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ABSTRACT 
Robotic systems need to achieve a certain level of process safety during the performance of the 
task and at the same time ensure compliance with safety criteria for the expected behaviour. 
To achieve this, the system must be aware of the risks related to the performance of the task 
in order to be able to take these into account accordingly. Once the safety aspects have been 
learned from the system, the task performance must no longer influence them. To achieve this, 
we present a concept for the design of a neural network that combines these characteristics. 
This enables the learning of safe behaviour and the fixation of it. The subsequent training of 
the task execution no longer influences safety and achieves targeted results in comparison to a 
conventional neural network. 
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1 INTRODUCTION
The transfer of AI-based applications to industrial usage is emphasizing safety aspects as well as per-
formance and reliability of algorithms. On one side it is necessary to master the challenge to achieve
a certain level of performance so that the robotics application can be used efficiently and productively.
On the other hand, the safe behavior of the system must be ensured in order to provide a safe working
environment. At the current state of research, these two aspects must be weighed against each other, as
there is no common procedure that combines the two characteristics. Against this background, this work
aims to provide a concept for researchers for an extension of an artificial neural network, which at the
same time anchors the safety criteria of the deployment environment and ensures a safe learning process
when adjusting the tasks to be performed. This is done by separating a neural network into two parts.
One which is inheriting the safety considerations and is independent from task execution consideration.
Another part is focusing on task performance itself and at the same time is being fed information from
safety relevant part of the neural network at several layers before the final task evaluation.
As an example for such an application a depalletizing robot in a logistics environment is illustrated,
which is used for a large variety of small load carriers. Its application can be broken down to the single
task of gripping and pulling the container into the system itself, which at the same time bears measurable
risks during its execution. The task of pulling the container inside of the robot can be trained to be exe-
cuted by a neural network with consideration of safety constraints. However, if during the lifetime of the
robotic system an additional container is added to be handled and trained in the neuronal network, the
compliance with the previous safety restrictions can no longer be guaranteed. Against this background,
the decapsulation of the neural network responsible for security is intended. This is accomplished by
assigning the areas of the neural network to the corresponding activation functions of the different layers
and creating dedicated parts of the network with unidirectional linkage.

2 RELATED WORK
An increasingly widespread discipline of machine learning in recent use cases is Reinforcement Learn-
ing (RL), in which an agent interacts with the environment and observes the results of the interaction in
order to achieve the maximum cumulative reward. This method imitates the trial-and-error method used
by humans to learn, which also consists of taking actions and receiving positive or negative feedback.
This procedure is similar to the so-called mental rehearsal and is applied in this case similarly to the
simulation of an environment. (Zamora et al., 2016)
While model free RL Approaches learn by backing up experienced rewards over time, model based
Approaches attempt to estimate the true model of the environment by interacting with it. At the state of
the art these approaches have problems handling continuous or large state and action spaces, while at
the same time exhaustive exploration can take an undesirably long time for complex systems. They also
demand to run exploration policies until it gets an accurate model of the environment while on the other
hand an aggressive exploration policy can lead to undesired consequences.

At the same time, Deep Learning is enabling Reinforcement Learning to scale to problems that were
previously intractable and is now allowing robots to learn policies directly from inputs in the real world.
An agent interacts with his environment and upon observing the consequences of its actions, can learn to
alter its own behavior in response to rewards reviewed. Deep Neural Networks (DNN) can automatically
find compact low-dimensional representations of high-dimensional data. Model based Reinforcement
Learning, on the other hand, is able to learn a transition model, that allows the simulation of the envi-
ronment without interacting with it directly.
As described by (Garcıa and Fernández, 2015), Reinforcement Learning can further be extended to
include the safety aspect to Safe Reinforced Learning. The process of learning policies aims to max-
imize the expectation of the return in problems in which it is important to ensure reasonable system
performance and/or respect safety constraints during the learning and/or deployment process.
It is crucial to ensure reasonable system performance and/or respect safety constraints during the learn-
ing and/or deployment process. An approach for Reinforcement Learning (Majumdar et al., 2017) with
discounted risk-sensitive and minimax formulations leading to stationary optimal policies guarantees
baseline performance. Additional constraints are needed if an agent may take random actions without
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evaluating them by the used approach. By relying on random actions for exploration in Reinforcement
Learning, like at classical approaches as ε-greedy or Boltzmann exploration (Sutton, 1991), safety is
not guaranteed. Direct inclusion of side constraints may hinder the agent on causing damage to itself
or its surroundings (Thomas et al., 2015) (Achiam et al., 2017) or an overriding of agents actions at
constraint violation can also imporove safety performance (Saunders et al., 2017).

