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Let R = ©,,6ZR, be a Z-graded commutative Noetherian ring and let M be a Z-graded R-module. S. Goto
and K.. Watanabe introduced the graded Cousin complex 'C(M)' for M, a complex of graded R-modules.
Also one can ignore the grading on M and construct the Cousin complex C(M)' for M, discussed in earlier
papers by the second author. The main results in this paper are that 'C(M)' can be considered as a
subcomplex of C(M)' and that the resulting quotient complex is always exact. This sheds new light on the
known facts that, when M is non-zero and finitely generated, C(M)' is exact if and only if *C(M)* is (and this
is the case precisely when M is Cohen-Macaulay).

1991 Mathematics subject classification: 13A02, 13EO5, 13D25, 13D45, 13C14.

0. Introduction

Let R — ©n£Z/?n be a Z-graded commutative Noetherian ring, and let M be a graded
R-module. Let *Supp(M) denote the set of graded prime ideals in the support of M.
The graded Cousin complex *C(M)' for M, introduced by S. Goto and K. Watanabe in
[3], is a complex of graded R-modules and homogeneous homomorphisms having the
form

0 —> M -^-l 'M° -A- 'M1 —• ... —• *M" - ^ *M"+1 —• . . .

with *M" = ^ (Coker d"-\y for each n e No. (For p e *Supp(M), the suffix
pe'Supp(M)

htMp=n

"(p)" denotes homogeneous localization at p: see [2, p. 30]. Also, No denotes the set of
non-negative integers). The homomorphisms in this complex have the following
properties: for m 6 M and a (necessarily graded) minimal prime p of Supp(M), the
component of d~\m) in M(p) is m/l; for n > 0, x € *M"~' and q e *Supp(M) with
htMq = n, the component of d"~\x) in (Coker d"'2)w is 3c/l, where "overlines" are used
to denote natural images of elements of *M"~' in Coker d"'2. The fact that such a
complex can be constructed follows from [3, Lemma 1.3.1].

It should be noted that if L is a module over the commutative Noetherian ring R' and
we regard R' and L as trivially graded, then *C(L)' is (essentially) the Cousin complex
C(L)' for L studied in [6]. This is an algebraic analogue of the Cousin complex studied by
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290 HENRIKE PETZL AND RODNEY Y. SHARP

Hartshorne in [4, Chapter IV]. When L is non-zero and finitely generated, it is known that
L is Cohen-Macaulay if and only if C(L)' is exact (see [7, Theorem (2.4)]).

Again, when our graded R-module M is non-zero and finitely generated, it is known
that M is Cohen-Macaulay if and only if 'C(M)' is exact (see [3, Theorem (1.3.3)]).
Thus, for M finitely generated, *C(M)' is exact if and only if C(M)' is exact.

This paper presents the results of a comparison of the graded and ungraded Cousin
complexes for a graded module M over the Z-graded commutative Noetherian ring R.
We show that there is a chain map »F(M) = (Vr'),>_2 : *C(M)' —> C(M)' of complexes
of i?-modules and R-homomorphisms such that \ji~] : M —> M is the identity map and
ip' is injective for all i eN 0 . This will enable us to regard *C(M)' as a subcomplex of
C(M)', and to form the quotient complex Q(M)' := C(M)74/(M)(*C(M)'), which we
shall refer to as the degradation complex of M. Our main result is that this degradation
complex of M is always exact, so that it is automatic that *C(M)' is exact if and only
if C(M)' is exact!

1. The small support

We shall use the small support of a module over a commutative Noetherian ring,
and we begin by recalling the definition of this concept.

Definition 1.1. Let L be a module over the commutative Noetherian ring R'. For
p e Spec(R'). denote R^/pR'? by k(p), and, for i e No, let n'(p, L) (or /4(p, L)) denote the
i-th Bass number of L with respect to p (see [5, Theorem 18.7]).

The small support, or little support, of L, denoted by supp(L) or suppx>(L) (note the
use of the lower case "s") is defined by

supp(L) = {p e Spec(K') : there exists i e No such that Ext^(fc(p), Lp) ^ o|

= {p e Spec(K') : there exists i e No such that /*'(p, L) > 0}.

We shall make use of the properties of the small support presented in the next lemma.

