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We study the reactive displacement of two miscible fluids in channel flows and establish a
quantitative link between fluid stretching and chemical reactivity. At the mixing interface,
the two fluids react according to the instantaneous irreversible bimolecular reaction
A + B → C. We simulate the advection–diffusion–reaction problem using a random
walk based reactive particle method that is free of numerical dispersion. The relative
contributions of stretching and diffusion to mixing-limited reaction is controlled by
changing the Péclet number, and the channel roughness is also systematically varied. We
observe optimal ranges of fluid stretching that maximize reactivity, which are captured
by a Lagrangian stretching measure based on an effective time period that honours the
stretching history. We show that the optimality originates from the competition between
the enhanced mixing by fluid stretching and the mass depletion of the reactants. We
analytically derive the spatial distribution of reaction products using a lamellar formulation
and successfully predict the optimal ranges of fluid stretching, which are consistent across
different levels of channel roughness. These findings provide a mechanistic understanding
of how the interplay between fluid stretching, diffusion and channel roughness controls
mixing-limited reactions in rough channel flows, and show how reaction hot spots can be
predicted from the concept of optimal fluid stretching.

Key words: mixing and dispersion, porous media, laminar reacting flows

1. Introduction

Solute transport and chemical reactions in channel flows are of great interest in numerous
engineering applications and natural processes, including microfluidics, biomedical

† Email address for correspondence: pkkang@umn.edu

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 916 A45-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:pkkang@umn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.208&domain=pdf
https://doi.org/10.1017/jfm.2021.208


S. Yoon, M. Dentz and P.K. Kang

devices and fractured rock hydrogeology (Kotomin & Kuzovkov 1996; Dijk & Berkowitz
1998; Detwiler, Rajaram & Glass 2000; Losey et al. 2002; deMello 2006; Meakin &
Tartakovsky 2009; Kwon et al. 2019; Lee & Kang 2020; Yoon & Kang 2021). The
reactive displacement of two miscible fluids in channel flows is a fundamental process that
determines, for example, the performance of microfluidics devices and the remediation
of contaminated fractured rock aquifers. In many of these applications, predicting the
spatio-temporal evolution of chemical reactivity is critical. Here, we demonstrate that such
prediction is possible through the concept of optimal fluid stretching, a concept that we
propose in this study.

In a channel system where a solute A displaces another one B, the mixing front
between A and B acts as a hot spot of reaction as mixing induces chemical disequilibrium
by bringing together the reactants (Rolle & Le Borgne 2019). If A and B are initially
segregated, the reactive mixing front features strong chemical gradients, and the reaction
process is mixing-limited at early times, which means that the time scale of mixing
determines the overall reactivity. Therefore, in the mixing-limited pre-asymptotic regimes,
the reaction rates predicted by models based on the well-mixed condition and (constant)
hydrodynamic dispersion often lead to overestimation of the reaction process (Raje &
Kapoor 2000; Gramling, Harvey & Meigs 2002; Knutson, Valocchi & Werth 2007; Kang
et al. 2019; Lee et al. 2020).

Understanding mixing and reaction processes in pre-asymptotic regimes is critical in
many applications, but we still lack the mechanistic understanding of such processes.
For example, in order to assess the efficiency of remediation strategies based on
the mixing of contaminated groundwater with an injected reactant (Zavala-Sanchez,
Dentz & Sanchez-Vila 2009; Neupauer, Meiss & Mays 2014) and to optimize microfluidic
mixers (Verguet et al. 2010; Sivashankar et al. 2016; Lee & Kang 2020), the
pre-asymptotic mixing mechanism should be quantified. In pre-asymptotic regimes, the
classic Taylor–Aris approach based on effective dispersion cannot be applied because the
solute has not yet sampled the full velocity spectrum across the channel cross-section.
Therefore, chemical reactivity is not homogeneous over the channel cross-section, and
local mixing processes such as fluid stretching determine the spatially non-homogeneous
distribution of reactivity. Perez, Hidalgo & Dentz (2019b) recently investigated the global
mixing and reaction behaviours (total mass product) and related them to an effective
dispersion measure in channel flows. However, the local reaction behaviours, such as the
temporal evolution of reaction locations in channel flows and its relation to local fluid
deformation, are not yet clear.

Fluid stretching plays a critical role in enhancing mixing and reaction (Ottino, Ranz &
Macosko 1979; Rhines & Young 1983; Ottino 1989; Zoltan & Emilio 2009; Meunier &
Villermaux 2010; Le Borgne, Dentz & Villermaux 2013; Engdahl, Benson & Bolster
2014; Rolle & Le Borgne 2019). In channel flows, shear flow by strong velocity gradients
near the channel walls induces fluid stretching that leads to length elongation and
width compression of a lamellar structure in the reaction front (de Anna et al. 2013;
Bandopadhyay et al. 2017; Souzy et al. 2018), meaning that the area of reactive mixing will
be broadened and the reactants will be brought closer. Hence, fluid stretching promotes
mixing and enhances reaction rates. Interestingly, two recent experimental studies have
reported that there are optimal ranges of fluid stretching for maximum reactivity if the
reaction systems are with an excitation threshold such as the Belousov–Zhabotinsky
reaction (Nevins & Kelley 2016; Wang et al. 2017). The authors found reaction blowout
at high stretching rates, and this blowout is explained qualitatively by the dilution of the
reactant due to the fluid stretching. However, the quantitative link between fluid stretching
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and mixing-limited reactions and the underlying mechanisms behind the optimal stretching
are still elusive. If such a link can be established, one can envision predicting reactive
transport from flow properties.

Many studies in recent years have investigated the relationship between fluid stretching
and mixing-limited reaction processes. For instance, the Okubo–Weiss parameter (De
Barros et al. 2012) and the trace of the local strain matrix squared (Aquino & Bolster
2017) have been linked to the rate of evolution of the dilution index over time,
demonstrating a correlation between the global mixing rate and fluid stretching. In
Darcy-scale porous medium flows, Le Borgne, Dentz & Villermaux (2015) established
a theory that predicts mixing from the concept of stretched lamellae. Engdahl et al. (2014)
and Wright, Richter & Bolster (2017) also demonstrated a significant link between local
high-reactivity and regions identified by multiple metrics of the fluid stretching, such as
the Okubo–Weiss parameter, the largest eigenvalue of the Cauchy–Green strain tensor
and finite-time Lyapunov exponents. Although these studies report correlations between
the fluid stretching and reaction processes, underlying mechanisms by which the fluid
stretching determines the spatially non-homogeneous reactivity in channel flows have not
been elucidated.

