
J. Aust. Math. Soc. 103 (2017), 157–176
doi:10.1017/S1446788716000616

CONGRUENCES MODULO 5 AND 7 FOR 4-COLORED
GENERALIZED FROBENIUS PARTITIONS

HENG HUAT CHAN, LIUQUAN WANG� and YIFAN YANG

(Received 13 September 2016; accepted 9 October 2016; first published online 21 December 2016)

Communicated by W. Zudilin

Abstract

Let cφk(n) denote the number of k-colored generalized Frobenius partitions of n. Recently, new
Ramanujan-type congruences associated with cφ4(n) were discovered. In this article, we discuss two
approaches in proving such congruences using the theory of modular forms. Our methods allow us to
prove congruences such as cφ4(14n + 6) ≡ 0 mod 7 and Seller’s congruence cφ4(10n + 6) ≡ 0 mod 5.
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1. Introduction

A partition π of a positive integer n is a finite nonincreasing sequence of positive
integers λ1, λ2, . . . , λr such that

λ1 + λ2 + · · · + λr = n.

It is known that a partition π can be visualized using a Ferrers diagram by representing
the positive integer m of the sth part by m dots on the sth row and an example is given
in Figure 1.

Given a Ferrers diagram with d diagonal dots, we first remove the diagonal dots
and let r1, j and r2, j, 1 ≤ j ≤ d, be the number of dots after the diagonal on the jth row
and jth column, respectively. We then obtain a 2 by d matrix (ri, j)2×d. The matrix
corresponding to the Ferrers diagram in Figure 1 is(

3 1 0
3 2 0

)
.

Figure 1. Diagram representing 4 + 3 + 3 + 2.
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We observe that, by construction, r1, j and r2, j are strictly decreasing nonnegative
integers. A 2 by d matrix with strictly decreasing nonnegative integers r1, j and r2, j is
called a Frobenius symbol. It is clear that given a Frobenius symbol, we can construct
a Ferrers diagram, which in turn leads to a partition of n given by

n = d +

d∑
j=1

(r1, j + r2, j).

In his 1984 AMS Memoir, Andrews [1] introduced a generalized Frobenius symbol
with at most k repetitions for each integer by relaxing the ‘strictly decreasing’
condition and allowing at most k repetitions of each nonnegative integer in each row.
In other words, for i = 1, 2, the condition that ri, j > ri, j+1 for 1 ≤ j < d is replaced by
ri, j ≥ ri, j+1 with at most an unbroken chain of k equalities. From such a symbol, he
associated a generalized Frobenius partition of n given by

n = d +

d∑
j=1

(r1, j + r2, j)

and denoted the number of such partitions of n by φk(n). As an example, we observe
that φ2(3) = 5 and these are given by the following generalized Frobenius partitions
with at most two repetitions on each row:(

2
0

)
,

(
0
2

)
,

(
1
1

)
,

(
1 0
0 0

)
,

(
0 0
1 0

)
.

Note that, with this definition,
φ1(n) = p(n),

where p(n) is the number of partitions of n.
In [1], Andrews also defined generalized Frobenius symbols with k colors. To define

such a symbol, we first order the given k colors and use 1, 2, . . . , k to represent them.
We color the parts using these k colors and order these parts in the following manner:

01 ≺ 02 ≺ · · · ≺ 0k ≺ 11 ≺ 12 ≺ · · · ≺ 1k ≺ 21 ≺ 22 ≺ · · · ≺ 2k ≺ · · · .

Here we are using ‘≺’ to differentiate the inequality from the usual inequality ‘<’. A
generalized Frobenius symbol with k colors is then defined as a 2 by d matrix with
entries

ri, j ∈ {`c|` and c are nonnegative integers with 1 ≤ c ≤ k}

and
ri, j+1 ≺ ri, j, i = 1, 2 and 1 ≤ j < d.

Once again, given a generalized Frobenius symbol with k colors, he associated a
generalized Frobenius partition of n by

n = d +

d∑
j=1

(r1, j + r2, j),
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where only the nonnegative integer ` is added if ri, j = `c. The number of such partitions
of n is denoted by cφk(n). As an example, we note that cφ2(2) = 9 and these are given
by the following symbols:(

11
01

)
,

(
11
02

)
,

(
12
01

)
,

(
12
02

)
,

(
01
11

)
,(

02
11

)
,

(
01
12

)
,

(
02
12

)
,

(
02 01
02 01

)
.

