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ON TRACE FOR MODULES

HOWARD B. BECKWITH*

Introduction

Classically, trace was defined as the sum of the diagonal entries of a

square matrix with entries in a field. This notion played an important

role in classical mathematics, e.g. in the theory of algebras over a field of

characteristic zero, and in the theory of group characters (as in [1]). A

generalization to endomorphisms of a finitely generated projective module

over any ring R with unit is well-known. For such a module P the

canonical homomorphism Ψ: P* ® P-> End^P) is an isomorphism. Then

the composite eoψ-1 : EndΛ(P) -> P* (x) P-> R, where e denotes "evaluation",

is a homomorphism which coincides with the classical trace whenever P is

free. This version of trace has been used by Hattori [3] and others to study

projective modules. However, this approach to trace is limited to the

finitely generated projective modules, since it can be shown that Ψ is an

isomorphism if and only if P is finitely generated and projective.

In [5] an approach is supplied to get beyond the projective case.

There trace is taken to be an i?-module homomorphism t : EndβM-> T

which is ' 'universal" in the category of i?-modules with respect to the basic

trace property: t(μ) = t(a μ a'1) for all μeEnd^M and αeAut^M. Existence

is shown not only for modules, but also for a much broader categorical

context. In [5] this trace is studied in additive categories and in the cate-

gory of P-modules, including a comparison with classical definitions. In

this paper we continue the study, treating trace (for modules) with respect

to the constructions: (1) localization at a prime ideal, (2) forming quotients

modulo an ideal and (3) completions. This leads to some techniques of

reducing certain question from a general setting, over an arbitrary com-

mutative ring, to the level of modules over a local ring, a complete ring,
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122 HOWARD B. BECKWITH

or even a field. We then consider the question when an nilpotent endo-

morphism has trace equal to zero (see §2). Finally, we give an alternate

version of Hattori's rank element theorem.

This is a revision of a portion of the author's dissertation. The author

is very much indebted to Helmut Rόhrl for suggesting the problem and

for his guidance.

§1. Definitions and Preliminaries

We collect together for reference the definitions and some basic facts,

essentially from [5], in the form in which they are needed in this paper.

Throughout, R denotes a commutative ring with unit; Mod(i?) denotes the

category of i?-modules.

(1.1) DEFINITION ([5], §1 and §3). By trace for an j?-module M we mean the

unique (up to isomorphism) solution in Mod (R) of the following universal

problem: an i?-homomorphism t : EndΛ(M)-) T satisfying (i) t(μ) = tiaμa"1)

for all μeEndβ(M) and all αeAutΛ(M), and (ii) for any 7?-homomorphism

V : Endβ(M) -> T' satisfying condition (i) there is a unique /?-homomorphism

τ : T-+T' such that V = τt, i.e., so that the following diagram commutes:

t
Endβ(M) — — T

Condition (ii) is referred to as the universality of trace. The following

construction of trace for M is important for us here: let S be the R-

submodule of EndR(M) generated by all elements of the form μ — aμa'1 with

μeEndβ(M) and αeAut^M), then trace for M is precisely the canonical

epimorphism, denoted tr^ : End^M) -> EndR(M)IS. Thus, Tr^ = EndΛ(M)/5.

Now, it turns out that in practice, in order to compute with various

constructions we require the following commutative rule, which is clearly

a strengthening of condition (i) of (1.1):

(i)' t{μv) - t{vμ) for all μ, ycEnd^M.

Since this may not hold in general for trace as given above, we turn

naturally to the "commutative companion" as in [5]:
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ON TRACE FOR MODULES 123

(1.2) DEFINITION. By commutative trace for an j^-module M we mean the

unique solution of the universal problem in (1.1) but with condition (i)

replaced with condition (i)'.

This trace is denoted trSf : EndR{M) -> Tr^. It is easily seen to be the

canonical epimorphism EndΛ(M) ->• ΈndR(M)ISc where Sc is the i?-submodule

of Endβ(M) generated by all elements μv — vμ with μ, v^EndR(M). There

is an obvious epimorphism Tr^ -> Tr^ if this is an isomorphism, we say

that trace is commutative (for M). We now quote from [5]:

(1.3) PROPOSITION. If μ^EndR{M) is in the R-submodule of EndRM that is

generated by AutR{M), then for every v^EndR{M) tr^(^y) = tτM{vμ)m

This result suggests the following definition

(1.4) DEFINITION. An i?-module M has the Aut-End property if the set

AutΛ(M) is a set of generators of the /^-module EndR{M).