A promising approach for learning optimal policies while enforcing properties expressed in temporal
logic is a reactive system called a shield presented by Alshiekh et al. (2017). It acts either before the
agent is about to make a decision of after the decision has already been made. In that way, the reward
signal does not have to be manipulated since unsafe actions are being corrected. In this manner, the
correctness of the system against a given specification is assured during the learning and controller exe-
cution phase, regardless of how fast the learning process converges. In this manner, the Big red button
problem (Riedl and Harrison, 2017) can be addressed, since disabling the emergency switch may be
considered as a safety violation. The shield should be designed to restrict the agent as little as possible
and forbid actions only if they could endanger safe system behavior.
One possibility of taking the safety considerations into account at Reinforcement Learning is by the
adjusting the optimization criterion as Worst-Case, Risk-Sensitive, Constrained or other Optimization
Criterion. Another possibility is the modification of the exploration process itself as by adding external
knowledge (eg. Initial knowledge, Teach Advice, Demonstrations) or risk-directed exploration. These
can also speed up the learning for time and hardware savings by incorporating prior knowledge, as
shown in a brief survey of deep Reinforcement Learning by Arulkumaran et al. (2017). Two examples
for an agent with gained prior information at imitation learning are being presented by Abbeel et al.
(2010) and Menda et al. (2017).
Turning the agent away from bad states is also a considered approach (Lipton et al., 2016). Safe explo-
ration may contain a safety function, which nests an objective to never observe states without a backup
policy to a safe state. A backup policy, in this case, is a set of actions, which lead the system to a state
space i.e. with only safe states. (Hans et al., 2008)

An algorithm can guarantee safe, but potentially sub-optimal exploration caused by restriction of the
attention to a subset of guaranteed safe policies as shown by Moldovan and Abbeel (2012), since if a
Q-learning function is trained only on good data, it has no way to understand why the taken action is
appropriate. It will assign a high Q-value, but not necessarily assign a low Q-value to other alternative
actions. (Gao et al., 2018) That’s why containment is not a long-term solution for AI safety, but a tool
to enable testing and development for value learning and corrigibility. (Babcock et al., 2017) In this
manner, the implementation of safety aware parts of a neural network is an approach to value learning.
Reinforcement learning in simulation, however, cannot at this point provide the desired performance for
subsequent application without adjustments in reality. To fill this gap, (Shrivastava et al., 2017) propose
the Simulated+Unsupervised (S+U) Learning method, which attempts to learn a model to improve the
realism of a simulator’s output using unmarked real data while preserving the annotation data from the
simulator. With further research in this area, the transferability of simulated behaviors based on camera
inputs from the simulation can also be applied in reality.

At this point, there is therefore no consensus on how a certain level of safety can be guaranteed without
impairing the performance of the primary task. Even if a certain level is reached using artificial intelli-
gence, the entire safety behaviour can be shifted with the slightest change in the parameters contained,
which clearly requires further research. These approaches also doesn’t allow to transfer the results to be
transfered to a new environment without also risking a change in safety considerations yet.

Here presented approach aims instead of designing a specific algorithm, which might allow a well
balanced safety consideration and task performance, to a general neural network structure, which may
include different mathematical approaches for optimization. In that way here presented related work and
also future approaches can be nested within this framework. At the same time this approach provides a
framework, in which an agent can explore and learn in a constrained action-space without harming itself
or its environment. Furthermore the learned safety evaluation in the suggested neural network structure
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is being preserved independent from the new environment, in which the the agent considering the main
tasks is being retrained.