Once again, it is clear that cφ1(n) = p(n).
The function p(n) satisfies several congruence properties, namely,

p(`n − δ`) ≡ 0 mod ` (1.1)

when (`, δ`) = (5, 1), (7, 2), (11, 5). These congruences were discovered by Ramanujan
when he was examining the table of p(n) computed by MacMahon. In [1], Andrews
discovered that the generalized Frobenius partitions also satisfy congruences similar
to those of p(n). He showed that [1, Corollary 10.1]

φ2(5n + 3) ≡ 0 mod 5 and cφ2(5n + 3) ≡ 0 mod 5.

Since the discovery of Andrews’ congruences, several new congruences satisfied by
φk(n) and cφk(n) were found. For example, in [14], Sellers showed, using new
identities discovered by Baruah and Sarmah [2], that for all positive integers n,

cφ4(10n + 6) ≡ 0 mod 5. (1.2)

Shortly after this discovery, Lin [11] proved that for every positive integer n,

cφ4(14n + 13) ≡ 0 mod 7. (1.3)

Lin’s proof involved Baruah–Sarmah identities and identities arising from Jacobi’s
triple-product identity. Motivated by the congruences of Sellers and Lin, the second
author and Lin independently observed that

cφ4(14n + 6) ≡ 0 mod 7. (1.4)

Congruence (1.4) does not seem to follow from Lin’s approach in his proof of (1.3).
In this article, we give two proofs of (1.4) using the theory of modular forms and an
identity involving the generating function for cφ4(2n). Congruence (1.4), together with
(1.3), yields the result that for every positive integer n,

cφ4(7n + 6) ≡ 0 mod 7. (1.5)

Note that this is an exact analogue of Ramanujan’s congruence (1.1) for ` = 7. We
remark here that there is no analogue of Ramanujan’s congruence for ` = 5 even though
(1.2) holds. Recently, Zhang and Wang [20] proved (1.5) using the quintuple-product
identity and a new identity involving the generating function for cφ4(n) (instead of
cφ4(2n)).
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In Section 2, we recall some results in the theory of modular forms that are needed
for our proofs. In Section 3, we present proofs of (1.2) and (1.4) based on the structures
of certain spaces of modular forms. The method used in this section is similar to that
given by Chan and Lewis [6]. In this method, we need to construct new bases for
certain spaces of modular forms. We also apply the method to derive an interesting
congruence associated with overpartitions.

In Section 4, we prove (1.2) and (1.4) using a method due to Eichhorn and Ono [8].

2. Useful facts from the theory of modular forms

Let N ≥ 1 be an integer. The congruence subgroup Γ0(N) of S L2(Z) is defined by

Γ0(N) :=
{(

a b
c d

)
∈ S L2(Z)

∣∣∣∣∣ c ≡ 0 mod N
}
.

Let
H := {z ∈ C|Im(z) > 0}

be the complex upper half plane. Let k, N be positive integers and χ be a Dirichlet
character modulo N.

Definition 2.1. Suppose that f (z) is holomorphic on H and at the cusps of Γ0(N). Let
Γ0(N) act on H via the action (

a b
c d

)
· z :=

az + b
cz + d

.

If f (z) satisfies

f
((

a b
c d

)
· z

)
= χ(d)(cz + d)k f (z),

then we say that f (z) is a modular form of weight k on Γ0(N) with Dirichlet character χ.

The modular forms of weight k on Γ0(N) with Dirichlet character χ form a
finite-dimensional vector space over C (see [10, Ch. III]) denoted by Mk(Γ0(N), χ).
In particular, if χ is the trivial Dirichlet character, we also write Mk(Γ0(N)) for
Mk(Γ0(N), χ).

It is known that if f (z) ∈ Mk(Γ0(N), χ), then f (z) admits a Fourier expansion

f (z) =

∞∑
n=0

a(n)qn, q = e2πiz, z ∈ H.

For any positive integer m, we define the Hecke operator T (m) as a map which sends
a modular form

f (z) =

∞∑
n=0

a(n)qn ∈ Mk(Γ0(N), χ)
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to

f (z)|T (m) :=
∞∑

n=0

( ∑
d|(m,n)

χ(d)dk−1a
(nm

d2

))
qn.

It is known that f (z)|T (m) ∈ Mk(Γ0(N), χ). In particular, when m = p is a prime, p - N
and χ is trivial,

f (z)|T (p) :=
∞∑

n=0

(
a(pn) + pk−1a

( n
p

))
qn,

where we assume that a(n/p) = 0 if p - n.
We now state several facts that we need for this article.