In this study, we investigate the relationship between the fluid stretching and the
mixing-limited reaction process in channel flows in pre-asymptotic regimes by combining
numerical simulations using a Lagrangian reactive particle tracking algorithm (Perez,
Hidalgo & Dentz 2019a) and an analysis based on the diffusive strip method (Duplat &
Villermaux 2008; Meunier & Villermaux 2010; Le Borgne et al. 2013, 2015; Perez et al.
2019b). Especially, we aim to address the following open research questions: (a) What are
the underlying mechanisms by which fluid stretching determines the spatial distribution
of reactivity? (b) Is there an optimal stretching for inducing high reactivity and, if so,
what causes the optimality? (c) Can we predict the spatial distribution of reactivity
from stretching information alone? (d) How does the channel wall roughness affect the
stretching–reactivity relationship?

This paper is structured as follows. In § 2, we present the method for obtaining
channel flow fields and the reactive particle tracking algorithm for solving
advection–diffusion–reaction equations. In § 3, we propose a new measure that quantifies
fluid stretching using the concept of an effective time period. In § 4, we derive analytical
solutions for the spatial distribution of reaction locations. In § 5, we present numerical
simulation results, elucidate key mechanisms that determine a mixing-limited reaction and
establish the quantitative link between fluid stretching and reactivity distributions. Finally,
we discuss the effects of channel roughness on the stretching–reactivity relationship.
Conclusions are presented in § 6.

2. Fluid flow and reactive transport in channel flows

2.1. Channel geometries and fluid flow
We consider both straight and rough channel flows in this study. The flow field in a
straight channel is described by the parabolic velocity profile across the channel width as
u( y) = u0(1 − y2/a2) for −a ≤ y ≤ a, where u0 is the maximum velocity at the channel
centre, and a is half the channel width. In many natural and engineering applications,
rough channel flows are common. We consider self-affine rough walls, as rough surfaces in
nature are often found to be statistically self-affine (Mandelbrot 1983; Kertesz, Horvath &
Weber 1993; Ponson, Bonamy & Bouchaud 2006; Ghanbarian, Perfect & Liu 2019).
Self-affine surfaces are scale invariant in that the standard deviation of the height
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Figure 1. Channel geometries and initial distributions of A (red) and B (black) reactants with the initial strip
width of w0 = 5 mm. Colour map indicates the normalized velocity magnitude.

difference Δz between two points separated by lateral distance Δx can be expressed as
σΔz(Δx) = λ−HσΔz(λΔx), where H is the Hurst exponent that characterizes the surface
roughness (Drazer et al. 2004; Liu et al. 2004). We investigate the roughness effects by
varying the Hurst exponent (H) in the range of 0.7–0.9, which covers the observable values
in nature (Bouchaud, Lapasset & Planès 1990; Berkowitz 2002; Drazer et al. 2004). We
use the successive random addition algorithm (Voss 1988; Liu et al. 2004) to generate
rough surfaces of 10 cm length. The generated rough surfaces are duplicated and detached
to have a constant channel width (aperture) of b = 1 mm, where b = 2a.

We compute the fluid flow through the channels by solving the Navier–Stokes equations,
using the finite volume method (OpenFOAM 2011), for steady-state incompressible
laminar flow:

∇ · u = 0, (2.1)

u · ∇u = − 1
ρ

∇p + ν∇2u, (2.2)

where u is the pore-scale fluid velocity, p is the fluid pressure and ν is the kinematic
viscosity of the fluid. No-slip boundary conditions are applied at the channel walls.
A constant flux boundary condition is imposed on the left boundary of the channels,
and a zero-pressure-gradient boundary condition is imposed on the right boundary. The
Reynolds number, defined as Re = ūb/ν, is set to one. Here, ū denotes the mean flow
velocity which is 0.01 m s−1 in this study. We discretize the fracture with a resolution of
0.01 mm, yielding 10 000 × 100 grid cells within the channel domain. Figure 1 shows
velocity fields and initial reactant distributions for channels with different levels of
roughness.

2.2. Random walk based reactive particle transport
We consider an instantaneous irreversible bimolecular reaction

A + B
k−→ C, (2.3)

where k denotes the reaction rate coefficient. This elementary reaction can add up to
describe complex reactions because complex reactions can be described by multiple
elementary reaction steps (Gillespie 2000). The transport of the reactant and product
concentrations, cA, cB and cC are described by the following advection–diffusion–reaction

916 A45-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.208


Optimal stretching for mixing-limited reaction

equations:

∂cA(x, t)
∂t

+ ∇ · (u(x)cA(x, t)) − D∇2cA(x, t) = −r(x, t), (2.4a)

∂cB(x, t)
∂t

+ ∇ · (u(x)cB(x, t)) − D∇2cB(x, t) = −r(x, t), (2.4b)

∂cC(x, t)
∂t

+ ∇ · (u(x)cC(x, t)) − D∇2cC(x, t) = r(x, t), (2.4c)

where D is the diffusion coefficients of the species, u(x) is the velocity field and r(x, t)
is the reaction rate, defined as r(x, t) = kcA(x, t)cB(x, t). This simple reaction rule can
represent many elementary chemical reactions (Rosenblatt, Hlinka & Epstein 1955; Smith
et al. 1989; Raje & Kapoor 2000; Gramling et al. 2002; Lee & Kang 2020). The simple
reaction law allows us to reduce the complexity and thereby enables us to establish
the mechanistic understanding of the coupling between the hydrodynamics and effective
reaction dynamics. In this study, we consider the following initial conditions:

cA(x, 0) =
{

c0, −w0 < x < 0, ∀y
0, otherwise, (2.5a)

cB(x, 0) =
{

c0, 0 < x < w0, ∀y
0, otherwise, (2.5b)

cC(x, 0) = 0, ∀y. (2.5c)

At t = 0, the two species A and B are vertically segregated at x = 0 and the strip width of
each reactant is w0 (see figure 1). As we will see in the following sections, the initial width
plays a key role in determining the optimal fluid stretching regime for enhanced reactivity.

We conduct numerical experiments using a random walk based reactive particle
transport (RWPT) method (Perez et al. 2019a). We briefly describe the method here. The
equivalence between this RWPT method and the Eulerian reactive transport formulation
(2.4) and its validation and application can be found in Perez et al. (2019a, ). The
simulation of reactive particle transport is based on the combination of a random
walk method and a probabilistic rule for the reaction. The equation that governs the
advective–diffusive motion of particles of the A, B and C species is the following Langevin
equation (Risken 1996). The discretized Langevin equation is

x (t + Δt) = x(t) + u [x(t)] Δt +
√

2DΔtη(t), (2.6)

where x(t) is the trajectory of a particle; η(t) are independent identically distributed
Gaussian random variables characterized by zero mean and unit variance. The advective
particle motion, x(t + Δt) = x(t) + u[x(t)]Δt, is simulated using a streamline based
particle tracking algorithm (Bijeljic, Mostaghimi & Blunt 2011; Mostaghimi, Bijeljic &
Blunt 2012). The Lagrangian approach to advection and diffusion is free of numerical
dispersion and can accurately simulate particle transport even in high Péclet regimes.

