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Abstract
An article published in 2018 by J.D. Hamilton gained significant attention due to its provocative title, “Why
you should never use the Hodrick-Prescott filter.” Additionally, an alternative method for detrending, the
Hamilton regression filter (HRF), was introduced. His work was frequently interpreted as a proposal to
substitute the Hodrick–Prescott (HP) filter with HRF, therefore utilizing and understanding it similarly as
HP detrending. This research disputes this perspective, particularly in relation to quarterly business cycle
data on aggregate output. Focusing on economic fluctuations in the United States, this study generates a
large amount of artificial data that follow a known pattern and include both a trend and cyclical compo-
nent. The objective is to assess the effectiveness of a certain detrending approach in accurately identifying
the real decomposition of the data. In addition to the standard HP smoothing parameter of λ = 1600,
the study also examines values of λ� from earlier research that are seven to twelve times greater. Based on
three unique statistical measures of the discrepancy between the estimated and real trends, it is evident that
both versions of HP significantly surpass those of HRF. Additionally, HP with λ� consistently outperforms
HP-1600.
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1. Introduction
Macroeconomic research focusing on the long-term growth of business cycles often involves
breaking down time series data into a trend component, possibly exhibiting limited flexibility
or breaks and a cyclical component that reflects recurrent fluctuations at a business cycle fre-
quency. Many economists consider detrending a routine task, opting for widely accepted methods
that require minimal effort. The Hodrick–Prescott (HP) filter meets these criteria, providing a
transparent and widely applied solution in both academic research and practical business cycle
analysis.

Since its introduction, the HP filter has been criticized. Singleton (1988) is cautious about the
two-sided HP filter for distorting the properties of seasonally adjusted versus unadjusted time
series, which might result in inconsistent parameter estimates. Not accounting for the stochastic
properties of the data could also lead to spurious cycles when the HP filter is applied, as noted
by Jaeger (1994). Diebold and Kilian (2001) introduce a metric based on evaluating short-run and
long-run forecasts. They discuss the likelihood of the predictability of variousmodel outputs being
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undisguisable if the underlying time series are HP-filtered. In the context of dynamic stochastic
general equilibrium modeling and estimation, Canova (2014) emphasizes the consequences of
using model-based transformed versus statistically filtered data, where the latter is the outcome of
applying the HP or other (linear) bandpass filtering techniques.

Hamilton’s (2018) influential paper, titled “Why you should never use the Hodrick-Prescott
filter,” has recently received much more attention for criticizing the HP filter. Beyond its com-
pelling title, the paper introduces a superior alternative with a comparable level of complexity:
Hamilton’s regression filter (HRF). This alternative addresses the limitations of the HP approach
and has quickly gained popularity, being applied in various empirical studies (Van Zandweghe,
2017; López-Salido et al., 2017; Danielsson et al., 2018; Richter et al., 2019; Blecker and Setterfield,
2019, p. 247; Araújo et al., 2019; Cauvel, 2022; Reissl, 2020; Richter et al., 2021).1

Our study ties into the strand of literature that emerged after the launch of the HRF versus HP
debate. In particular, our work is closely linked to Moura (2022), who provides direct commen-
tary on Hamilton (2018). Moura noted the mechanical delay between the data and the estimated
trend as one of the drawbacks of HRF, discussing the potential artificial serial correlation and pre-
dictability in HRF-generated cycles. In contrast, Hamilton (2018) argues that these observations
are more pronounced when the HP filter is applied. Unlike our study, which focuses on quarterly
real gross value added, as macroeconomists typically decompose GDP time series, Moura (2022)
concentrates on detrending consumption and stock prices, which resemble random walks. In a
direct follow-up to Phillips and Shi (2021), Mei et al. (2022) introduced the boosted HP method,
a machine-learning type of filtering. This approach involves filtering the data twice, extracting
trend elements that remain part of the cyclical component after the initial filtering. The authors
assert the robustness of the boosted HP method for various values of the smoothing parame-
ter λ. Therefore, they follow Ravn and Uhlig (2002) and consider a standard value of λ = 1600 for
quarterly data.2

Following Franke et al. (2022, 2023), we also question the commonly used smoothing parame-
ter λ = 1600 of the HP filter for quarterly data analysis. Our research does not rely on asymptotic
econometric theory, as in many studies on HP, but rather builds on a more elementary approach
so that its results can also be easily assessed by nonspecialists. It is based on generating artificial
data with a specified trend and cycle to provide a controlled environment for the analysis. This
simulation-based approach allows us to carefully evaluate the properties of the filters via Monte
Carlo experiments and to draw clear conclusions regarding the potential superiority of one filter
over another.3

Our findings suggest that HRF generally performs worse than HP detrending and that values of
the HP smoothing parameter λ in the range of seven to twelve times higher than the conventional
choice of 1600 are more appropriate for accurate trend estimation. While one might raise the
question of whether the value of the smoothing parameter should be set to a value below unity
(Hamilton, 2018) or is even somewhat negligible (Mei et al., 2022), our paper adds additional
insights stemming from high values of λ and shows how they may improve the performance of
theHP filter. To ensure practical relevance, our data-generation process is tailored to the aggregate
output over the US business cycle.