Lemma 1.2. Let R' be a commutative Noetherian ring, let L be an R'-module, and
let 0 —> L' —> M' —y N' —> 0 be an exact sequence of R'-modules and
R'-homomorphisms. Then

(i) Ass L c supp(L) c Supp(L);

(ii) Ass N' c Ass M' U supp(L');

(iii) any one of supp(L'), supp(M') and supp(iV') is contained in the union of the other
two; and

(iv) if S is a multiplicatively closed subset of R' and N is an S~lR'-module, then, when
N is regarded as an R'-module in the natural way.
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suppR,(N) = {p e Spec(R'): p n S = 0 and pS~lR' e supps-lR,(N)}.

Proof, (i) This is elementary.
(ii) Let p e Ass AT. Then HomR (̂fc(p), N'p) ^ 0. The induced exact sequence of Rp-

modules 0 —>• L'p —*• M'p —> N'p —> 0 itself induces an exact sequence

HomR- (fc(p), M'p) —> HomR- (k(p), N'p) —• ExtR, (fc(p), L'p),

from which the claim is clear.
(iii) Application of the functor HomR< (/c(p), •) to the exact sequence

0 — • L'p — » M p — • N'p —»• 0

produces a long exact sequence of "Ext" modules, from which the claim is clear.
(iv) Let p € Spec(R')-
If p n S ^ O , and s e p n S , then multiplication by s/1 € R'p provides the zero

endomorphism of fc(p) and provides an automorphism of Np; hence

ExfR, (fc(p), Nt) = 0 for all i e No.

If p n S = 0, then NP and NpS-\R, are isomorphic as Rp-modules (when NpS-\R, is
regarded as an Rp-module by means of the natural ring isomorphism
R'p -A- (S~lR'\s-,R,); it follows that, in this case,

A4(P, ^0 = ^S-'R'(PS"'^'> ^0 f o r a 1 1 ' e No-

The result follows from these observations.

2. Graded modules and local cohomology

2.1 Notation and Terminology. Throughout the remainder of this paper,
R = ®n&zRn will denote a Z-graded commutative Noetherian ring (with identity). We
shall use the notation and terminology about graded commutative Noetherian rings
and graded modules over them employed by Bruns and Herzog in [2, §1.5 and §3.6].
We shall use C{R) to denote the category of all /^-modules and R-homomorphisms.

We shall also use many of the basic results from the above-cited sections of [2] about
graded rings and graded modules without much comment.

The set of homogeneous elements of R will be denoted by h(R). We shall denote by
*Spec(R) the set of graded prime ideals of R. For a graded R-module M, we shall
denote *Spec(R) D Supp(M) by 'Supp(M).

Lemma 2.2. Let M be a graded R-module and let p e *Spec(R). Let 0 ̂  m e M (we
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are not assuming that m is a homogeneous element).

(i) The ideal ̂ /(0 : m) is graded.

(ii) If (0 : m)* c p, then (0 : m) c p. (For an ideal a of R, the notation a* stands for
the ideal of R generated by all homogeneous elements of a: see [2, p. 28] J

(iii) The natural R^-homomorphism coMl> : M(p) —>• Mp, for which

fflju.pWs) = y/s for all y e M and s e h(R) \ p,

is injective.

Proof, (i) Each minimal prime ideal of (0 : m) belongs to Ass(Rm) c Ass M, and
every prime in Ass M is graded [2, 1.5.6(b)(ii)]. Thus /̂(O : m) is an intersection of
graded prime ideals.

(ii) Since y/(0 : rri) is graded by (i), we can deduce, from the hypothesis that
(0 : m)' c p, that (0 : m) c J(0 : m) = (V(0 : m))' = y/(0 : m)' c p.

(iii) Let y e M and s e h(R) \ p be such that y/s 6 Kera>Mp. Thus (0 : y) g p, and so
(0 : y ) ' 2 p by (ii).

Lemma 2.3. Le/ M be a graded R-module and let p e Supp(M) with htMp = n.

(i) 7/" p w graded then there exists a chain p0 c p, C . . . C pn = p of graded prime
ideals in Supp(M). (The symbol "c " is reserved to denote strict inclusion.)

(ii) Ifp is ungraded then htMp* = htMp — 1.