At each time step, the position of each particle is recorded, and the distances between A
and B particles are calculated for the reaction step. We describe the point of view of a B
particle; that of an A particle is analogous. The survival probability Ps[x(t)] of a B particle
in the time interval [t, t + Δt] depends on the number of A particles, NA[x(t)], within a
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well-mixed volume ΔV centred at the position x(t) of a B particle as (Perez et al. 2019a)

Ps[x(t)] = exp[−pr(Δt)NA[x(t)]], (2.7)

where pr(Δt) = kΔt/(N0ΔV) is the probability of a single reaction event, and N0 is the
total number of particles. The local reaction volume is ΔV = πr2, where the reaction
radius is given as r = √

4DΔt (Perez et al. 2019a). The occurrence of a reaction event is
determined through a Bernoulli trial based on the survival probability (2.7). If the reaction
occurs, the B particle and the closest A particle are removed and a particle C is placed
at the middle point of the A and B particle locations. Since we consider an instantaneous
reaction, the reaction probability pr in (2.7) is one. We inject 105 particles for each species,
and we vary the Péclet number, defined as Pe = ūb/2D, to investigate the diffusion effects
on mixing and reaction. To focus on diffusion effects, we fix Re and vary Pe by varying D.
We consider four different Pe regimes: Pe = [102, 103, 104, 105].

3. Measures of fluid stretching

A key objective of this study is to elucidate the relation between the fluid stretching and
reaction dynamics in channel flows. To investigate the stretching effects on mixing-limited
reactive transport, we first need to define a measure that quantifies the degree of fluid
stretching that controls mixing and reaction. We propose a Lagrangian way of quantifying
the effective degree of fluid stretching, which honours the stretching history by adopting
the concept of an effective time period.

Under a diffusion-limited condition, reactive particles tend to follow the streamlines and
the advective stretching will play a dominant role in causing reactions. This means that we
may need to honour the stretching history in quantifying the degree of fluid stretching that
is required to induce reactions. In this context, we propose a Lagrangian stretching measure
estimated from the right Cauchy–Green tensor with an effective time period where the
effective time period is determined by the travel time for an infinitesimal fluid parcel of
interest to arrive at the location of reaction from the initial location.

For comparison purpose, we also use the conventional Eulerian measure of fluid
stretching that is based on the strain-rate tensor (De Barros et al. 2012; Engdahl et al.
2014; Aquino & Bolster 2017). Because the strain-rate tensor is obtained from an
instantaneous velocity field, the Eulerian measure quantifies the instantaneous strength
of fluid stretching. This implies that in the Eulerian measure, the characteristic time for
estimating stretching is fixed. We define both the Eulerian (instantaneous) and Lagrangian
(history-honouring) measures of fluid stretching in the following subsections.

3.1. Eulerian measure of fluid stretching
The instantaneous stretching measure is based on the velocity gradient tensor defined as

ε = ∇u(x)

=

⎡
⎢⎢⎣

∂u
∂x

∂u
∂y

∂v

∂x
∂v

∂y

⎤
⎥⎥⎦ . (3.1)

The fluid stretching is quantified by the largest eigenvalue of the symmetric part of ε as

SE = max[eig[ 1
2(ε + ε∗)]], (3.2)
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Figure 2. (a) Eulerian stretching map, SE(x) (3.5). (b) Lagrangian stretching map, SL(x) (3.11). (c) Analytical
reactivity map for plug flow. (d) Analytical reactivity map for Poiseuille flow. (e) Reaction locations simulated
by the RWPT method. The analytical reactivity maps and the numerical results are obtained for Pe = 105 and
w0 = 5 mm. The dashed lines are the characteristic depletion location, xR( y) (see § 5.2).

where [·]∗ denotes a matrix transpose. SE quantifies the instantaneous strength of
stretching and shear deformation (Lapeyre, Klein & Hua 1999; De Barros et al. 2012).

In straight channels, the flow velocity is aligned with the channel and depends only
on the position along the channel cross-section. Due to this feature, the velocity gradient
tensor in a straight channel is

ε =
[

0 α( y)
0 0

]
, (3.3)

where the shear rate, α( y) = ∂u/∂y, is given by

α( y) = −2u0y/a2. (3.4)

Thus, we obtain the Eulerian stretching measure as

SE(x) = u0|y|
a2 . (3.5)

Note that this stretching measure is independent of x and only a function of y in a
straight channel, that is SE(x) = SE( y). Figure 2(a) shows the Eulerian stretching map
in the straight channel that we study. The Eulerian stretching is zero at the channel centre
because the velocity gradient is zero at the channel centre, and increases linearly towards
the channel wall.

3.2. Lagrangian measure of fluid stretching
By definition, stretching measures quantify the strength of fluid stretching imposed on
an elementary fluid volume over a certain characteristic time. Most studies fix the

916 A45-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.208


S. Yoon, M. Dentz and P.K. Kang

characteristic time when calculating stretching measures. For example, the Eulerian
stretching measure based on the strain-rate tensor can be viewed as the rate of fluid
stretching over unit time (De Barros et al. 2012; Engdahl et al. 2014; Aquino & Bolster
2017). Also, the Lagrangian measures based on Cauchy–Green tensor is defined with
a fixed time duration when calculating the deformation–gradient tensor (Voth, Haller &
Gollub 2002; Arratia & Gollub 2006; Engdahl et al. 2014; Nevins & Kelley 2016; Wang
et al. 2017).

However, fixing the characteristic time can lead to an ineffective quantification of fluid
stretching when it comes to relating the stretching to reactions. Reactions depend on the
processes that bring reacting species into contact, which are essentially fluid stretching and
diffusion. In high Pe conditions, the chemical reactants are less likely to escape from the
streamlines that they were initially in due to low diffusivity. This implies that the reactants
retain the memory of the advective stretching they have gone through until they react, and
the stretching history should be honoured in order to quantify the degree of fluid stretching
required to induce the contact. Therefore, we propose a measure of fluid stretching using
the concept of an effective time period in order to capture the effective degree of fluid
stretching.