2. Methodological distinctions
Before delving into the potential superiority of one detrending procedure over the other, it is cru-
cial to acknowledge their distinct methodological foundations. HP’s perspective posits that time
series can be decomposed into separately defined growth and cyclical components. According to
this view, the growth component evolves smoothly over time, driven by a largely independent
process involving demographic and technological factors. In this context, the HP filter aims to
isolate the cyclical component, although it is less intricate than other procedures that share this
perspective. For a survey of such methods, see Alexandrov et al. (2012).
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Separating an unknown cyclical component from an unknown trend, in line with common
economic growth theories, differs somewhat from the objective of HRF. This approach poses the
following question: “How different is the value at date t+h from the value that we would have
expected to see based on its behavior through date t?” Forecasting, achieved through simple lin-
ear regressions, serves to address factors such as cyclical fluctuations, notably the occurrence of
recessions and the timing of recovery. The “cycle” is then defined by prediction errors, ensuring
their stationarity (Hamilton, 2018, p. 836).4

Strictly speaking, the HP filter and HRF represent distinct concepts lacking a common basis
or superiority criterion. Despite this, the aforementioned authors employing HRF often simply
replace the HP filter without detailed methodological reflection. Notably, the authors using HRF
often find it adequate to restate the widely known critique of HP without providing a rationale for
this decision that would have weighed the advantages and disadvantages of the two filters, while
their interpretations of HRF outcomes largely mirror those of HP. This is particularly true for
output series such as GDP, where deviations from estimated trends signify the economic cycle.

Critical issues raised against HP by Hamilton (2018) include (a) the introduction of spurious
dynamic relations that are unrelated to the underlying data-generating process, which is the most
often repeated criticism of HP, and (b) notable distortions in filtered values at sample endpoints,
which are the most serious for real-time quantitative assessments of the current stage of the busi-
ness cycle. However, these criticisms often stem from a specific view of stochasticity, disregarding
alternative theoretical possibilities.

On the other hand, HRF also encounters criticism. Hodrick (2020, p. 11) emphasized that
HRF “is designed for classical time series environments, and it may not work well when sam-
ples are small relative to the changes taking place in the underlying economic process or when the
changes in the underlying trend do not allow for straightforward time series models.” Moreover,
the regression forecasts may not capture all the information in the past history of the process.
Finally, the following section provides a basic example illustrating that the HRF trend, when inter-
preted similarly to an HP trend, may introduce spurious dynamic relations without foundation in
the underlying data-generating process. An additional discussion on finer methodological issues
distinguishing HRF from the HP filter can be found in Franke et al., (2023, Section 2).

3. Elementary observations of HRF properties
3.1 A smooth sine wave scenario
Given a series {yt}tmax

t=1 , HRF specifies the trend value y�
t in period t as linear regression forecast

made h periods earlier based on a small number of lags p up to yt−h. The “cycle” {ct}tmax

t=h+p is
then defined as the prediction error. Regression coefficients homogeneous across all periods t are
obtained from a preceding OLS estimation over the entire sample. Regarding h, Hamilton (2018)
recommends a value corresponding to roughly a quarter of a typical business cycle. Specifically,
for quarterly data, he fixes h= 8 and p= 4. The regression reads

yt = βo +
p∑

k=1

βk yt−h−k+1 + ut , t = h+ p, . . . , tmax

and with the resulting estimates β̂0, β̂1, . . . , β̂p, the HRF trend y�
t and the cyclical component ct

in period t are given by

y�
t = y�,HRF

t = β̂o +
p∑

k=1

β̂k yt−h−k+1 , t = h+ p, . . . , T

ct = cHRF
t = yt − y�

t = ût

(1)
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Figure 1. Application of HRF in a sine wave scenario.

To illustrate HRF limitations, consider the examples depicted in Figure 1. The upper-left panel
plots a sine wave with a period of T = 9.50 years around a straight trend line y�

t with a slope of 3%
per year. The series to be examined is thus

yt = y�
t + ct . (2)

The bold red solid line in the upper-left panel represents the estimated HRF trend, which cov-
ers the data most of the time. Excluding the spikes in the middle of the sample, the lower-left panel
illustrates the significantly lower amplitude of the cyclical component derived from HRF vis-à-vis
the sine wave oscillations (the dotted line); the proportion is approximately 1:5. Importantly, a
quarter-cycle phase shift between the two series further indicates that HRF might lead to a signif-
icant misjudgment in accurately timing the true underlying business cycles.5 For a similar point,
for applied work, see Cauvel (2022).