(1.5) PROPOSITION, (cf [5] (3.3), (3.4)) For any R-module M

(i) If M has the Aut-End property, then trace is commutative for M.

(ii) If M is a finite direct sum of at least two copies of some R-module, then

M has the Aut-End property.

Most of what follows deals with commutative trace. Now, trace cannot

be expected to be functorial, but the following is a useful replacement (cf.

[5] (1.11)).

(1.6) PROPOSITION. Let R1 and R2 be commutative rings with units and p:

a unital ring homomorphism. Let p# : Mod {R2) -> Mod (Rj) denote "restriction of

scalars". If M^Mod^R^) for f = 1,2, and k: EndRl{Mx)-^ ρ*EndR2{M2) is an

R-monoid homomorphism, then there exist unique Rx-homomorphisms k° and rc(p) such

that the following diagram commutes :

k ξ
EndRι{Mλ) — > p* EndR2(M) — > E?ιdRl(p*M2)

kc • rc(p)

Tr c(M) — > P*Trc(M2) — > Trc(p*M2)

where ζ denotes the canonical Rrhomomorphism. If k is surjective, then so is kc.

If p is an epimorphism, then rc(p) is an isomorphism.

Proof. See [5], (1.11) and (4.7). The analogous result holds for trace.
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The first instance of this Proposition is the construction of modules of

quotients relative to a multiplicative subset SQR (assume OΦS, leS). If

M is any /^-module, then the functor S~ : Mod (R) -> Mod (S^R) induces a

map k as in (1.6), and so leads to a unique ivMiomomorphism σe

s such that

the following diagram of i?-modules commutes:

k
EndR(M) — )

Ίrc

M — > Ίτc

s-iM

(1.7) P R O P O S I T I O N . In the preceding notation, if the canonical $~λR-homomorphism

S^EndnM-^Ends-*R(S~ιM) is an isomorphism {e.g., when M is finitely presentable),

then

(i) If trM is commutative, then so is trs-iM

(ii) If M has the AutΈnd property, then so does S~ιM as an S~ιR-module.

(iii) kerσl = {t^Trc

M : ann{t)ΠS ψ φ}

Proof: In the spirit of [5] (4.9).

(1.8) C O R O L L A R Y . Let M be an R-module such that for each maximal ideal m

of R, the canonical [EndR{M)'\m-J>ΈndRm(Mm) is an Rm-isomorphism where ( )m

denotes {R — ni)~ι{ ). Denote λc{m) = σ^m. Then Π{kerλc(m) : m is a maximal

ideal in R\ = (0).

We turn now to a second instance of (1.6). If A is an ideal in R, the

assignment M-^MjAM prescribes a right exact, covariant additive functor

QA : Mod{R)-+Mod{RIA). {QA is of course naturally equivalent to (RjA)

®R — .) For any i?-module M, QA induces a map k = QA \ EndR{M) as in

(1.6) and then a unique i?-homomorphism φc such that the following diagram

commutes:

k
EndRM '—> EndR/A{M/AM)

(1.9) trJrl }tTc

M/AM

- > Ί τ e

M / Λ M
Ύτc

M

In order to treat the kernel of ψc we consider first the i?/^4-homomorphism

η : QAΐίomR{M, N) -> Ή.omR/A(QAM, QAN) induced by QA. O u r p r i m a r y interest
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lies in the question when η is surjective. We now give various instances

of this.

(1.10) PROPOSITION, (i) her η = HomR(M, AN)jA*HomR(M, N)

(ii) If M is R-projective, then η is surjective for any N.

(iii) If A is finitely generated and M is protective', then η

is bijective.

(iv) If A is finitely generated, then η is surjective, for all

M and N.