The proposed stretching measure is similar to the conventional Lagrangian stretching
measure based on the Cauchy–Green tensor (Voth et al. 2002). The only difference is the
manner of defining the time duration, T , over which the Cauchy–Green tensor is computed.
Given a velocity field u(x), we compute the flow map

F (x) = x +
∫ T

0
u[x(t)] dt, (3.6)

where the effective time period T is determined such that a fluid element at x travels back
to the initial location of the reaction front (x = 0) after backward time T (i.e. T < 0). Note
that, given a velocity field u(x), T is a function of x and defined in backward time (T < 0),
which implies that we quantify the stretching imposed by advection during the prior time
period T .

The right Cauchy–Green strain tensor is then computed as

C(x) = [∇F (x)]∗ [∇F (x)] , (3.7)

where the deformation–gradient tensor ∇F (x) is the gradient of the flow map with respect
to x. The maximum fluid stretching imposed by the effective time period can be estimated
by the square root of the maximum eigenvalue of C(x) as

SL(x) =
√

max[eig[C(x)]]. (3.8)

Here, SL(x) is the Lagrangian measure of fluid stretching that honours the history of fluid
stretching. The well-known finite-time Lyapunov exponent is given by the logarithm of SL
normalized by T (log(SL)/T).

In straight channels, due to the geometric simplicity, we can compute the flow map
explicitly as F (x) = [x + u( y) T, y]∗, where the effective time period for a spatial location
x is T = −x/u( y). Thus, the deformation–gradient tensor can be computed as

∇F (x) =
⎡
⎣1

2xy
a2 − y2

0 1

⎤
⎦ . (3.9)
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Then, the right Cauchy–Green strain tensor can be written as

C(x) =

⎡
⎢⎢⎢⎣

1
2xy

a2 − y2

2xy
a2 − y2

(
2xy

a2 − y2

)2

+ 1

⎤
⎥⎥⎥⎦ . (3.10)

Thus, we obtain for the Lagrangian stretching measure

SL(x) =

√√√√1 + 2
(

xy
a2 − y2

)2

+ 4

√(
xy

a2 − y2

)4

+
(

xy
a2 − y2

)2

. (3.11)

Appendix A provides in detail the derivation from (3.9) to (3.11). Figure 2(b) shows
the Lagrangian stretching map in the straight channel that we study. Like the Eulerian
stretching, the Lagrangian stretching is zero at the channel centre. At x = 0, the Lagrangian
stretching is zero across the channel width because the effective time period T is zero. The
stretching increases on moving downstream, and the increase is faster as it is closer to the
channel wall. This is because the velocity gradient increases towards the channel wall, and
T increases with x.

In rough channel flows, the flow map F (x) cannot be analytically computed, and we
use a streamline tracing algorithm that honours no-slip boundary conditions (Nunes,
Bijeljic & Blunt 2015) to numerically compute F (x). The backward-time tracing can be
straightforwardly conducted using the negative velocity field, −u(x), in the forward-time
algorithm. Once F (x) is numerically calculated, we use (3.7) and (3.8) to compute C(x)

and SL(x).

4. Reactivity map

The Eulerian and Lagrangian stretching measures (3.2) and (3.8) define stretching maps,
which quantifies the spatial distribution of fluid stretching. To investigate the link between
fluid stretching and chemical reaction, we compare the stretching maps to a reactivity map
m(x), which is defined here as the total amount of C produced at a location x over time,

dm(x, t)
dt

= r(x, t). (4.1)

m(x) =
∫

r(x, t) dt. (4.2)

Here, m(x)/
∫

m(x) dx can also be understood as a spatial probability density function
(PDF) that shows the spatial distribution of reaction locations integrated over time. Here
we consider a fluid–fluid reaction, in which all species are mobile. The analysis and
mathematical framework are equally valid for a reaction, in which the product species C is
immobile. In this case, m(x, t) provides a spatial map of the reaction product that does not
evolve in time. Therefore, the reactivity map also has direct implications for reactions that
produce immobile reaction products. In the following sections, we determine the reactivity
maps for straight and rough channels using the reactive particle tracking methodology of
§ 2.2. For the case of plug flow and Poiseuille flow in a straight channel, the reactivity map
can be determined analytically as follows.
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4.1. Analytical solution for plug flow in a straight channel
Let us consider first the reactivity map m(x) for a plug flow with constant flow velocity u.
Advection–diffusion and reaction in plug flow through a straight channel is described by
(2.4) for u(x) = u = constant. In this case the solution of the concentration of the reaction
product C is given by (Perez et al. 2019b)

cC(x, t) = c0

2

[
erfc

(
x − ut√

4Dt

)
− erfc

(
x + w0 − ut√

4Dt

)]
(4.3a)

for x ≥ ut, and

cC(x, t) = c0

2

[
erfc

(
x − w0 − ut√

4Dt

)
− erfc

(
x − ut√

4Dt

)]
(4.3b)

for x < ut.
Solving for the reactivity map (4.2) requires deriving an analytical expression for the

reaction rate r(x, t). To this end, we integrate (2.4c) from ut − ε to ut + ε with ε > 0 in
order to obtain

− D
∂c(x, t)

∂x

∣∣∣∣
x=ut−ε

+ D
∂c(x, t)

∂x

∣∣∣∣
x=ut+ε

=
∫ ut+ε

ut−ε

dx r(x, t). (4.4)

We used here the fact that the species concentration is continuous at the interface, while
the derivative of (4.3) is discontinuous at x = ut. It is given by

∂c(x, t)
∂x

∣∣∣∣
x=ut±ε

= ∓c0

⎡
⎢⎢⎢⎣

exp
(

−(ε − w0)
2

4Dt

)
√

4πDt
−

exp
(

− ε2

4Dt

)
√

4πDt

⎤
⎥⎥⎥⎦ . (4.5)

Inserting this expression into (4.4), we obtain

lim
ε→0

∫ ut+ε

ut−ε

dx r(x, t) = c0√
πDt

[
1 − exp

(
− w2

0
4Dt

)]
. (4.6)

This implies that

r(x, t) = c0
√

D√
πt

[
1 − exp

(
− w2

0
4Dt

)]
δ(x − ut). (4.7)

Inserting this expressing for r(x, t) into the right side of (4.1) and integrating over time
gives m(x, t) = m(x)H(ut − x), where we defined

m(x) = c0
√

D√
πxu

[
1 − exp

(
− w2

0u
4Dx

)]
. (4.8)

Figure 2(c) shows the reactivity map m(x) for w0 = 5 mm and Pe = 105. The Heaviside
function H(ut − x) expresses the fact that reaction can only happen behind the advancing
interface for x < ut. Thus the map shown in figure 2(c) can be interpreted as the reactivity
map after the interface sweeps the channel domain. For distances x 
 w2

0u/D, the
reactivity decays with travel distance as x−1/2. For large distances x � w2

0u/D it decays as
x−3/2. This decay in reactivity is due to the fact that concentration gradients, which drive
the reaction, attenuate due to diffusion.
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4.2. Analytical solution for Poiseuille flow in a straight channel
We now consider Poiseuille flow in a straight channel. Advection–diffusion–reaction
is described by (2.4), and Poiseuille flow through a straight channel is described
by the parabolic velocity field, u( y) = u0(1 − y2/a2). To analytically solve the
advection–diffusion–reaction problem, we use the stretched lamella formulation
(Meunier & Villermaux 2010; Le Borgne et al. 2013), which quantifies mixing due to
advective stretching of the substrate and diffusion across it. Thus, it is valid as long as
transverse diffusion has not led to substantial mixing across the channel. When this occurs,
the approximation of the interface as a stretched lamella breaks down, as we will see below.