To demonstrate another potentially spurious outcome of HRF between years 20 and 30, we
introduce a recession that is twice as deep as that in the other cycles. While HRF predictions y�

t
reflect this change, the corresponding downward revisions significantly overshoot the true con-
traction. Consequently, the cyclical component exhibits the first positive spike. Two subsequent
spikes, negative and positive, occur when the sine wave oscillations return to their original ampli-
tude. Thus, HRF suggests a sudden and extraordinary recovery just in the deepest recession and a
sizeable contraction in the following recovery, around t = 30.6

The lower-left panel of Figure 1 also contrasts the HRF cyclical component with that from the
ordinary HP filter (the thinner blue solid line), which succeeds almost perfectly in tracing out the
regular pattern of the sine wave oscillations; the correlation is as high as 0.975. Conversely, the HP
filter tends to incorporate too much of the cycle into the trend, resulting in an estimated cyclical
component with only three-fifths of the true cycle’s amplitude.

3.2 The role of stochastic noise
The example of a deterministic sine wave shows that HRF seems unsuitable for filtering smoothly
evolving time series. It is useful to add stochastic noise to this example to assess the potential
improvements the filter may offer.
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Table 1. Statistics of the estimated cyclical components cHP
t and cHRF

t from (3), varying with the noise levelm

HP HRF

m std. C(0) std. C(0) C(5) C(6) C(7) C(8)

0.00 0.523 0.98 0.440 0.05 0.36 0.42 0.47 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.05 0.525 0.97 0.924 0.07 0.67 0.74 0.80 0.82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.15 0.544 0.96 1.073 0.24 0.74 0.79 0.82 0.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 0.578 0.95 1.165 0.42 0.76 0.77 0.79 0.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.40 0.641 0.94 1.234 0.59 0.73 0.71 0.71 0.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.50 0.683 0.94 1.248 0.65 0.68 0.66 0.65 0.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.60 0.721 0.93 1.248 0.70 0.63 0.60 0.59 0.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.70 0.754 0.93 1.242 0.73 0.57 0.54 0.53 0.50

Note: “std.” is the standard deviation of cHP
t and cHRF

t , respectively, in relation to that of the true cycle ct . “C(k)” for k= 0, 5, 6, 7, 8
quarters stands for the cross correlation coefficient Corr(ct , c

j
t−k), j=HP,HRF. Boldface figures indicatemaximal correlation across

all lags.

The deterministic oscillations in (2) with an amplitude ±ᾱ = 0.05 are disturbed by random
draws from a normal distribution with a standard deviation related to ᾱ by a factor m. For
−2≤ t ≤ 55, the cyclical component ct is given by

ct = αt sin (ω t) + εt , αt =
{
2 ᾱ 23.75≤ t ≤ 28.50
ᾱ = 0.05 else

ω = 2π/9.50 , εt ∼N(0, σ 2) , σ =m ᾱ

(3)

Simulations in the two panels on the right-hand side of Figure 1 are based on m= 0.15. The
slightly perturbed cycle ct is the black dotted line in the lower-right panel. What is particularly
noticeable is the substantial, overproportional noise in the cyclical component cHRF

t indicated by
HRF-CC, the bold red line. Moreover, its cycle variability not only increases compared to that of
the deterministic case but is now of a similar magnitude to that of the true cycle. In this regard,
HRF is better than the HP filter (blue), whose cyclical component exhibits only minimal alter-
ations compared to the deterministic case. However, considerable doubts arise when attempting
to identify a general pattern in these fluctuations. It appears that the contractions and expansions
of cHRF

t end considerably before those of the true cycle. In essence, the phase shift highlighted in
the lower-left panel seems to persist in the stochastic environment. Contemporaneous and lagged
cross-correlations support this visual impression: a disappointingly low Corr(ct , cHRF

t )= 0.237,
whereas Corr(ct , cHRF

t−k )= 0.828 for lag k= h= 8 (compare to a large Corr(ct , cHP
t )= 0.964 for the