Proof (i) and (ii) are easily checked. So assume A is finitely generated

and M is projective. Due to (ii) we need only show η is injective. Due

to (i) this follows if HomΛ(M, AN)QA-Horn (M,N). For this, let / e H o m ^

(M,AN) and suppose A is generated by the elements au ,βΛεi?. These

elements induce the i?-homomorphism ΐ : N® © N (n-fold) -> AN by
n

ΐ(xl9 ,xj = Σ^ϊ^ί. Since the ai generate A, T is surjective. Projectivity
i = l

of M then allows to factor:

M

r
N® ® N—> AN 0

n

Now if ττi is the ith projection: N® © N-^N and fi = πtg, then / = 2 ^ / f

k π

is easily computed. This proves (iii). (iv). Let 0-*K-+ P-+M-K) be an

exact sequence of i^-modules with P projective. Then setting H=ΐlomR

(-,iV), we have an exact sequence H{M)*-+ H{P) -> H{K). Let / = im{k*) to

derive the exact sequence H(M) ~±H(P) ->/->0. Apply Q = QA to see finally

QH{M)-+QH(P)-+QI-±0 is exact. Similarly, if H = HomR/A(-,NIAN), we

have the exact sequence along the bottom of the following commutative

diagram, with x induced by Q:

QH(M) — > QH(P) > QI > 0

0 — > H(QM) — > H(QP) > H(QK)

Due to (iii), A finitely generated, and P projective ηλ is bijective. Suppose.

x(f + AI) = 0. Since / e / , there exists geHom(P,iV) such that / = gπ. We
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may view 0eHom(P,ΛΛO, since x(f + AI) = 0. But P protective, A finitely

generated and the proof of (iii) show that Horn (P, AN) = .A Horn (P,iV).

Writing g = Σ^aίgί with ^eHom{P,N), we see that f = Y^ai{giπ)^AL This

shows that x is injective. It now follows by routine diagram chasing that

η is surjective. This completes the proof of (1.10).

Now we are ready to study (1.9) further. Note that the map ft of

(1.9) is surjective if and only if the map η of (1.10) is surjective.

(1.12) PROPOSITION, If ft [of (1.9)) is surjective, then

kerφc = trc

M{kerk)

Proof. Let τ = trc

M(μ)^ker φc. By commutativity of (1.9) and surjectivity of

ft we may write

for suitable â , 2/*eEndΛ(M). It follows μ — Σ(#i2/i — s / ^ J e k e r ^ Then

/*eker (ft) + ker tτc

My and finally τ = t r ^ ^ e t r ^ (ker (ft)). The converse is

trivial.

(1.13) PROPOSITION. For any R-module M and ideal A in R, ATre

MQkerφc.

If in addition ft is surjective, then we have A Trc

M = kerφc if and only if

Horn (M, AM) S A Horn (M9 M) + ker (tr C

M).

Proof The first assertion follows from the commutativity of (1.9). For the

second assertion, assume ker ^c^^4 Tr^ and μeHom (M,AN) = ker (ft). Then

trM{μ)&tτM{keΐk)— ker φc — A Trc

M. From this it follows quickly μ^A

End (M) + ker tr^, which completes the proof.

We present finally the following statement concerning the Horn condi-

tion of the preceding proposition. Note that the Ext-condition is satisfied

automatically when M is projective.

(1.14) PROPOSITION. Let M and N be R-modules, A a finitely generated ideal in

R. If A is generated by n elements and if for every submodule K of Nn=N@ @N

(n-fold) Ext(M,K) = 0 holds, then HomR(M,AN) = A-HomR(MN).

Proof The proof follows the argument used in proving (ii) of (1.10). We

need only the existence of g in (1.11), but this follows from the exact

sequence
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HomΛ(M, Nn) -+ HomΛ(M, AN) -> Ext (M, K) = 0

where K= ker (r).

§ 2. Trace and Nilpotent Endomorphisms

In this section we turn to various results concerning the question when

nilpotent endomorphisms have zero trace. It is good to point out that this

cannot always be the case, as the following simple example shows. Suppose

R is a ring and r ψ 0 is a nilpotent element of R, and In is the identity

matrix of order n over i?, then the matrix r In is nilpotent, but tr {r-In) = n r

need not be zero. Thus some restriction is necessary. The type of restric-

tion which arises in this section concerns the Jacobson radical, J{M)9 of

the j?-module M, defined to be the intersection of the maximal submodules

of M, or to be equal to M when M has no maximal submodules. It is

known that when M is noetherian, then J(M) is the intersection of the

submodules mM as m ranges through the maximal ideals of R. Also

J{M) = (0) if and only if M can be imbedded in a direct product of simple

i?-modules. Our first statement is the most general we are able to derive

from the construction (1.9).