The solution requires transforming the advection–diffusion reaction problem (2.4) from
the fixed (x, y) coordinate system into local coordinates that move and rotate with a
material element that is initially aligned with the interface between the A and B species
at x = x0 and oriented perpendicular to the mean flow direction. By this transformation,
(2.4c) can be recast as (Bandopadhyay et al. 2017; Dentz et al. 2018; Perez et al. 2019b)

∂ ĉ(x̂, t | y)
∂t

− 1
λ(t | y)

dλ(t | y)
dt

x̂
∂ ĉ(x̂, t | y)

∂ x̂
− D

∂2ĉ(x̂, t | y)
∂ x̂2 = r̂(x̂, t | y), (4.9)

where we omit the subscript C for brevity, and x̂ is the coordinate perpendicular to
the lamella. The relative elongation of the lamella centred at [u( y)t, y]∗ is λ(t | y) =√

1 + α( y)2t2, where the shear rate α( y) is given by (3.4). This equation can be
transformed into a simple diffusion–reaction equation by the coordinate transformation

x′ = x̂λ(t|y), (4.10)

τ(t | y) =
∫ t

0
dt′ Dλ(t′ | y)2 = D[t + α( y)2t3/3]. (4.11)

Thus, we obtain the diffusion–reaction equation

∂c′(x′, τ )

∂τ
− ∂2c′(x′, τ )

∂x′2 = r′(x′, t)
Dλ(t)2 , (4.12)

where we omit the y-dependence for brevity. From here on, the methodology is analogous
to the one used in the previous section in order to derive an analytical expression for
r′(x′, t) in the stretched coordinates attached to the lamella. Transformation back into the
original coordinate system gives

r(x, t) = c0√
πτ(x/u)

[
1 − exp

(
− w2

0
4τ(x/u)

)]
Dλ(x/u)2δ (x − ut) . (4.13)

For details, see Appendix B. Inserting expression (4.13) into (4.1) and integrating over
time gives for the reactivity map m(x, t) = m(x)H(ut − x), where m(x) is defined by

m(x) = c0

u
√

πτ(x/u)

[
1 − exp

(
− w2

0
4τ(x/u)

)]
Dλ(x/u)2. (4.14)

Figure 2(d) shows the map m(x) for w0 = 5 mm and Pe = 105. The Heaviside function
H[u( y)t − x] indicates that a reaction can only happen behind the advancing interface for
x < u( y)t. Thus the map shown in figure 2(d) can be interpreted as the reactivity map
at large t after the interface sweep the channel domain. For, large distances such that
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Dα2(x/u)3 � w2
0, reactivity decays as x−5/2. The faster decay compared to the plug flow

scenario is due to the fact that much of the reactant is consumed at short distances by the
enhanced stretching, which leads to a faster decay. Note that the reactivity maps between
plug flow and Poiseuille flow are dramatically different (figure 2c,d).

5. Results and discussion

In this section, we first analyse the spatial distributions of reaction locations in straight
channel flows from stretching-dominated (high Pe) to diffusion-dominated (low Pe)
regimes (§ 5.1), elucidate how the fluid stretching determines the spatial distributions of
reaction locations (§ 5.2) and identify optimal stretching regimes and extend the findings
to rough channel flows (§ 5.3).

5.1. Spatial distribution of reaction locations
We solve the advection–diffusion–reaction equations (ADRE) in (2.4) using the RWPT
method described in § 2.2. The strip widths of the solutes A and B at t = 0 are both w0 = 5
mm. A great benefit of the Lagrangian approach for solving the ADRE is that the spatial
locations of reaction occurrence can be obtained, as shown in figure 2(e), and compared
with the analytical solution (figure 2d). This feature enables us to explicitly analyse the
stretching–reactivity relation because we can sample the stretching values corresponding
to the reaction locations from the stretching maps (e.g. figure 2a,b).

We first investigate high Pe regimes (Pe = [104, 105]) to focus on stretching-controlled
mixing regimes. For low Pe regimes (Pe = [102, 103]), the role of diffusion on mixing
increases, and the combined effects of stretching and diffusion should be considered to
understand mixing and reaction. Figure 3(a,c) shows the spatial distribution of reaction
locations simulated by the RWPT method for Pe = [104, 105] in the straight channel shown
in figure 1. The channel centre (y = 0) has few reaction occurrences because shear rate,
which determines fluid stretching, is zero at the channel centre. The active reaction zone
is near walls at upstream locations and moves towards the channel centre on moving
downstream.

The similar trend (the convergence of the active reaction zone towards the channel
centre in the downstream direction) is also captured in the analytical reactivity map for
Poiseuille flow (4.14). Figure 2(d,e) shows that the analytical reactivity map for Pe = 105

qualitatively matches with the spatial distribution of reaction locations simulated by the
RWPT. To quantitatively compare the maps, we estimate the PDF of y-coordinates of
reaction locations from the reactivity map as

P( y) =

∫
dx m(x)∫
dx m(x)

. (5.1)

Figure 3(b,d) compares P( y) from the analytical solution, Panaly( y), with P( y) from
the numerical simulation, Psim( y), at every 1 cm interval; Panaly( y) and Psim( y) show
an excellent match across the channel domain, indicating that the analytical prediction
accurately captures the location of high reactivity over the whole channel.