HP filter).
Table 1 examines the impact of varying noise levels m. The random sequences ε̃t , drawn from

the unit normal so that εt = σ ε̃t =m ᾱ ε̃t , are uniform across all m. Differences in statistics (i.e.,
standard deviation and correlation with the true cycle) are thus solely attributed to changes in
the noise level. For the HP filter, the statistics remain consistent across noise levels. Although
the contemporaneous correlation slightly decreases with higher m, even for elevated levels, the
cyclical pattern maintains close alignment with the true pattern. Conversely, the impacts on HRF
are more pronounced. Initially, c HRF

t has insufficient variability at m= 0, aligning more closely
with the true cycle as m increases. At higher levels, however, some overshooting is observed.
However, in the deterministic case, both contemporaneous and lagged correlations are unsatisfac-
torily low, and a modest increase in randomness notably improves these statistics. Thus, at high
noise levels such as m= 0.50, the contemporaneous correlation becomes a stronger indicator of
the connection between the estimated and true cyclical components. Nevertheless, the correlation
coefficients with ct do not surpass those of the HP filter.
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These simple experiments provide an initial heuristic to assess the relative merits of HRF and
the HP filter. They caution against using HRF when dealing with data showing excessive regu-
larity. Regarding stochastic perturbations, the findings demonstrate that HP is more reliable than
HRF in recognizing the true cyclical pattern, even under high noise levels (m). However, relying
onHP results in a systematic underestimation of the cycle’s overall variability, an aspect seemingly
better captured by HRF.

4. Generation of the artificial data
According to the stylized examples in the previous section, HRF may be misleading in practice.
We now examine the accuracy of HRF via Monte Carlo simulation. We aim to assess to what
extent the insights from the previous section relate to real-world data and noise levels closer to
reality. Additionally, we explore smoothing parameter values greater than 1600 for HP, reducing
the trend’s flexibility and potentially yielding a more variable estimated cyclical component.

To provide guidance on the suitability of HRF, we generate a large number of draws from an
artificial stochastic process with a known trend and a cyclical component that reflects the basic
features of the US business cycle. Measuring the distance between the true and estimated trend
series allows an examination of a filter’s precision to recover the true trend.

4.1 Specification of stochastic processes
We calibrate the data-generating process to an empirical business cycle variable. We work with
the quarterly real gross value added (GVA) of the US nonfinancial corporate business, measured
in logarithms, instead of GDP.7 GVA is preferred over GDP because it aligns closely with the
output variable in many small-scale macro models, which typically represents the output of the
firm sector alone.

For the remainder of the paper, the underlying time unit will shift to a year from a quarter. The
simulation’s time horizon remains constant at 60 years, a standard duration for many post-WWII
empirical investigations.

4.1.1 Three growth regimes
In specifying the output trend, two versions will be distinguished, considering a pivotal distinction
in economic theory: the concept of a deterministic versus a stochastic trend. The former is typi-
cally depicted as an increasing line with a fixed slope, while a random walk with a constant drift
represents the latter. However, for the postwar US economy, maintaining the assumption of a con-
stant growth trend over an extended period is unrealistic; indeed, growth rates were consistently
declining. A simplified narrative identifies three growth regimes. Drawing on a recent discussion
by Hall (2020), these regimes include an era of modernization from 1950 to 1975, an era of liber-
alism from 1980 to 2000, and subsequently, an era of knowledge-based growth. Associated with
the concept of productivity slowdown, growth rates progressively decrease from one regime to
the next.

Correspondingly, we postulate three regimes, each spanning 20 years, with growth rates of 5%,
3.5%, and 2%, respectively. The abrupt transitions between regimes are gently smoothed using
a moving average around the break dates to mitigate any undue disadvantage to the HP filter.
Specifically, we employ the two-sided moving average TS-MA(xt , 4) with equal weights, consid-
ering a series extended by 4 quarters on each side of a value xt . Applying this to the step function
representing the three growth rates, we obtain a continuous relationship of (actual or expected)
trend growth rates get in periods t = 0, 0.25, 0.50, . . . , 60.00, albeit with kinks during regime
changes:

get = TS-MA(g̃et , 4) (4)
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g̃et =

⎧⎪⎨⎪⎩
0.050 if t < 20
0.035 if 20≤ t < 40
0.020 if t ≥ 40

(5)

Typically, get = g̃et . We employ the acronyms DT and ST to denote the deterministic and
stochastic trend concepts, respectively. Initialized with a y�

0 = 0 and variance σ 2
ε for the random

walk, the two trend series are expressed as follows:
y�
t = y�

t−0.25 + 0.25 get (DT)

y�
t = y�

t−0.25 + 0.25 get + εt εt ∼N(0, σ 2
ε ), iid (ST)

4.1.2 Specification of the cyclical component
In outlining our methodology for assessing the HRF and the HP filter using artificial data from
a stochastic process, our approach aligns with recent works by Hodrick (2020, Section 10) and
Schüler (2021, Section 4). However, we contend that our experiments are more suitable for study-
ing business cycle data. This implies that we directly impose a desired periodicity on the cyclical
component, which contrasts with standard time series analysis. In such analyses, there is often
little discussion on whether the resulting cyclical component adequately captures such a funda-
mental characteristic of the business cycle. Our findings, therefore, complement the investigations
conducted by Hodrick (2020) and Schüler (2021).8

To construct the cyclical component ct , we adopt a sine wave with suitable random distur-
bances to ensure the desired spectrogram shape. Two noise sources are considered: one randomly
varies the period of a sine wave from one full cycle run to the next, and the other adds a stochastic
moving average process to these waves.