Proposition 2.2. Let k and l be positive integers and f (z) ∈ Mk(Γ0(N)) and g(z) ∈
Ml(Γ0(N)). For any positive integer m:

(1) f (z)|T (m) ∈ Mk(Γ0(N));
(2) f (z)g(z) ∈ Mk+l(Γ0(N)) and f m(z) ∈ Mmk(Γ0(N));
(3) f (z) ∈ Mk(Γ0(mN)).

Note that (2) and (3) follow immediately from the definition of Mk(Γ0(N)). For the
proof of (1), see [7, Sections 5.2 and 5.3].

Proposition 2.3. Suppose that f (z) ∈ Mk(Γ0(N)) with Fourier expansion

f (z) =

∞∑
n=0

a(n)qn.

(1) If d is a positive integer, then

f (z)|V(d) :=
∞∑

n=0

a(n)qdn ∈ Mk(Γ0(dN)).

(2) If d is a positive integer and d|N, then

f (z)|U(d) :=
∞∑

n=0

a(dn)qn ∈ Mk(Γ0(N)).

For a discussion of Proposition 2.3, see [12, Proposition 2.22].
The Dedekind eta-function is defined by

η(z) = q1/24
∞∏

n=1

(1 − qn), q = e2πiz, z ∈ H.

It is known that η(z) is a weakly holomorphic modular form of weight 1/2 which does
not vanish on H. A function f (z) is called an eta-product if it is of the form

f (z) =
∏
δ|N

ηrδ(δz),

where N and δ are positive integers and rδ ∈ Z.
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Proposition 2.4. Suppose that

f (z) =
∏
δ|N

ηrδ(δz)

is an eta-product satisfying the following conditions:

k =
1
2

∑
δ|N

rδ ∈ Z,∑
δ|N

δrδ ≡ 0 mod 24,

∑
δ|N

N
δ

rδ ≡ 0 mod 24.

Then, for each
(a b

c d
)
∈ Γ0(N),

f
(az + b
cz + d

)
= χ(d)(cz + d)k f (z),

where χ is defined by

χ(d) :=
( (−1)k s

d

)
,

s :=
∏
δ|N

δrδ

and (m/n) is the Kronecker symbol.

The orders of an eta-product at the cusps of Γ0(N) can be determined by the
following proposition.

Proposition 2.5. Let c, d and N be positive integers with d|N and (c, d) = 1. If f (z) is
an eta-product satisfying the conditions in Proposition 2.4, then the order of vanishing
of f (z) at the cusp c/d is

N
24

∑
δ|N

(d, δ)2rδ(
d, N

d

)
dδ
.

Propositions 2.4 and 2.5 can be found in [12, page 18].
From Proposition 2.5, we conclude that if

f (z) =
∏
δ|N

ηrδ(δz)

is an eta-product satisfying the conditions in Proposition 2.4 and, in addition, for any
divisor d of N, ∑

δ|N

(d, δ)2rδ
δ

≥ 0, (2.1)

then f (z) ∈ Mk(Γ0(N), χ).
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3. First approach to the congruences

We begin our section by computing the dimension of Mk(Γ0(16)).

Lemma 3.1. Let k ≥ 2 be an even integer. Then

dim Mk(Γ0(16)) = 2k + 1.

Proof. Let [x] denote the integer part of x. From [7, Theorem 3.5.1], we know that

dim Mk(Γ0(N)) = (k − 1)(g − 1) +

[ k
4

]
ε2 +

[ k
3

]
ε3 +

k
2
ε∞, (3.1)

where g, ε2, ε3 and ε∞ depend only on N and can be computed explicitly. Now let
N = 16 in (3.1). From the formulas given in [7, page 107], we deduce that

ε2 = 0, ε3 = 0, ε∞ = 6, g = 0.

Hence,
dim Mk(Γ0(16)) = 2k + 1. �

Our next task is to define functions which are needed to produce a basis for
Mk(Γ0(16)) for k = 12 and 24. Let z ∈ H and q = e2πiz. Following [4, pages 27–28], we
define

ϑF(z) :=
∞∑

j=−∞

q( j+(1/2))2
,

ϑ(z) :=
∞∑

j=−∞

q j2 ,

ϑM(z) :=
∞∑

j=−∞

(−1) jq j2 .

The theta functions defined above differ from the classical definitions of Jacobi’s theta
functions (see [19, Ch. 21]) ϑ j(z), j = 2, 3, 4, and their relations are given by

ϑ(z/2) = ϑ3(z), ϑM(z/2) = ϑ4(z) and ϑF(z/2) = ϑ2(z).