(2.1) PROPOSITION. If M is a noetherian R-module such that k is surjective and

HomR(M9AM)GAHomR(M,M) for all maximal ideals A in R, and if J(Tre

M) = (0)9

then trc

M(μ) — 0 for every nilpotent μ^EndR{M).

Proof By (1.13), the commutativity of (1.9) and the fact that μ nilpotent

implies kc{μ) is also nilpotent, the classical result for trace over fields leads

to trc

M(μ)^n{A Ύre

M: A is a, maximal ideal in R} = J(ΎrM). Since J(TrM)=0,

this completes the proof.

Of course this includes the result that trace of a nilpotent endomorphism

is zero when M is a finitely generated projective module over a (commuta-

tive) ring R such that J{R) = (0). (cf. the example above).

For other results of this type we consider local and semi-local rings.

(2.2) PROPOSITION. If R is noetherian, M a finitely generated R-module with

J{MΛ) = 0 for each maximal ideal A in R, then trc

M{μ) = 0 for each nilpotent

μ<=EndR{M).

Proof Since μ nilpotent implies k(μ) is nilpotent, referring to the diagram

preceding (1.7), (1.8) reduces our considerations to the case that R is a local
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noetherian ring. In that case the unique maximal ideal A is finitely gene-

rated, and thus by (1.10) k of (1.9) is surjective. Also J(M) = A M= (0),

since MA = M and this implies J(Trc

M) — A Tτc

M - 0. Thus (2.1) applies to

complete the proof.

(2.3) COROLLARY. If R is a noetherian semilocal ring and M a finitely generated

R-module such that J(M) = (0), then trc

M(μ) = 0 for all nilpotent μ^EndR{M).

Proof. We show that R being semilocal implies that for each maximal ideal

Λ J{MA) = J{MA). To see this, let x = φmjs^J{MA) = A MA with peA,

s$A. Let A = AUA2, ,Ag be the maximal ideals in R and let

for each i > 1. Putting n = π{pi : i >1} we have npm^Γ\AiM = J{M) but

also ns^A, which shows x — pm/s = npmlns^{JM)A. The converse is trivial.

From this formula we deduce that J{M) — 0 implies J(MA) = 0 for each

maximal ideal, and (2.2) completes the proof.

Finally since it is known that if RjJR is semisimple, then J(M) = J(R) M,

we also have:

(2.4) COROLLARY. Let R be a noetherian semilocal ring such that R\JR is

semisimple. if M is a finitely generated R-module- such that J{R) M = 0, then

^Λf(i") = 0 for each nilpotent μ^EndR{M).

§3. Trace and Completions

In this section we utilize the results in [2] on linear topologies. See

also Nagata [4], and Zariski-Samuel [6]. Throughout R denotes a com-

mutative noetherian ring, and A an ideal in R such that AQJ(R). By the

^4-preadic topology for an i?-module M is meant the linear topology gotten

by using the powers AnM, n = 1,2,3, as a fundamental system of open

neighborhoods of 0. The assumption AQJ{R) assures that every finitely

generated j?-module is hausdorff, and each of its submodules is closed, and

its ^4-preadic topology coincides with the induced topology. We denote

here by CM the completion of M for the A-preadic topology, namely

CM = proj. lim. M/AnM. In [2] it is shown that under our hypotheses C is

an exact functor on the category of finitely generated i?-modules, and for

every pair of finitely i?-modules, M and N: C. Hom^M, N) = Homί7i2(CM, CN)

and the latter is complete.

Now given a i?-module M there is a commutative diagram
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k
EndR{M) — > EndCR(CM)

(3.1) tr

Trc

M - % Tvc

CM

due to (1.6) with k induced by the functor C.

(3.2) PROPOSITION. If M is finitely generated, then τ is a monomorphism and

Trc

CM = C Trc

M such that the following commutes:

EndCR{CM) - ^ > C{EndRM)

[ \ctrc

M

Trc

CM - ^ » CTrc

M

Proof ΎTCM ~+CTrc

M is induced by universality of trace since the top iso-

morphism is a ring isomorphism. To construct the inverse, note EndCR{CM)

complete implies Trg^ is also complete, since tr£M is continuous and Cauchy

sequences have Cauchy preimages.