We begin by describing the first concept of a regular oscillatory motion, denoted st . It features
a constant amplitude α and an average period T. The random periods of a single cycle run are
drawn from an interval [T − 
T, T + 
T] with equal probabilities. Denoting the uniform distri-
bution as U, φ is a parameter that may shift the waves in time, and t ∈R is a point in time. The
relationship st = st(T,
T, φ, α) is defined as follows:

st(T,
T, φ, α) = α sin [ω t (t − τ t)+ φ ] where:
ω t = 2π/T(k) for tk−1 ≤ t < tk

T(j) ∼ U(T− 
T, T+ 
T) j= 1, 2, . . . (6)

tk =
k∑

j=1
T(j) t0 = 0

τ t = tk−1 for tk−1 ≤ t < tk
In a continuous-time scenario with a transient φ = 0, a cycle initiates at t = tk−1 when the argu-

ment of the sine function in the first row is ω t(t − tk−1)= 0. Note that tk − tk−1 = T(k). Thus, as
t approaches tk from the left, the argument tends toward ω t(tk − tk−1)= [2π/T(k)] T(k)= 2π ,
and the function converges to sin (2π)= 0, from whereon the next cycle starts. With a nonzero
shift factor φ, we have sin (φ) at these connection points. In the context of specifying the cycli-
cal component ct below, the function st only needs to be evaluated in quarterly intervals at
t = 0, 0.25, 0.50, . . . 60.

Function (6) prompts the question of selecting a “typical” business cycle period, conventionally
considered no longer than 8 years in discussions around Hodrick–Prescott detrending or band-
pass filters. Contrary to this perspective, recent research by Beaudry et al. (2020) and Barrales-Ruiz
and von Arnim (2021) challenges this notion. Their analysis of spectrograms for cycle-related
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empirical variables without long-run growth (e.g., working hours per capita or job finding rates)
reveals a distinct peak occurring between 38 and 40 quarters. This is also the order of magnitude
that guides our investigation.

Motions st constitute the core of our cyclical component, but the concern arises that a single
motion might exhibit excessive regularity, potentially disadvantaging HRF relative to HP. Thus,
we combine two sine waves, each with a unique (expected) period T: one with T = 9.50 years and
the second with T= 7.00 years but half the amplitude of the former. This choice is motivated by a
second minor peak for a shorter period in several of the aforementioned spectrograms.

Turning to our second noise concept, introducing additional random perturbations in
these oscillations, a three-lag moving average process, MA(3), proves sufficient for our pur-
pose. It is unnecessary to include an autoregressive part, as sine waves already fulfill their role.
Therefore, with respect to the amplitude α, the MA coefficients θ1, θ2, θ3, and the variance
of the innovations σ 2

η , our specification for the cyclical component ct is as follows, at times
t = 0, 0.25, 0.50, . . . 60:

ct = st(9.50, 0.00, 0, α) + st(7.00,
T, 0.70 · 7.00, α/2)
+ eta t + ∑3

j=1 θj η t−0.25 j ηt ∼N(0, σ 2
η ) 
T = 1.00

(7)

A shift φ = 0.70 · 7.00 in the second sine wave in (7) introduces more irregularity in the
composite motion than for example, φ = 0.50 · 7.00. Note that the parameters θ1, θ2, θ3, σ 2

η will
generally differ when (7) is combined with (DT) and (ST). Overall, the series serves as a represen-
tative example of what detrending procedures typically produce in empirical analyses of GDP and
similar macroeconomic variables. Therefore, we posit that the series

yt = y�
t + ct t = 0, 0.25, 0.50, . . . 60 (8)

resulting from the combination of (7) with the trends (DT) and (ST) provided a realistic test bed
that HRF and HP should be able to cope with.

4.2 Calibration of the numerical coefficients
Before delving into the details, it is crucial to outline the procedure used to determine the param-
eters of the data-generation processes, β := (α, θ1, θ2, θ3, ση, σε). The design of this procedure and
its outcomes are adopted from Franke et al. (2023). It has already been pointed out that indepen-
dent of the specific values assigned to β , the criterion of a realistic periodicity of the simulated
series yt is directly fulfilled by (7) by construction.

Turning to the other features shared with the empirical GVA, we focus on the series of its
first differences. Specifically, we consider five moments: their standard deviation and the first four
autocorrelations. For each scenario (DT) and (ST), our goal is to determine a parameter set β

that, on average, brings these simulated moments as close as possible to their empirical coun-
terparts. Closeness, in this context, is measured by a loss function L( · ) that computes the mean
quadratic distance between simulated and empirical moments across 10 simulation runs of (7) and
(8). Averaging enhances the precision of parameter estimates compared to the ideal case where
expected values of moments could be determined analytically; for comprehensive details and the
improved precision achieved by 10 repetitions, see, e.g., Duffie and Singleton (1993, p. 945).