3 PROBLEM FORMULATION
The robotic system is usually trained during the development phase in a defined environment. This lim-
its the risks to be taken into consideration only to those, that occur during the training phase. An image
recognition algorithm, for example, is trained with hand-selected images, which are mostly created
under laboratory conditions. For example, contamination, glare caused by changes in lighting condi-
tions, influence by other systems and the like are not considered. The same applies to the training of the
behaviour of robots under laboratory conditions, which are safely designed and mostly shielded from the
environment for safety reasons. A simulated environment, therefore, offers the possibility in this context
of intentionally inducing unsafe behavior or risky situations without the danger for the hardware, the
environment of the robotic system or the people involved.
A following subsequent neural network training in the operational environment of the system also
impacts the previously learned safe behavior while the predefined goals are being reached. At the same
time, it is almost impossible to expose the system to all dangerous situations during the training phase in
the real world, so that it learns how to deal with them. However, the troublesome creation of dangerous
situations in reality during a training phase would also be uneconomical, since the behaviour of neural
networks in the training phase is not predictable and in some cases would certainly lead to damage or
excessive wear of the components. A further difficulty is that in reality the collection of all necessary
data, in contrast to the simulated environment, is not easily possible in its completeness. Even with the
use of extensive sensoric for data collection, the accuracy and completeness of the collected data cannot
be guaranteed. Thus, the exploration of the unsafe states of the system required for the algorithms of
neural networks can be sufficiently explored in the simulation.
In the simulation, it is also possible to run through the same scenario several times in the learning cycle
and thus validate the learned desired behavior with exactly the same inputs. For instance, routines can
be developed, in which a certain level of safety of a system can be validated. In the simulation, the
ability of the robot system to deal with dangerous situations can be trained more effectively without the
need for external intervention, since in reality, damage to the system in the simulation only means the
end of a training run. Also the same situation can be easily reproduced to validate the dealings in the
situation in a benchmark way before scaling a system in reality.
With constant inputs in reality compared to simulation, trained neural networks in the latter will produce
the same behavior in reality. For this purpose, the generation of inputs in the simulation, that are as close
to reality as possible, must be emphasized.

4 FRAMEWORK FOR SAFETY-NET
In the concept presented here, a so-called Safety-Net is used, that tackles mainly the problems of loss of
safety criteria at run-time and the necessity of a base safety-level as described in chapter 3.
To ensure a certain level of safety, a neural network is first trained in a simulation environment. Here-
after regarding the run-time problem, for the operational environment the safety-relevant neural network
is decoupled from the performance relevant network and fixed in its values. Therefore the model itself
contains two multilayer Feedforward networks, which on the one side focuses on the task execution
itself and on the other side on the safety aspects.
In the first step, the focus is not on the optimal performance of the task, but on the safety during the

performance of the task. One part of the network (Neural-Network in Figure 1) returns the values for the
task execution in order to reach the goal and achieves the maximum reward under the given conditions.
The other part (Safety-Network in Figure 1) assesses the situation with regard to the risk posed by the
observed environment and thus provides information on whether an action should be performed or not.
However, the network relevant for the safety aspects is linked to the Neural-Network for performance
unidirectionally. For this purpose, the activation function of the corresponding layers of the neural
network uses both the neural connections relevant for the performance of the task and those for the
evaluation of safety. However, the part of the neural network of the safety evaluation uses only the neu-
ral connections relevant for the safety assessment for the activation functions. This means that the safety
aspects can have an effect on performance, but not vice versa. In this way, the parameters relevant for
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Figure 1. Structure of the safety-net.

the safety consideration are not influenced by the performance relevant network. At the same time, the
parameters that still have to be modified for the performance optimization are detached from the safety
evaluation in order to avoid cross-effects in the direction of the safety performance. In this proceeding,
part of the network provides concrete outputs and at the same time the basis for decision-making in the
neural network itself.
Once the basic level of safety performance has been reached, safety-relevant weights and biases are
fixed. From this point on, the focus is on optimizing the performance of the task without affecting the
safety-critical aspects. This can be done in the operational environment since the performance at the
tasks can only here be surely optimized and validated.

In comparison to the state of the art as described in the chapter 2, this concept combines the possibility
of achieving a certain safety performance level and the possibility of subsequent process optimization
of the system without affecting the safety behavior.

5 EXPERIMENTS
In the experiment, the robot described in the chapter 5.1 is simulated and enabled to interpret the inputs
described in the chapter 5.2. Building on this, the test is described in the chapter 5.3. The task of gripping
a box is run once with a regular fully connected neural network and again with the here presented safety
network. The results are compared considering safety- and task-performance in the chapter 5.4.