§4. The Rank Element

In [3] Hattori defines the rank element, rΛ(P), of a finitely generated

projective A-module P to be the trace of the identity endo-morphism of P,

where he took trace to be the composite

θ'1 π

End^(P) — > P* •—> Λa

Here, θ : P* (x) P-> End^(P) is the canonical isomorphism, and π denotes

evaluation P* (x) P-> A followed by the canonical quotient map A -> A/[A, A],

[A, A] the being ideal generated by the set of all elements ab — ba with

a, b^A. He proves

THEOREM (Hattori). Let A be an algebra over a complete local ring σ, finitely

generated as an σ-module. If σ\m has characteristic p ψ 0, where m — J(σ), we then

assume Aa is φ-torsion free. Then two finitely generated projective A-modules, Px

and P2, are isomorphic if and only if rA{Px) = rA(P2).

We now give an alternate version of this theorem, in the case the

algebra is commutative. The restriction to commutative algebras arises only
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in order to have (4.11) in [5]. As in Hattori we define rA{M) = tr^l^) for

any A-module M.

(4.1) THEOREM. Let A be a commutative algebra over a noetherian local ring σ>

finitely generated as an σ-module. If the characteristic of σ\m is φ ψ 0, we assume

further that CΛ has no p-torsion. Let Px and P2 be finitely generated projective A-

modules with commutative trace, and suppose some power of m annihilates either Px

or P2. Then Pλ and P2 are isomorphic if and only if rA{Px) = rA{P2).

Proof We begin by noting that if m = /(σ) is nilpotent (e.g. if a is artinian),

the annihilator condition is automatically satisfied. Completions are relative

to the ideal mA. We may view TrP.QA, i = 1,2 and form the commutative

diagram:

U ^ EndΛ(P2)
cl

tr tr
—>CA<—• EndCA(CP2)

where A-ϊCA is the canonical insertion, due to [5] (4.11) and [2] (0.7.3.4).

Each corresponds to (3.4). Since C(lPl) = lCpx and C(lp2) = lCPz9 it follows

rA(Pi) = rΛ(P2) implies rcACP^ = rCA(CP2). Since CA is an algebra over the

complete local ring Cm(σ), our hypotheses allow to apply the Hattori theo-

rem, to deduce CPX = CP2. Let φ : CP1 ->- CP2 be any isomorphism. Then

φ^-^HomcACP^CP^. Since HomCA{CP19CP2 ^ C HomA{Pί9P2), we may

identify φ = {φn} and Φ' = {φnf}, with φn, φ
f

n e Hom4 (P19 P2) for each n.

Since φφe ~ 1, we may conclude that φnφ
f

n ~ lemΉom i (P 1 ,P 2 ). But for

sufficiently large n this is zero, and for such n, φnφή — l Similarly φίφn = 1

for large n. Thus φn : Px -> P2 is an isomorphism for large n. This comp-

letes the proof of (4.1), since the converse is clear.

Following Hattori it is now possible to deduce

(4.2) COROLLARY. Let σ be a {noetherian) local domain of characteristic zero

with quotient field K and let A be a commutative σ-algebra with no σ-torsion and

finitely generated as an σ-module. Assume Px and P2 are finitely generated projective

A-modules with commutative trace and with some power of m — J{σ) annihilating P2

{or Px). Then Px = P2 if and only if K®σP= K®σP2.

Proof Since Px and P2 are finitely generated and projective, as are

https://doi.org/10.1017/S0027763000013891 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013891


ON TRACE FOR MODULES 131

and K®P2, we may identify ΎrP2QΛ as before and get the follwing dia-

gram:

EndA(P1) - Λ A <-^- EndAP2

tr tr
Endκ(g)A(K(g)P1) •—> K® A < — Endκ®A(K(g)P2)

as in (1.4). Since A is a-torsion free, σ is a monomorphism. Now

K®Pi = K®P2 implies rκ®A(K<g) Px) = rκ®A{K<g) P2). By commutativity of

the diagram, and injectivity of <;, ̂ ( P ^ = r^(P2) follows. Now apply (4.1) to

deduce Pλ = P2. The converse is clear.
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