The objective function’s value depends on the parameter vector β and a random seed, denoted
by natural numbers b, initializing the stochastic simulations; thus, L= L(β , b) in general. In total,
b= 1, 2, . . . B= 100 samples prove sufficient for the following two-stage procedure. In the first
stage, for each b, coefficients β̂b are computed, which minimize the loss function over all admis-
sible β . Interestingly, in each case, all the empirical moments are (almost) perfectly matched, so
that L(β̂b, b)≈ 0 for all b. For the stochastic trend scenario, it should be added that this holds
when the standard deviation σε of the random walk is fixed at values less than or equal to 0.0050.
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Table 2. Numerical coefficients βo (rounded) obtained from optimization (9)

α θ1 θ2 θ3 100 · ση 100 · σε

DT : 0.0433 1.3885 0.7083 0.6475 0.7175 —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST : 0.0421 1.2354 0.7515 0.6310 0.7117 0.500

Any increase in σε beyond this threshold would progressively deteriorate the match. This finding
led us to choose an upper limit of σε = 0.0050 for the calibration. Within the framework of (ST)
combined with (7), we consider this value as providing a maximal role to the randomness in the
trend, one that still remains compatible with our current requirements for the first differences
of GVA.

Having obtained the optimal parameters {β̂b}Bb=1 in the first stage, it is crucial to consider that
a single vector β̂b is tailored to a particular random seed b. Using β̂b for simulations initialized
with a different seed c �= bmay generally lead to a suboptimal match, with L(β̂b, c)> L(β̂b, b)≈ 0.
To account for random variations, we opt for the random seed bo that yields the lowest mean loss
across all realizations. The final parameter vector is therefore specified as:

βo = β̂bo where bo := argmin
b

{ 1
B

sumB
c=1 L(β̂

b, c)
}

(9)

The outcome of this optimization procedure is reported in Table 2. The minimum losses
(1/B)

∑
c L(βo, c) in (9) show no significant difference between the deterministic and stochas-

tic trend scenarios. Thus, both scenarios are suitable dynamic processes for generating artificial
data in the subsequent section to test HRF and HP detrending in the context of GVA cyclical
growth.

5. Comparing HRF and HP
In this section, the stochastic processes with scenarios (DT) and (ST) are simulated numerous
times to generate data for applying the HRF and HP filter. As the trend and cyclical components
of these time series are known, they offer a robust foundation for assessing, on average, the efficacy
of the two filters in recovering the true trend-cycle decomposition.

5.1 Qualitative visual analysis
Expectations lean towards HRF being more effective in handling a randomwalk trend rather than
a deterministic trend line. We, therefore, begin with a visual analysis of a typical example derived
from (7) and (8) in the context of a stochastic trend (ST). In Figure 2, the The upper-left panel
displays the data yt itself, depicted by the thin solid (black) line closely aligned with the thinner
(blue) line representing its stochastic trend y�

t . While these lines are challenging to differentiate
due to their overall increase, the other three panels provide alternative perspectives. What can be
better seen, however, is the main characteristic of the estimated trend y�,HRF

t , the bold red line:
it exhibits distinct swings, with the upper and lower turning points occurring slightly delayed
compared to those in the data, evident at approximately t = 5, t = 33, t = 37, and t = 56.

Because of the cyclical nature of yt , it is evident that this affects the resulting cyclical component
cHRF
t = yt − y�,HRF

t . As depicted in the upper-right panel of Figure 2, on these dates cHRF
t exhibits

troughs and peaks before they actually occur in the true cyclical component ct = yt − y�
t .9 This

phase shift is reminiscent of the lower-right panel in Figure 1, which was obtained in a more
stylized setting by applying HRF to a strictly linear trend line and mildly disturbed regular sine
waves around it. This deficiency is likely to be more general in nature, especially for growth series
with a similar, relatively low noise level in their components.
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Figure 2. HRF and HP were applied to a sample from (ST).

The contrast between the HRF trend and the true random walk trend becomes more evident
in the lower-left panel of Figure 2, which plots their difference from the deterministic trend (DT).
While the relatively steady (blue) line illustrates the random walk’s gradual deviation from its
deterministic counterpart, the HRF estimate captures this tendency with heightened volatility,
mirroring the data series fluctuations that contribute to the observed phase shifts.