Fluid stretching is well known to increase mixing by increasing the interfacial area
between reactants, thereby promoting the overall reaction. Thus, one may conjecture that
the active reaction zone is always near walls where the degree of stretching is maximum.
However, the active reaction zone is near walls only at upstream locations and moves away
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Figure 3. (a) Empirical reactivity map where red dots are individual reaction locations, and (b) the empirical
PDF of y-coordinates of reaction locations (red solid lines) along with the black dashed lines showing the
reactivity-weighted PDF of y-coordinates computed by (5.1) at Pe = 104. (c) Empirical reactivity map showing
reaction locations, and (d) the PDF of y-coordinates of reaction locations at Pe = 105. The active reaction
zones upstream are near the wall and move towards the channel centre on moving downstream. The analytical
prediction (black dashed lines) accurately captures the simulation results (red solid lines).

from the walls on moving downstream, as shown in figure 3. We hypothesize that the
near-wall low reactivity in downstream regions is because the reactants near walls react
and are consumed early, and no reactants are available near walls in downstream regions.
In § 5.2, we confirm this hypothesis by analytically deriving the time scale required to
deplete the reactants and elucidate the underlying mechanism inducing the evolution of
the reactive zone locations.

Figure 4 shows the spatial distribution of reaction locations obtained from numerical
simulations, and the comparison between Psim( y) and Panaly( y) for Pe = [102, 103].
Similar to the high Pe cases, low reactivities at the channel centre throughout the channel
length and at the near-wall locations in downstream regions are observed. However, the
movement of the reactive zone towards the channel centre is only observed in upstream
regions, whereas the analytical solution, Panaly( y), predicts that the convergence behaviour
continues throughout the channel length (figure 4(b,d), black dashed lines).

The analytical reactivity map (4.14) is derived assuming no transverse diffusion across
lamellar structures. This means that the assumption will become no longer valid as the
transverse diffusion effects on mixing increase, and the transverse diffusion effects will
appear earlier for lower Pe conditions. This is why the analytical solution breaks down
earlier for Pe = 102 compared to Pe = 103. For Pe = 102, the analytical prediction does
not match the simulation results before 1 cm, indicating that the transverse diffusion plays
a significant role before x = 1 cm. When we subdivide the first 1 cm channel segment,
we can confirm that Panaly( y) accurately captures Psim( y) up to x ≈ 8 mm, as shown in
figure 5. This confirms that the analytical solution is valid as long as transverse diffusion
is limited. The mismatch near the wall in the 0–2 mm zone is due to the finite-size effects
of the number of injected particles.
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Figure 4. (a) Empirical reactivity map where red dots are individual reaction locations, and (b) the empirical
PDF of y-coordinates of reaction locations (red solid lines) along with the black dashed lines showing
the reactivity-weighted PDF of y-coordinates computed by (5.1) at Pe = 102. The active reaction zones are
independent of x after x ≈ 2 cm. (c) Empirical reactivity map showing reaction locations, and (d) the PDF of
y-coordinates of reaction locations at Pe = 103. The active reaction zones are independent of x after x ≈ 3 cm.
The analytical prediction (black dashed lines) captures the simulation results only near the injection location.
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Figure 5. (a) Empirical reactivity map where red dots are individual reaction locations, and (b) the empirical
PDF of y-coordinates of reaction locations in the first 1 cm channel segment at Pe = 102. The analytical
prediction (black dashed lines) captures the simulation results near the injection location.
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5.2. Mechanisms and prediction of the locations of maximum reactivity
The convergence of high-reactivity zones from the channel walls towards the channel
centre is due to the combined effects of stretching-enhanced reaction and the depletion
of the reactants. This interplay creates the regions of maximum reaction discussed in the
previous section. We illustrate this mechanism by considering the time scale required to
deplete the reactant species that has the initial width of w0. In plug flow, the characteristic
time for mass depletion is simply given by the diffusion time over w0,

τD = w2
0

2D
. (5.2)

In the channel flow, the velocity gradient is stretching the strips. Stretching is stronger
close to the wall because the shear rate increases linearly from channel centre to channel
wall. The time evolution of strip width, w(t), is determined by stretching and diffusion,
which can be expressed by the following balance equation (Villermaux 2012; Dentz & de
Barros 2015):

1
w(t)

dw(t)
dt

= −γ (t) + D
w(t)2 . (5.3)

The stretching rate γ (t) is given by

γ (t) = 1
�(t)

d�(t)
dt

, (5.4)

where �(t) is the strip elongation. In the shear flow through the channel, it is

�(t) = �0

√
1 + α( y)2t2. (5.5)

Thus, the stretching rate is

γ (t) = α( y)2t
1 + α( y)2t2

. (5.6)

From (5.3) and (5.6), we obtain the width evolution due to stretching only as ws(t) =
w0/

√
1 + α( y)2t2, by setting D = 0 in (5.3). The reaction depletes at t = τm when the

width ws(τm) is equal to the diffusive width
√

2Dτm because the strip has been compressed
sufficiently such that diffusion mixes the full strip width. This implies

2Dτm = w2
0

1 + α( y)2τ 2
m

. (5.7)

For large elongation (i.e. α( y)2τ 2
m � 1), the depletion time τm is

τm( y) = α( y)−2/3

(
w2

0
2D

)1/3

= α( y)−2/3τ
1/3
D . (5.8)

The reaction location xR( y) corresponding to the depletion time can be calculated by
xR( y) = u( y)τm( y). Figure 6 shows the reactivity map, m(x), along with the characteristic
depletion location (red dashed lines), xR( y), for Pe = [102, 103, 104, 105]. Clearly, the
depletion of the reactant species causes the reactive zone to move towards the channel
centre on moving downstream. Also, the movement towards the centre is more rapid as Pe
decreases. This is because the reactants are more rapidly consumed by diffusion-induced
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Figure 6. Reactivity maps (4.14) according to Pe in a straight channel flow. The dashed lines are the
characteristic depletion location, xR( y). The active reaction zones upstream are near the wall and move towards
the channel centre on moving downstream. (a) Pe = 102; (b) Pe = 103; (c) Pe = 104; (d) Pe = 105.

mixing and reaction as implied by the factor τ
1/3
D in (5.8). Note that this derivation neglects

diffusion transverse to lamellar structures, which can be important at later times. This
is why the convergence of reaction locations towards the channel centre is faster in the
analytical solution than what is obtained from direct numerical simulations in low Pe
regimes (figure 4b,d).

The reaction depletion near the channel walls emerges because the mass of reactants
is limited. The importance of the mass limitation is highlighted by considering the effect
of the initial strip width, w0. Figure 7 shows the reactivity map, m(x), along with the
characteristic depletion location, xR( y), for Pe = 105 for different initial strip widths, w0.
As w0 increases, that is, as the mass limitation is alleviated, the reactive zone stays near the
wall for larger distances. This confirms that the competition between the enhanced mixing
by fluid stretching and the mass limitation of the reactants underlies the movement of the
high-reactivity zone towards the channel centre on moving downstream.