Proof. This is proved in [2, 1.5.8(b)] under the additional assumption that M is
finitely generated. However the general case follows from this, since there exists a
finitely generated graded submodule N of M such that p e Supp(JV) and htMp = htNp:
to construct such an N, let p0 e Ass M be such that p o c p and ht(p/p0) = n; observe
that p0 is the annihilator of a homogeneous element m e M (by [2, 1.5.6(b)(ii)]) and let
N be the (necessarily graded) submodule of M generated by m.

Lemma 2.4. Suppose that R is 'local (see [2, 1.5.13],) and m is its unique 'maximal
ideal. Let L be a graded m-torsion R-module, and let nL : L —> Lm be the natural map.
Then supp(Coker^t) c {p e Supp(L) \'Supp(L): p* = m}.

Proof. The claim is obvious if L = 0, and so we assume that L ^ 0. Now L is
graded, and m-torsion; hence

Supp(L) = {p e Spec(R) : p* = m} = {p g Supp(L) : p* = m}.

Note that m is the unique minimal member of this support. Hence the Cousin complex
C(L)' for L begins

and, by [6, (2.7)(iv)], Supp(Coker //L) c Supp(L) \ {m}. All the claims follow.
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The next lemma, which is an application of 2.2(iii), will be crucial in our comparison
of graded and ungraded Cousin complexes.

Lemma 2.5. Let M be a graded R-module, and let q 6 *Supp(M). We use the R(q)-
homomorphism coMq of 2.2(iii). For each n € No, the homomorphism Hq(i(q)(a)M q ) :

fW M «) ) —• * W M , ) " inJective-and

c {p e Supp(M) \ 'Supp(M): p* = q}.

Proof. It is convenient to denote (h(R) \ q) 'X, for an arbitrary (not necessarily graded)
R-module X, by X^, and to let a>x q : X(q) —>• Xq denote the natural R(q)-homomorphism.

First note that rqR(q)(X(q)) = (rq(X))(q) and rqRJXq) = TqRq(Xq) = (rq(X))q. We can
use the Flat Base Change Theorem and the Independence Theorem for local
cohomology (see [1, §4.3 and §4.2]) to see that there are isomorphisms of negative
strongly connected sequences of functors (from C(R) to

and

such that 6° and </>° are the identity natural equivalences.
Next, observe that rqR(?)(a;Xq) = tor,w,q for each R-module X. It is easy to check that

both

are homomorphisms from the connected sequence (#qR<q)((•)(,>)),leN (of functors from
C(R) to C(i?(q))) to. the connected sequence (^qR(o((-)q)),6N0

 w r i o s e 0"tn constituent
natural transformations are TqR (<y. q) = corq(.) q. But there is only one such
homomorphism of connected sequences. Hence

for each R-module X and each i e No. Since H"q(M) is graded, it follows from 2.2(iii)
that coHj(M),q is injective; hence HqR(q)(ajMq) is injective too. It also follows that the
cokernel of this map is isomorphic to C o k e ^ a j ^ ^ „), and consequently the final claim
follows easily from Lemmas 2.4 and 1.2(iv).
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3. The comparison results

3.1. Properties of graded Cousin complexes (Goto and Watanabe [3]). Let M be a graded
module over our graded ring R. The graded Cousin complex *C[M)' for M has the form

0 —• M -i-l 'M° -^> *M' —• ... —• *M" - ^ *M"+I — * . . . ,

and was described in the introduction. Note that it is a complex of graded R-modules
and homogeneous homomorphisms.

We shall need the following properties of 'C(M)'.

(i) By [3, Chapter 1, §3],

*Supp(Coker d"'1) c { p 6 *Supp(M): htMp > n) for all n e No.

(ii) It is not difficult to deduce from (i) that, for each n e N , and each
p e 'Supp(M) with htMp = n, every element of (Coker rf"~2)(p) is annihilated by some
power of p.

(iii) It follows from part (i) that

*Supp('M") c {p e 'Supp(M): htMp > «} for all n e No.

(iv) It is easy to deduce from [3, Lemma 1.3.1] that

•Supp(/r-'(*C(M)*)) c {p-€ *Supp(JVf): htMp > n + 1} for all n e No.