The random walk trend itself may appear relatively smooth in relation to the HRF trend,
but nevertheless, its slope ranges between −3 and +10 percent per year, where the latter order
of magnitude is not a rare exception. As another crude statistic, the standard deviation of the
random walk trend increases to 2.35%, compared to 1.22% for the deterministic trend. These fig-
ures illustrate that there is indeed a substantial difference between the two frameworks of (DT)
and (ST).

In summary, applying HRF to the current series does not yield the typical detrending outcome.
The lower-right panel in Figure 2 illustrates that the conventional HP filter outperforms HRF in
recovering the true cyclical pattern. Quantitatively, the contemporaneous correlation coefficient
between cHP

t and ct is 0.903, which is significantly greater than the 0.413 for cHRF
t . However, HP

exhibited a downward bias in overall variability, with a standard deviation ratio of 0.640 compared
to HRF’s overestimation, resulting in a ratio of 1.289.

5.2 Monte Carlo simulation study
We can now evaluate HRF and the two HP filters more systematically through the quantitative
experiments outlined at the beginning of this section. Simultaneously, we take the opportunity to
broaden the perspective on the Hodrick–Prescott approach, motivated by occasional suggestions
in the literature that the HP filter may excessively incorporate the cycle into the trend (Gordon,
2003, p. 218; Franke et al., 2006, p. 460, fn 10). Therefore, in addition to the conventional smooth-
ing parameter λ = 1600, we explore the performance of an alternative, higher value. To this end,
we make use of the recommendations of Franke et al. (2023). Accordingly, in addition to HRF, we
tested two versions of HP: HPc, denoted as the “conventional” λ = 1600, and HPe, with “e” for
“enhanced.” The alternative parameters, however, differ for (DT) and (CT). Table 3 reports the
alternative parameters, which differ for (DT) and (ST). In both cases, they are substantially greater
than λ = 1600, thus reducing the flexibility of the estimated trend and potentially increasing the
overall variability of the cyclical component.10
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Table 3. Smoothing parameters λ for HPc
(conventional) and HPe (enhanced)

HPc HPe

DT : 1 · 1600 11.71 · 1600 = 18736
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ST : 1 · 1600 7.51 · 1600 = 12016

To assess and contrast HRF, HPc, and HPe, a statistical measure must be utilized to quantify
the disparity between the estimated and true trends or between the estimated and true cyclical
components. This can be done along three dimensions. The first statistic is the distance between
the series of the estimated trend y�,est

t and the true trend y�
t , which is most naturally specified

by the root mean square deviation (RMSD). To mitigate the effects of HP’s end-of-sample bias,
the first and last four quarters are discarded in the corresponding summations. For HRF, the first
h+ p= 8+ 4= 12 unavailable values of the sample period are omitted from these sums. Given
our samples of 241 quarters from t = 0 to t = 60 and two series xt , zt , their RMSD is defined as:

RMSD(x, z):=

√√√√√ 1
241− 8

241−4∑
q=1+4

(xt(q) − zt)2, t(q):= (q− 1)/4 (10)

and correspondingly modified for HRF. To make the distance between y�,est
t and y�

t independent
of the size of the variations in the cyclical component ct = yt − y�

t , we scale RMSD(y�,est, y�) by the
latter’s standard deviation, which equals RMSD(y, y�). For a trend estimation y�,est

t , we therefore
define our distance measure as:

d = d(y�,est, y�;y):= RMSD(y�,est, y�)
RMSD(y, y�)

(11)

Hence, d measures the deviations of the estimated trend from the true trend in the percent of
the cyclical component’s variability, making values of d considerably below unity desirable. This
normalization provides a better sense of the overall quality of the estimation. It may be noted that
the distance between y�,est

t and y�
t is equivalent to the distance between the corresponding cyclical

components cestt = yt − y�,est
t and ct = yt − y�

t .
The other two measures, as mentioned earlier, include the correlation between the estimated

and true cyclical component, denoted as Corr(cest, c), and the standard deviation of cestt in rela-
tion to that of ct , std(cest)

std(c) . The treatment of the beginning and end of the sample period remains
consistent with the specification of the distance d.

In the main experiment, we generate 1000 sample runs of (7), (8) along with the DT or ST
scenario. For each of these runs, the three performance statistics resulting from HRF, HPc, and
HPe are computed, with Table 4 presenting the outcome. All the statistics exhibit a fairly sym-
metric distribution; therefore, the median values are sufficient to be reported. To provide context
for the differences between the three detrending procedures, we also include the standard devi-
ation (“std”) of the distributions. The results of our Monte Carlo experiment can, therefore, be
summarized as follows:

1. Regarding the two measures of distance and correlation, the Hamilton regression filter
(HRF) generally performs worse than conventional Hodrick–Prescott detrending (HPc).

