Corollary 5.5. cd(Pnk \ Y ) < n− 2 if and only if the following conditions hold.

(a) Y is geometrically connected and every irreducible component has dimension �2.
(b) For each closed point y ∈ Y the punctured spectrum of OY,y is formally geometrically

connected.

(c) There is s such that f s : H1(Y,OY ) → H1(Y,OY ) is the zero map.

Proof. This follows from Corollaries 5.4 and 4.6(b).

It is worth pointing out that if k is separably closed, conditions (a) and (b) become somewhat
simpler. Namely, in this case ‘geometrically connected’ in condition (a) is equivalent to ‘connected’
and ‘the punctured spectrum of OY,y is formally geometrically connected’ in condition (b) is equiv-
alent to ‘the punctured spectrum of the completion of OY,y is connected’.
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We conclude this section with an example (cf. [HS77, p. 75]). Assume p �= 3 and let C ⊂ P
2
k be

an elliptic curve. Then H1(C,OC) ∼= k. Therefore, either f : H1(C,OC) → H1(C,OC) is the zero
map, i.e. the Hasse invariant of C is 0 (see [Har77, pp. 332–335]), or the Hasse invariant is 1, i.e.
f s : H1(C,OC) → H1(C,OC) is injective for all s. Set Y = C × P

1
k. The Leray spectral sequence

associated with the projection morphism Y → C degenerates at E2 and induces an isomorphism
H1(C,OC) ∼= H1(Y,OY ). Hence, f : H1(Y,OY ) → H1(Y,OY ) is the zero map if the Hasse invariant
of C is 0 and if the Hasse invariant of C is 1, then f s : H1(Y,OY ) → H1(Y,OY ) is injective for all s.

Now embed Y in P
5
k. Corollary 5.5 implies that cd(P5

k \Y ) < 3 if the Hasse invariant of C is zero
and cd(P5

k \ Y ) = 3 if the Hasse invariant is one.
For instance, if C ⊂ P

2
k is the Fermat curve defined by x3 + y3 + z3 = 0, it follows from [Har77,

IV, 4.21] that the Hasse invariant is zero if and only if 3|(p− 2). Hence, in this case cd(P5
k \ Y ) < 3

if and only if 3|(p − 2).
Algebraically, let I ⊂ R = k[X0, . . . ,X5] be the defining ideal of Y . Then H4

I (R) = 0 if and only
if 3|(p − 2). Let A = (R/I)m. It follows from Corollary 3.2 that the F -depthA > 2 if and only if
3|(p − 2).

6. The F -depth of a local ring versus the F -depth of a scheme

In this section we recall the notion of the F -depth of a scheme introduced by Hartshorne and
Speiser (Definition 6.1 and Theorem 6.2), compare it to our notion of the F -depth of a local ring
(Corollary 6.3 and the discussion section in the following) and settle a question left open in [HS77]
(Theorem 6.4).

Definition 6.1 [HS77, p. 60]. Let Y be a Noetherian scheme of finite dimension, whose local rings
are all of characteristic p > 0. Let y ∈ Y be a (not necessarily closed) point. Let d(y) be the
dimension of the closure {y}̄ of the point y. Let Oy be the local ring of y, let k0 be its residue field,
let k be a perfect closure of k0 and let Ôy be the completion of Oy. Choose a field of representatives
for k0 in Ôy, let Ry be the local ring Ôy ⊗k0 k obtained by base extension to k, and let my be the
maximal ideal of Ry. The F -depth of Y is the largest integer r (or +∞) such that for all points
y ∈ Y , we have H i

my
(Ry)s = 0 for all i < r − d(y).

The object H i
my

(Ry)s requires a definition of its own. Let M = H i
my

(Ry) and let f : M →M be
the natural action of the Frobenius. The image f i(M) is not, in general, a submodule of M , but it
is a k-vector subspace. Hartshorne and Speiser set Ms to be the intersection

⋂
i f

i(M) and call
it the stable part of M (see [HS77, p. 46]).

Hartshorne and Speiser proved the following theorem (cf. [HS77, 2.5b]).

Theorem 6.2. Let R be a regular local ring and let I be an ideal of R. Let Y = Spec(R/I) =
V (I) ⊂ SpecR, let n = dimR and let r be an integer. Then H i

I(R) = 0 for all i > r if and only if
F -depthY � n− r.

Theorems 6.2 and 4.3 provide two different necessary and sufficient criteria for the vanishing of
H i
I(R) for all i > r. They clearly imply the following.

Corollary 6.3. Let R be a regular local ring and let I be an ideal of R. Let A = R/I and
Y = SpecA = V (I) ⊂ SpecR. Then F -depthY = F -depthA.

Discussion
If A does not admit a surjection R → A from a regular local ring R of characteristic p > 0, we
do not know how the F -depth of Y and the F -depth of A are related. However, if A admits such
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a surjection, Corollary 6.3 shows that Hartshorne and Speiser’s Definition 6.1 defines the same
integer for the scheme Y = SpecA as does our Definition 4.1 for the ring A, but our definition
involves local cohomology modules only at the closed point of Y , whereas Definition 6.1 involves
local cohomology modules at all the points of Y .

This difference is striking. It is known that H i
my

(Ry)s = 0 for all but finitely many points y ∈ Y

(see [Lyu97, 4.14]; for example, if A is regular, then the only point y ∈ Y such that H i
my

(Ry)s �= 0
for some i is the generic point of Y ), so Definition 6.1 measures the F -depth of Y in terms of
local cohomology modules at those finitely many points. However, to identify those points may be
a highly non-trivial task and the closed point need not be one of them. That is, local cohomology
modules at the closed point need not make any contribution at all to the computation of the
F -depth of Y according to Definition 6.1 because H i

m(A)s may be zero for all i. However, according
to Corollary 6.3 our Definition 4.1 still expresses the F -depth of Y in terms of local cohomology
modules at the closed point only!

In fact, we can express the F -depth of Y in terms of closed points for quite a large class of
schemes Y , as the following theorem shows.

Theorem 6.4. Let Y be a scheme isomorphic to a closed subscheme of a Noetherian regular scheme
X of finite dimension such that the local rings of X are all of characteristic p > 0 and the dimension
of the local rings of the closed points of X are all equal to the dimension of X. Then the F -depth
of Y equals the minimum of the F -depths of the local rings OY,y at all the closed points y ∈ Y .

Proof. Let y ∈ Y be a point, let OY,y be the local ring of Y at y and let Yy = SpecOY,y. Definition 6.1
implies that the F -depth of Y equals the minimum of the F -depths of Yy as y runs through all the
closed points of Y . However, Corollary 6.3 (with R being the local ring of X at a closed point y and
A = OY,y) implies that the F -depth of the scheme Yy equals the F -depth of the local ring OY,y.

Hartshorne and Speiser point out that they ‘do not know if the F -depth can be measured in
terms of closed points only’ [HS77, p. 61]. However, our Theorem 6.4 does just that (for reasonable
schemes). It shows, for example, that if Y is a scheme of finite type over a field of characteristic
p > 0, then the F -depth of Y can be measured in terms of closed points only.
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