For a graded module M over the graded ring R, we can construct both the ungraded
Cousin complex C(M)' of [6], which we shall write as

O^M-^M'^M 1 ^ .. .^M"-^ Af+1 -^ ...,

and the graded Cousin complex *C(M)' of 3.1. We are now going to compare these
two complexes: we shall show that there is a chain map ^(M) = (<A'),>-2:

*C(M)' —*• C(M)' of complexes of i?-modules and /?-homomorphisms such that
i/T1 : M —> M is the identity map and ip' is a monomorphism for all i e No. This will
enable us to regard *C(M)' as a subcomplex of C(Af)*, and to form the quotient
complex Q(M)' := C(M)7XP(M)(*C(M)*), which we shall refer to as the degradation
complex of M.

Proposition 3.2. Let M be a graded R-module. Use the notation ofi.Xfor the graded
Cousin complex *C(M)' for M and the notation in the above paragraph for the Cousin
complex C{M)' for M. Use "overlines" to denote natural images of elements of terms in
Cousin complexes or graded Cousin complexes in cokernels of appropriate maps in those
complexes. There is a chain map
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= (./0,.£_2 : 'C(M)' - * C(M)'

of complexes of R-modules and R-homomorphisms such that

(i) </f~' : M —y M is the identity map, and

(ii) for all n e No and all {Tv/tf\^MM)MM^n e *M",

I Vp-'peSupp(AO,htMp=n>
pe'Supp(M),htMp=n/

where, for p e Supp(M) with htMp = n,

^ * P" 9raded,

0 if p is ungraded.

(In this notation, each tp denotes a homogeneous element of R outside p, and the yp

denote elements of*M"~l; when n = 0, interpret *M"~l as M itself) Note that

\l>" ((Coker d1"2)^) c (Coker e"-\ for all p e 'Supp(M) with htMp = n.

Proof. The maps ij/" (n e No) are constructed inductively. The key point is to show
that, if n e No and y e "M"~\ and q is an ungraded prime of Supp(M) having JVf-height
n, then the image y of y in Coker d"~2 is such that (0 : y) g q. This is achieved as
follows. By 2.3(ii), htMq* = n - l , and so, by 3.1(i), we have q* £ Supp(Coker d"~2).
Hence (0 : y) g q*. Therefore, by 2.2(ii), since Coker d"'2 is a graded K-module,
(0 : y)' 2 q\ and hence (0 : y) g q.

The inductive construction of the maps \ji" (n e No) with the desired properties is
now straightforward.

Our next major aim is to show that all the constituent homomorphisms ip" (n e No)
in the chain map *P(M) of 3.2 are monomorphisms. Our method will involve a
refinement of a result proved in [8]: for a non-zero module L of dimension n over a
commutative (Noetherian) local ring R' (having unique maximal ideal m'), it was
proved in [8] that the n-th term in the Cousin complex C(L)' for L is isomorphic to the
n-th local cohomology module H"m,(L).

Theorem 3.3. Let M be a graded R-module, and let q 6 *Supp(M) with htMq = n.
Use the notation ofi.X for the graded Cousin complex 'C(M)' for M and the notation in
the paragraph following 3.1 for the Cousin complex C(M)' for M. Let ^(M) = (i/O,>-2 :

'C(M)' —y C(M)' be the chain map of complexes of R-modules and R-homomorphisms
of'3.2. Then there is a commutative diagram of R^-modules and R(l(j-homomorphisms
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Aq)

> (Cokere-2),,

in which coMq is as defined in 2.2(iii) and the horizontal maps are isomorphisms.
Consequently, \j/" is a monomorphism and

suppR((Coker e - 2 ) q /^n( (Coker <*"-2)(q))) Q {p 6 Supp(M) \ *Supp(M) : p* = q}.

Proof. The maps coMq! co^o_q, . . . , a j M i q , . . . provide a chain map

A : (C(M)*)(q) —> (CiM)'),

of complexes of /?(q)-modules and i?(q)-homomorphisms; hence A o CV(M))((l) :
(*C(M)*)(q) —> (^M)*),, is also a chain map of such complexes.

It follows easily from 3.1(ii) that, for each i e No, there is a natural /?(q)-
isomorphism

(Cokerd-2) ( p ) .
pe-Supp(M)

Similarly, there is a natural Rq -isomorphism

(Coker e""2)p.
PESupp(M)

Furthermore, when we use these two natural isomorphisms to make identifications,
then the i-th member of the chain map A o 0F(M))(q) should be interpreted as the
restriction \J/'\ of\J/'.