In summary, we have shown how the compound effects of fluid stretching, diffusion
and mass limitation determine the local reactivity in straight channel flows. Especially
for high Pe regimes (Pe ≥ 104), the role of fluid stretching on mixing is dominant over
that of the diffusion effects for the whole channel domain. Consequently, the analytical
reactivity map can predict where and how much reaction products are produced for the
whole domain. This leads us to a hypothesis that, if stretching-induced mixing is dominant,
characterizing the fluid stretching will be sufficient for predicting the distribution of
reactivity. We investigate this hypothesis in the following subsection by analysing the
stretching–reactivity relationship for the high Pe regimes.

5.3. Stretching–reactivity relationship: optimal stretching and roughness effects
We combine the reactivity maps and the maps of Eulerian and Lagrangian stretching to
establish stretching–reactivity relationship. While the Eulerian measure is independent of
x, the Lagrangian measure of fluid stretching is zero at the initial location of the reaction
front (x = 0) and increases with x (figure 2a,b). The increase depends on the shear rate,
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Figure 7. Reactivity maps (4.14) for the three different values of w0 in a straight channel flow. The dashed
lines are the characteristic depletion location, xR( y). As the mass limitation is eased (as L increases), the
active reaction zone stays near the channel wall, where fluid stretching is stronger, for longer distances.
(a) W0 = 1 mm; (b) W0 = 5 mm; (c) W0 = 10 mm.

which is strongest at the wall and zero at the channel centre. For Pe = [104, 105], we
compute the reactivity-weighted PDF of both measures as

P(SE) =

∫
dm mP(m, SE)∫

dSE

∫
dm mP(m, SE)

, (5.9a)

P(SL) =

∫
dm mP(m, SL)∫

dSL

∫
dm mP(m, SL)

, (5.9b)

where the joint PDF P(m, S) = ∫
Ω

dx δ(S − S(x))δ(m − m(x))/
∫
Ω

dx. Here, Ω denotes
the channel domain and δ(·) is the Dirac delta function. Figure 8 shows Panaly(SE) and
Panaly(SL) from the analytical solution along with the corresponding empirical PDFs,
Psim(SE) and Psim(SL), of the stretching metrics sampled at reaction locations simulated
by the RWPT method.

As can be expected from the good agreement between the analytical prediction and
the numerical experiments in figure 3, the predicted and simulated stretching–reactivity
relationships are in good agreement. It is noteworthy that the modes of Panaly(SE) and
Panaly(SL) are not located at the maximum value of stretching. One may expect the mode
of the reactivity-weighted PDFs to be the maximum value of the support of the PDFs
because larger fluid stretching leads to larger mixing. However, as discussed in §§ 5.1 and
5.2, this is not the case due to the mass limitation of the reactants. The competition between
the enhanced mixing by fluid stretching and the mass depletion of the reactants results in
the emergence of an optimal range of fluid stretching for high reactivity.

Now we extend our analysis to rough channels to check if the optimality of fluid
stretching is maintained in more complex flow fields. Figure 9(a–d) shows the distribution
of reaction locations simulated by the RWPT method and the empirical PDF of
y-coordinates sampled from the reaction locations for the case of H = 0.8 and Pe =
[104, 105]. The y-coordinate ranges from −0.5 mm at the bottom wall to 0.5 mm at the
upper wall. Similar to the straight channel case shown in figure 3, the evolution of the
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Figure 8. Empirical PDFs of Eulerian and Lagrangian stretching values sampled from reaction locations for
(a) Pe = 104 and (b) Pe = 105 for the straight channel. The black dashed lines are analytically computed
reactivity-weighted PDFs of fluid stretching (5.9). The observed stretching–reactivity relations demonstrate
that there exist optimal ranges of fluid stretching for high reactivity.

high-reactivity zone on moving downstream is observed. This implies that the competition
between the enhanced mixing by fluid stretching and the mass depletion of the reactants
also determines the location of high reactivity in rough channels.

We numerically compute the maps of Eulerian and Lagrangian stretching, SE (3.2) and
SL (3.8), respectively as shown in figure 9(e, f ). The channel roughness increases the
complexity of the stretching maps. We then calculate the empirical PDFs, Psim(SE) and
Psim(SL), of the stretching metrics sampled at reaction locations simulated by the RWPT
method in rough channel flows (H = 0.8), as shown in figure 10. Black dashed lines show
Panaly(SE) and Panaly(SL), which are computed from the analytical reactivity map of the
straight channel (5.9).

The reactivity-weighted PDF of Eulerian stretching for the rough channel deviates
significantly from that for the straight channel (figure 10). The Eulerian quantity of fluid
stretching is computed using the spatial gradients of flow velocities, as in (3.2). Thus, the
significant deviation is from the flow complexity induced by the channel roughness. In
contrast to the Eulerian measure, the reactivity-weighted PDF of Lagrangian stretching for
the straight channel agrees very well with that for the rough channel. This implies that
the proposed Lagrangian stretching measure is the measure that accurately predicts the
reaction locations by properly honouring the stretching history. In other words, this result
indicates that honouring the stretching history with the concept of the effective time period
is critical for properly quantifying the effective degree of fluid stretching that determines
mixing-limited reactions. Furthermore, the reactivity-weighted PDFs of the Lagrangian
stretching measure seem independent of channel roughness, and this implies that there
may be optimal stretching ranges that are independent of channel roughness.

To confirm the importance of honouring the stretching history and the existence of
a roughness-independent optimal stretching range, we quantitatively compare optimal
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flows.

stretching regimes of SE and SL across the channel roughness. We estimate the shortest
range of fluid stretching accounting for 70 % mass of the PDFs, Panaly(SE) and Panaly(SL),
as shown in figures 10 (line bars) and 11 (circle symbols with ranges). The 70 % is chosen
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considering the fact that the mass of normal distribution within one standard deviation of
the mean accounts for approximately 68 %. We also estimate the range of fluid stretching
corresponding to the same mass of the empirical PDFs, Psim(SE) and Psim(SL), computed
for rough channels with H = [0.7, 0.8, 0.9], and plot the middle points of the ranges as
shown in figure 11 (dashed lines with triangle, cross and square symbols).

For the Lagrangian stretching measure, SL, the analytically computed ranges of optimal
stretching for straight channels accurately capture the optimal stretching values across
channel roughness (figure 11c,d). However, the Eulerian stretching measure, SE, between
the straight channel and rough channels shows significant differences (figure 11a,b). This
result highlights that, although the channel roughness induces complex flow fields and
thereby the complex distribution of fluid stretching, the Lagrangian stretching–reactivity
relationship is rather consistent, and the optimality of fluid stretching for mixing and
reaction is maintained across different levels of channel roughness.