5.1 Depalletization robot
The robot used here as an example for depalletizing full containers in the goods receiving area of a
logistics environment is to be enabled to pick up the single containers. The system shown in figure 2 has
three main components. The handling axes mounted in a portal system allow the linear movement of
the components. This allows the gripper system to be moved in three directions and to reach all stacked
containers on the pallet positioned in front of the system.
A suction pad is used in the gripper system to pick up the container by using negative pressure. As a
perception module, the robot has a camera, which is also positioned in the gripper system.
The last main component is the conveyor system, which is height adjustable. This is necessary in order
that the gripper system does not have to carry the entire load of the container, but is supported beginning
at the edge of the pallet.
The container to be depalletized is pulled over the other containers up to the edge, which is an excellent
example of restrictions during the task execution. This also offers the potential for safety risks as, for
instance, during movement of the container to be depalletized in one step can have an effect on the other
containers which are not to be depalletized at that point.
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Figure 2. Robot for depalletization of non-empty boxes in good entrance.

5.2 Simulated environment

Figure 3. RGBD-cloud seen from the gripper in normal process (left) and in safety issue
(right) scenario.

Real-world operation is simulated by combining Gazebo simulator (Koenig and Howard, 2004), a 3D
modeling and rendering tool, with ROS (Quigley et al., 2009) (Robot Operating System). As a Free
and Open-Source software framework, ROS provides a structured communications layer above the
host operating systems of a heterogeneous compute cluster and allows a necessary customization of
the interfaces between all the parts of the experiment. At the same time an Open-Source 3D dynamic
multi-robot environment tool Gazebo, provides the capability for data visualization and simulation of
the remote environment. Its Physics Engine includes many features such as numerous joints, collision
detection, mass, and rotational functions, and many geometries for the realistic behavior of the envi-
ronment, which are used here for a realistic environment feedback. This set of libraries and tools help
software developers create robot applications and also allows a connection to numerous frameworks (as
Tensorflow in this case) for AI-based applications.

In the simulation environment, a simplified model of the robotic system is used, which represents the
basic functionality. The main simplification is that non-functional parts such as cable ducting, control
components and the similar are not modeled. Those parts are nonrelevant for safety or task performance
since the robot has no control or awarenes of those.
As in chapter 5.1 mentioned, the environment is captured by a camera located in the gripper system. In
addition to the RGB image, it also provides a depth map, as shown in figure 3. The left figure shows
the positioning of boxes in a safe state. In the figure on the right, however, a situation can be seen with
boxes that have been dropped, in which a gripping attempt could cause considerable damage.
The system also knows, as in reality, in which position relative to the robot zero point it is currently
located. While the real increments are counted during the movement of the motors and converted into
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position changes, the movement of the model parts along the connection joints are directly observed in
the simulation.
When measuring the container positions and container movements during the gripping attempts, the
advantages of the simulated environment become clear. Here the distance of the containers to each
other and to the target position can be read out without great effort, and their rotation in space as well.
This allows a complex reward function in consideration of the entire information.

5.3 Experiment design
During the evaluation of the model, two neural networks are compared to each other. The first one con-
tains only the inputs relevant for the task execution. The performance evaluation takes into account the
distance between the gripper and the container, the transfer of the container to the placement area within
the robot and the tilting and rotation of the container during the gripping process.
In the second step, the safety net is compared to the first network in order to reveal possible perfor-
mance losses due to the added safety examination in the model. Further, the safety aspects are taken
into account in the performance evaluation using the same inputs. In addition to the above criteria, the
position and movement of the surrounding containers are evaluated as well as the execution of a haz-
ardous movement in critical situations. Based on the inputs, the simulated robotic system decides on the
movement in x-, y- and z-direction in order to bring itself into the position for a gripping attempt with a
predefined sequence. After this, the reward function is executed for reward calculation. The implemen-
tation and interdependencies of the safety-net parts are shown in the Figure 1.

Inputs: As input variables, the neural network receives one RGBD image from the initial position of
the robotic system with a view of the entire pallet. In the run of the episode, a new RGBD image from
the current robot position is taken before each action and fed into the neural network. These two images
with the values of the current position provide the inputs of the neural network. Both Parts of the neural
network rely on the same imput information.

Outputs: The neural network provides a total of 12 values as output. The first 6 values describe in pairs
which position the gripper system should take in x, y and z, and which reward can be expected from this
positioning. The same represents the pair of variables for the height position of the belt system. Two of
the values form the decision variable whether a gripping try is to be carried out and which reward is to
be expected. The last two values estimate the risk of a gripping attempt and in the case an action would
be taken, the expected reward after that action.

Safe/Desired: Expected safe behaviour is to move the gripper in front of the box and execute a gripping
attempt. Depending on the positioning quality the box will be pulled inside the robotic system. This
results in a positive reward.