We conclude that there is a complex C, /?(q)-isomorphic to (*C(M)*)(q) and having
the form

0 _ • M(q) - ^ C° —> . . . —•> C' -^ Ci+I —* . . . —* C" —• 0,

where C := ^ft (Coker ^n~2)(P) for all i = 0 , . . . , n, and a complex N', /?q-isomorphic
P6-Supp(M)

to (C(M)*) and having the form
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(Coker e" 2) for all i = 0 , . . . , n, and a chain map A = (<5'),>-2 :where N' :—
peSupp(M)
PSq.htMp=i

C* —* N* such that <T' = coM,q and 5' =V\:C —* AT for all i = 0 , . . . , n.

The chain map A gives rise, for each i = 0, 1 , . . . , n, to commutative diagrams

0 • C-'/Ker/I1"1 • C > Coker/i'"1 • 0

0

and

0

0

JV1

/f-'(C*) Coker Zi'"

Coker g-1

CT'/Ker ti~

Coker 0,

in which the vertical maps are all induced by the appropriate constituent
homomorphisms of A. (Obvious interpretations should be made when i = 0.)
Application of the qR(q)-torsion functor F,^ to each of these commutative diagrams
yields a chain map of the long exact sequence of local cohomology modules arising
from the top row into the long exact sequence of local cohomology modules arising
from the bottom row. Our strategy is to use these chain maps in conjunction with
extensions of the ideas in [8, p. 21].

Let p 6 Supp(M) have M-height h and be such that p C q (so that h < n). Since
there exists r e q \ p and every local cohomology module with respect to qR(q) is q-
torsion, J/;,R(q) ((Coker eh~2\) = 0 for all; e No. It now follows from the fact that local
cohomology commutes with direct limits (see [1, §3.4]) that HJ

qRi (N1) = 0 for all
i = 0 , . . . , « - 1 and j e No. A very similar argument will show that H'qR<t)(C) — 0 for
all i = 0 , . . . . n — 1 and ;' e No.

Let i be an integer such that 0 < i < n - 1.
Let £ = 0 or 1. It follows from 3.1(iv) that dimR/i(H

i~l(CC(M)*) )) < n - i - 1; therefore,
by Grothendieck's Vanishing Theorem (see [1, §6.1]), H^+'(W((*C(Af)*),)) = 0. Hence
^'(W"'(( 'C(W)')(q))) = 0 by 2.2(iii) and the Flat Base Change Theorem [1, §4.3]. Since
C* is isomorphic to (*C(M)*)(q), it follows that

//,"4(tf-'(C-)) = //^'("'-'(C*)) = 0.

Also, it follows from [6, (2.7)(vii)] that dim^tf'1 ((C(My\)) < n - i - 1; therefore,
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by Grothendieck's Vanishing Theorem,

"£(//'-'((C(M)-)q)) = Hq"«;+I(//-((C(M)*)q)) = 0,

so that Hn
q^(H'-\(C(My\)) = H^+l(H'-'((C(M)*)q)) = 0 by the Independence Theorem

[1, §4.2]. As the complex N' is isomorphic to (C(M)')q) we have

We are now in a position to modify the argument in [8, p. 21], keeping track of
commutative diagrams induced by the appropriate constituent homomorphisms of A,
to obtain a commutative diagram with the properties specified in the statement of the
theorem.

The fact that ipn is a monomorphism, and the final claim in the statement of the
theorem, now follow from 2.5.

3.4. Definition and Notation. Let the situation be as in 3.2. By 3.3, all the
constituent homomorphisms in the chain map

¥(M) = (ij/%_2 : *C(M)' —• C(M)'

are monomorphisms. We can therefore regard *C(M)' as a subcomplex of C(M)': we
denote the quotient complex C(M)7Im(vP(M)) by

Q(M)' : 0 —> Q° -A- Ql —• . . . —> Q' -^ Qi+l —»-.. .

and refer to this as the degradation complex of M.
Let n e No. Then there is an obvious isomorphism Q" ~ G" © U", where

G" :— 0 (Coker e""2)p/^"((Coker d"~2\t))
p€'Supp(M)

and

V := 0 (Coker e"'2)p.
peSupp(M)\'Supp(M)

htMp=n

Lemma 3.5. Let M be a graded R-module, and let

Q{M)' : 0 —• 2° -^ Ql —* ... —• Q' -U Qi+l
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be the degradation complex of M, as in 3.4. Then, for all n e No,

supp«2") c {p <= Supp(M) \ 'Supp(M): htMp = n or n + 1}.