2. On the other hand, in terms of the estimated variability of the cyclical component, HPc has
a disadvantage compared to HRF. However, the tendency of HRF to overestimate the true
variability needs to be emphasized.
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Table 4. Performance statistics for HRF, HPc, HPe from 1000 sample runs

d Corr(cest, c) std(cest)/std(c)

HRF HPc HPe HRF HPc HPe HRF HPc HPe

Optimal: 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000


DT :


median : 1.157 0.435 0.199 0.504 0.947 0.983 1.284 0.635 0.944


std. : 0.030 0.015 0.029 0.039 0.011 0.007 0.030 0.018 0.012


ST :


median : 1.208 0.469 0.304 0.492 0.913 0.953 1.336 0.657 0.940


std. : 0.067 0.029 0.036 0.052 0.016 0.012 0.063 0.032 0.047

3. HPc performs reasonably well in the first two measures, but its consistent underestimation
of the cyclical component’s variability also raises concerns.

4. The enhanced HP filter (HPe) with appropriately increased smoothing parameter values
exhibits notable improvements. In particular, it outperforms HPc and, to a greater extent,
HRF in the distance and correlation measures.

5. HPe, however, still exhibits a slight downward bias in the standard deviation of the cycli-
cal component. Despite this, its small magnitude allows for potential bias correction in
practical applications, as detailed in Franke et al. (2022, Section 5.3).

In summary, we find that the observed differences between the filters are significant, assum-
ing the acceptance of (i) the study’s focus on growing output series such as GDP or GVA, (ii) the
experimental framework involving the decomposition into a predefined trend and cyclical com-
ponent, and (iii) the defined task for detrending procedures to identify these series accurately. As
highlighted throughout the text, the HP approach’s central ambition aligns with the task at hand,
and while HRF may adopt a somewhat different methodological perspective, users of HRF often
share practical and interpretative views of the HP approach.

6. Conclusion
Our evaluation of the Hamilton regression filter (HRF) and the Hodrick–Prescott (HP) filter
draws attention to crucial lessons for applied researchers. While HRF may yield results compa-
rable to those of HP in practical scenarios, it carries the risk of serious misperceptions during
certain stages of the economic cycle. The conventional HP filter, criticized for potential spurious
dynamics, still proves effective at recognizing cyclical patterns, albeit with a tendency to under-
estimate cyclical variability. However, our study also introduces an enhanced version, HPe, with
a higher smoothing parameter, outperforming HRF and the conventional HP filter. Therefore,
applied researchers may approach HRF cautiously, reevaluate the conventional HP filter, and
consider HPe a more credible detrending method tailored to the characteristics of their
economic data.
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Notes
1 It is worth noting that there are modified versions of HRF, such as the one proposed by Quast and Wolters (2022). In their
work, the authors emphasize a much smoother trend and a more meaningful economic interpretation of the filtered time
series compared to the original HRF approach.
2 Ravn and Uhlig (2002) show from a time and frequency perspective, respectively, that λ should be set to the fourth power
of a change in the frequency of observations. Setting λquarterly = 1600, for example, on a monthly frequency, we arrive at
λmonthly = 1600 · 34 = 129600.
3 Incidentally, doing this for a great number of stochastic realizations of the data-generating process also allows insights into
the small-sample variability of HP detrending.
4 Specifically, Hamilton (2018, p. 836) argues the “primary reason that we would be wrong in predicting the value of most
macro and financial variables at a horizon of h=8 quarters ahead is cyclical factors such as whether a recession occurs over
the next two years and the timing of recovery from any downturn. ”
5 In the following, yt can mean both the entire series {yt}tmax

t=1 or its value at a particular date t according to the context. In
(11), we even prefer y to avoid confusion with the time indices.
6 This phenomenon persists even when selecting a period T = 8 consistent with HRF’s forecast horizon of h= 8 quarters.
7 The series was obtained from https://fred.stlouisfed.org/series/B455RX1Q027SBEA, covering the period 1960:1 to 2018:1.
8 For an additional analysis and justification of our approach to the cyclical component, refer to Franke et al. (2023,
Section 4.1).
9 The cyclical components on the right-hand side of Figure 2 are presented as a percentage of the nonlogarithmic trend
values. In the lower-left panel, the cyclical components are expressed as a percentage of the trend output Y�

t . Thus, the y-axis
is scaled as 100 ct , where ct = yt − y�

t = ln Yt − ln Y�
t = ln (Yt/Y�

t )≈ (Yt − Y�
t )/Y�

t .
10 Hamilton (2018, pp. 835) adopts a different approach to derive more appropriate values for λ. Based on the assumption
that not only the second differences in the trend but also the values of the cyclical component are normally distributed, he
sets up a maximum likelihood problem to obtain optimal values for λ. For a range of macroeconomic time series, he reports
values for λ below ten, with most of them even below unity. This contrasts starkly with our proposal for HPe.
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