6. Conclusions

Mixing-limited reactions in pre-asymptotic regimes are strongly determined by fluid
stretching. In this study, we have established the quantitative link between fluid
stretching and reactivity in channel flows, which enables the prediction of chemical
reactivity from fluid stretching information only. We considered an instantaneous
irreversible bimolecular reaction (A + B → C) in finite-length channels and simulated the
advection–diffusion–reaction process using a RWPT method. The numerical simulations
revealed the convergence of reaction locations towards the channel centre in the
downstream direction and the optimal ranges of stretching for high reactivity.

We quantitively elucidated the origin of optimal stretching as the competition between
stretching-induced mixing enhancement and mass limitation that is determined by the
initial reactant strip width. To quantify the key mechanisms, we analytically derived the
spatial distribution of reactivity in straight channels using a lamellar formulation. The
analytical solution accurately captured results obtained from direct numerical simulations.
We also proposed the Lagrangian measure of fluid stretching based on the concept of
the effective time period and captured the consistent relation between fluid stretching and
mixing-limited reaction. From the proposed definition of fluid stretching and the analytical
derivation, we demonstrated the existence of optimal fluid stretching for high reactivity.

The optimality is not a straightforward result. Fluid stretching is well known to enhance
mixing and chemical reaction, implying that, the stronger the fluid stretching is, the more
mixing and reaction will occur. However, in channel flows with a limited mass of reactants,
we show that the optimality emerges through the competition between the enhanced
mixing by fluid stretching and the mass depletion of the reactants. These results give
new insights into the processes that are determined by the distributions of reactant and
product species (e.g. the formation of biofilm, dissolution and precipitation patterns), and
shed new light on the notion of optimal stretching observed also in other flows (Nevins &
Kelley 2016; Wang et al. 2017). For example, the stretching-induced mixing enhancement
shown in this study is closely related to the reactant blowout observed in Nevins & Kelley
(2016).

We have extended our analysis to rough channels and shown that the stretching–
reactivity relation featured by the optimality persists in more complex flow fields. We
studied channels with self-affine wall roughness and considered high Pe regimes where
stretching-induced mixing is dominant and showed that the roughness does not modify
the ranges of optimal fluid stretching when the Lagrangian stretching measure is used.
This implies that we can predict active reaction zones directly from flow fields using the
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consistent stretching–reactivity relationship found in this study. This finding contributes
to the mechanistic understanding of reaction hot spots and their prediction in rough
channels. The proposed framework also provides a foundation for understanding and
upscaling more complex mixing-limited biochemical reactions in channel flows, especially
in pre-asymptotic regimes.
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Appendix A

We present the derivation of the Lagrangian stretching measure in (3.11). In straight
channels, the flow velocity is aligned with the channel and depends only on the position
along the channel cross-section, and the flow field u(x) can be written as u( y) = u0(1 −
y2/a2) for −a ≤ y ≤ a, where u0 is the maximum velocity at the channel centre, and
a is half the channel width. Using this feature, the effective time period T and the
deformation–gradient tensor can be estimated as

T = −x/u( y) = −x
u0(1 − y2/a2)

, (A1)

∇F (x) =
⎡
⎣1

du
dy

T

0 1

⎤
⎦

=
⎡
⎣1

2xy
a2 − y2

0 1

⎤
⎦ . (A2)

Thus, the right Cauchy–Green strain tensor is

C(x) =
⎡
⎣ 1 0

2xy
a2 − y2 1

⎤
⎦
⎡
⎣ 1

2xy
a2 − y2

0 1

⎤
⎦

=

⎡
⎢⎢⎢⎣

1
2xy

a2 − y2

2xy
a2 − y2

(
2xy

a2 − y2

)2

+ 1

⎤
⎥⎥⎥⎦ , (A3)
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whose eigenvalues are the roots of the polynomial

λ2 − 2

[
2
(

xy
a2 − y2

)2

+ 1

]
λ+ 1 = 0. (A4)

Using the quadratic formula, the Lagrangian quantity of fluid stretching is quantified as

SL(x) =

√√√√1 + 2
(

xy
a2 − y2

)2

+ 4

√(
xy

a2 − y2

)4

+
(

xy
a2 − y2

)2

. (A5)

Appendix B. Reaction map

The distribution of the product species in the lamellar coordinate system is given by

c′(x′, τ ) = c0

2

[
erfc

(
x′

√
4τ

)
− erfc

(
x′ + w0√

4τ

)]
, for x′ > 0, (B1a)

c′(x′, τ ) = c0

2

[
erfc

(
x′ − w0√

4τ

)
− erfc

(
x′

√
4τ

)]
, for x′ < 0. (B1b)

In order to determine r′(x′, t) in (4.12), we integrate (4.12) from −ε to ε, which gives

−∂c′(x′, τ )

∂x′

∣∣∣∣
x′=−ε

+∂c′(x′, τ )

∂x′

∣∣∣∣
x′=ε

= 1
Dλ(t)2

∫ ε

−ε

dx′ r′(x′, t). (B2)

The derivative of (B1) is unsteady at x′ = 0 and given by

∂c′(x′, τ )

∂x′

∣∣∣∣
x′=0

= ∓c0

⎡
⎢⎢⎢⎣

exp
(

−(ε − w0)
2

4τ

)
√

4πτ
−

exp
(

− ε2

4τ

)
√

4πτ

⎤
⎥⎥⎥⎦ . (B3)

Thus, we obtain

lim
ε→0

∫ ε

−ε

dx′ r′(x′, t) = c0√
πτ(t)

[
1 − exp

(
−w2

0
4τ

)]
Dλ(t)2, (B4)

which gives for r′(x′, t) the expression

r′(x′, t) = c0√
πτ(t)

[
1 − exp

(
− w2

0
4τ(t)

)]
Dλ(t)2δ(x′). (B5)

Going back into the (x̂, t) coordinate system, we obtain

r̂(x̂, t) = c0√
πτ(t)

[
1 − exp

(
− w2

0
4τ(t)

)]
Dλ(t)2δ[x̂λ(t)]. (B6)

Transformation finally back into the original coordinate system gives

r(x, t) = c0√
πτ [x/u( y)]

[
1 − exp

(
− w2

0
4τ [x/u( y)]

)]
Dλ([x/u( y)])2δ[x − u( y)t]. (B7)

This expression accounts for the fact that the reaction is localized at the interface position
x = u( y)t, and that the support along the lamella is stretched by the factor λ(t | y) such that
r(x, t) = λ(t | y)r̂[x − u( y)t].
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