Proof. We use the notation of 3.4. Since Q" =* G" ® U", it is clear that
supp((2") — supp(G") U supp(l/"). Since k(p) is a finitely generated Rf-module, the
functor ExtR (fc(p), •) (on the category of all Rf-modules and Kp-homomorphisms)
commutes with direct limits, for each i e No. It therefore follows that

suppR(G")- | J suppR((Cokere"-2)p/.A"((Cokerd"-2)(p)))
pe'Supp(Af)

suppR(f/") - U suppR((Coker

and

peSupp(M)\'Supp(M)
htMp=n

The result now follows from 1.2(i),(iv) and 3.3.

Theorem 3.6. Let M be a graded R-module. Then the degradation complex Q{M)' of
M is always exact.

Proof. We shall use the notation

of 3.4 for Q(M)'.
The canonical sequence of complexes

0 —• 'C(M)' —• C(M)' —> Q(M)' —> 0

induces a long exact sequence

.. . H'('C(M)') —»- H'(C(M)*) —> H'(Q(M)') —>• //i+l(*C(M)*) —>• . . .

of cohomology modules, and this, together with [6, (2.7)(vii)] and 3.1(iv), shows that

Ass(H"(Q(M)*)) c
c {p e Supp(M) : htMp > i + 2} for all i e No.

We shall make significant use of this.
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Since H°(Q(M)') is a submodule of Q°, we have

Ass(H°(Q(M)')) c Ass(Q°) c supp«2°)
c {p e Supp(M) \ *Supp(M): htMp = 1}

by 3.5. (There is no ungraded prime of M-height 0 in Supp(M).) This, when used in
conjunction with the immediately preceding paragraph, leads to the conclusion that
Ass(tf°((2(M)*)) = 0, so that H°(Q(Af)') = 0.

To help with an inductive argument, write g"1 := 0, and denote the zero
homomorphism from Q~[ to Q° by/"1 . Note that Coker/"' = Q°, and so

supp(Coker/-') ^ {p e Supp(M) \ *Supp(M): htMp = 1}.

Now suppose that j > 0 and that it has been shown that H'~X(Q[M)') = 0 and also that
each prime in the small support of Coker f'~2 lies in Supp(M) and has M-height not
exceeding j .

The fact that Q(M)* is exact at Q'~l means that there is a canonical exact sequence

0 —» Coker/'"2 —• Q> —• Coker/'-1 —• 0.

We can now use this, in conjunction with 1.2(iii), 3.5 and the inductive hypothesis, to
show that

supp(Coker/;"') c supp(Q0 U supp(Coker/;"2)
c { p e S u p p ( M ) : h t M p < ; + l } .

Since H'{Q(M)') is a submodule of Coker/7'-1, we have

Ass(H7(e(M)*)) c Ass(Coker/7-') c supp(Coker/7-')
c {pe Supp(M):htMp <j+l}.

This, when used in conjunction with the second paragraph of this proof, shows that
Ass(tfy(g(M)*)) = 0, so that H'(Q(M)') = 0. This completes the inductive step.

The result of Theorem 3.6 is, of course, consistent with the results, in the case when
M is non-zero and Finitely generated, that M is Cohen-Macaulay if and only if C(M)'
is exact and that M is Cohen-Macaulay if and only if 'C(M)' is exact. However, we
can say more.

Corollary 3.7. Let M be a graded (not necessarily finitely generated) R-module,
and let i be an integer with i > — 1.

Then H'(*C(M)*) =* H[(C(M)'), so that, in particular, 'C(M)' is exact at *M' if and only
if C(M)' is exact at M'. Furthermore, since fT(*C(M)*) is equipped with a structure as
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graded R-module, it follows also that the i-th cohomology module of the (ungraded)
Cousin complex C(M)' inherits a structure as graded R-module. In particular,
AssR(//'(C(M)*)) consists of homogeneous prime ideals.

Proof. This is immediate from Theorem 3.6 and the long exact sequence of
cohomology modules induced by the canonical sequence of complexes

0 —• 'C(M)' —• C(M)' —• Q(M)' —+ 0.
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