Unsafe/Undesired: As unsafe behaviour cases are defined in which the box falls of the pallet or is being
thrown over, since in a real use-case the contents of it might fall out and damage the robotic system.
The movement of a box that should not be moved during the current gripping attempt is also considered
undesirable behaviour.

Reward Calculation: Considering as here defined Safe/Desired and also Unsafe/Undesired behaviour
the corresponding reward function is designed. It consists of four parts. In the first part, a positive reward
can be obtained by moving the container onto the belt system. However, if the container leaves the pallet
in the opposite direction or sideways, the reward to be obtained from this part remains 0. The second
part takes into account the tilting of the container during the gripping try. If the container is tilted during
the gripping attempt, the total reward is reduced. In the third part, the reward is the positioning of the
gripper in front of the container, so that a gripping attempt can then be carried out. A movement far
away from this position is at the same time evaluated with a small negative reward. The last and most
important part for the safety evaluation is the movement of the obstacle. Moving the obstacle in any
direction results in a negative reward.

ICED19 2047

https://doi.org/10.1017/dsi.2019.210 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.210


5.4 Performance comparison
During the experiment, a DQN neural network as presented by Mnih et al. (2016) is implemented
according to the here described simulation. Further a DQN network is extended corresponding to the
Safety-Net framework as described in Section 3. Both implementations are trained for 1000 Episodes.
The average rewards are shown in Figure 4. The Safety-Net usually achieves a higher average reward,
since it prevents unsafe actions from being executed, which would severely reduce the average reward.
During longer training phases, these values may increase for both, since the exact position for a suc-
cessful gripping attempt in a three-dimensional space with continuous positions is very rare. Also with
other reward functions the performance could change strongly, if e.g. missed rewards in unsafe actions
are not evaluated neutrally in contrast to dangerous situations.

Figure 4. Comparison of rewards between regular DQN and the Safety-Net.

Figure 5 shows two runs of consecutive training sessions, each with 1000 episodes. After the first run for
training the network for safety-relevant aspects (left), the actual task execution is trained with fixation
of the safety-relevant parameters (right).
The blue line represents the percentage of actions that are considered safe by the neural network com-
pared to the total of all actions that would gain the maximum reward according to the neural network.
The red line, on the other hand, shows the relationship between the expected behaviour and the actual
outcome of the action. For this purpose, the proportion of actions performed with a subsequent positive
reward is compared with the total of all actions assessed as safe.
The proportion of actions considered safe decreases in both runs. In the first run, however, the decrease
is stronger, since the safety-relevant assessment also influences the assessment of the total reward by the
unsafe actions leading to a negative reward. After the safety-relevant parameters have been fixed, the
robotic system moves less frequently into unsafe positions, since these also result in a negative reward
and this is taken into account in performance optimization.
The actions with a positive reward that increase in the first run remain at a high level in the second run,
so that a certain level of safety performance is preserved. However, a slight fluctuation of the values
is noticeable, since, on the one hand, not every episode has a safe action and on the other hand even
after the short training not all possible combinations of the environmental characteristics are explored

Figure 5. Percantage for actions expected to be safe.
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and learned. Overall, it is therefore evident that a certain level of safety performance can be achieved
with the concept presented here. Even the subsequent training of the neuronal network after fixing the
safety-relevant parameters does not endanger the safety level due to the unidirectional isolation of the
subnet.

6 CONCLUSION
Here presented approach aims instead of designing a specific algorithm, which might allow a well
balanced safety consideration and task performance, to a general neural network structure, which may
include different mathematical approaches for optimization. In that way here presented related work and
also future approaches can be nested within this framework.
The concept presented here of a Safety-Net for the consideration of safety criteria in addition to the
performance of the main task achieves reasonable results compared to the conventional neural network.
This is evidence for the fact that the consideration of additional input information during the safety con-
sideration has no significant effects on the overall performance. By provoking safety-critical situations
in the simulated environment that rarely occur in reality, these can be sufficiently taken into account
by the Safety-Net. The exact measurability of the positions of all containers as well as the position of
the robot also contributes to the accuracy of decision-making during the training process. Thus a certain
degree of safety performance is achieved, which can be maintained even after the safety-relevant param-
eters of the neural network have been fixed. This is achieved by the Safety-Net architecture presented
here and proven to be effective.
Nevertheless, further research is needed in this area. The exact influence of the reward function has not
been clearly proven as well as the optimizers to increase the performance of both parts of the neural
network. Also, the behavior with imperfect data and hardware during later use is still unclear.
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