Next, let

f1(z) := ϑ4(2z),
f2(z) := ϑ2

F(2z)ϑ2
M(2z),

f3(z) := ϑ4(z) + 4ϑ4(4z),
g1(z) := ϑ4(z) − 4ϑ4(4z),
g2(z) := ϑ4

M(z) − 4ϑ4
F(4z).

Then the following result holds.
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Theorem 3.2. Let

Ai(z) := f i−1
1 (z) f 7−i

2 (z), 1 ≤ i ≤ 7,

U j(z) := f3(z) f 6− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 6,

V j(z) := g1(z) f 6− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 6

and

W j(z) := g2(z) f 6− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 6.

Then Ai(z) (1 ≤ i ≤ 7), U j(z), V j(z) and W j(z) (1 ≤ j ≤ 6) form a basis of M12(Γ0(16)).

Proof. By Jacobi’s triple-product identity (see [3, Theorem 1.3.3])
∞∑

n=−∞

znqn2
=

∏
n≥1

(1 − q2n)(1 + zq2n−1)(1 + z−1q2n−1),

we find that

ϑF(z) = 2
η2(4z)
η(2z)

, ϑ(z) =
η5(2z)

η2(z)η2(4z)
, ϑM(z) =

η2(z)
η(2z)

.

Since

ϑ2
F(2z)ϑ2

M(2z) = 4
η4(2z)η4(8z)
η4(4z)

,

by Propositions 2.4 and 2.5, we conclude that

f2(z) = ϑ2
F(2z)ϑ2

M(2z) ∈ M2(Γ0(16)).

Similarly, we can show that

ϑ4(z) ∈ M2(Γ0(4)),
ϑ4

M(z) ∈ M2(Γ0(16))

and

ϑ4
F(4z) ∈ M2(Γ0(16)).

By Propositions 2.2 and 2.3, we deduce that f1, f3, g1 and g2 belong to M2(Γ0(16)).
This implies that Ai(z) (1 ≤ i ≤ 7), U j(z), V j(z) and W j(z) (1 ≤ j ≤ 6) all belong to
M12(Γ0(16)).

Now suppose that
7∑

i=1

aiAi(z) +

6∑
j=1

(b jU j(z) + c jV j(z) + d jW j(z)) = 0.

Comparing the coefficients of qk (0 ≤ k ≤ 24) on both sides, we get a system of linear
equations of ai (1 ≤ i ≤ 7), b j, c j and d j (1 ≤ j ≤ 6). Solving these equations, we
deduce that

ai = 0 (1 ≤ i ≤ 7), b j = c j = d j = 0 (1 ≤ j ≤ 6).
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Thus, Ai(z) (1 ≤ i ≤ 7), U j(z), V j(z) and W j(z) (1 ≤ j ≤ 6) are linearly independent
modular forms in M12(Γ0(16)). Since dim M12(Γ0(16)) = 25 (see Lemma 3.1), these
functions form a basis of M12(Γ0(16)). �

Remark. We now describe the construction of the basis presented in Theorem 3.2.
Consider the Hilbert–Poincaré series

H(x) :=
∞∑

k=0

dim Mk(Γ0(16))xk

associated to the graded ring

M =

∞⊕
k=0

Mk(Γ0(16))

of modular forms on Γ0(16). From Lemma 3.1, we see that

H(x) =

∞∑
m=0

(4m + 1)x2m =
1 + 3x2

(1 − x2)2 .

This suggests that there are five modular forms h1, . . . , h5 of weight 2 on Γ0(16) such
that the graded ring M is generated by h1, . . . , h5. In fact, since the (2n)th coefficient
of 1/(1 − x2)2 = 1 + 2x2 + 3x4 + · · · is precisely the number of possible monomials of
degree n in two indeterminates, the identity also suggests that with a suitable choice of
h1, . . . , h5, a basis for Mk(Γ0(16)) can be chosen to be

{hi
1hk/2−i

2 : i = 0, . . . , k/2} ∪ {hi
1hk/2−1−i

2 h j : i = 0, . . . , k/2 − 1, j = 3, 4, 5}. (3.2)

In order to find h j with the required property, we shall analyze the space Mk(Γ0(16))
more carefully.

Observe that the matrix
( 0 −1
16 0

)
normalizes Γ0(16) and hence induces a linear

transformation W on Mk(Γ0(16)), called an Atkin–Lehner involution, defined by

f (z)|W :=
4k

(16z)k f (−1/16z).

Note that W2 is the identity map. Thus, Mk(Γ0(16)) decomposes into the direct sum
of two eigenspaces with eigenvalues 1 and −1. Let Mk(Γ0(16))+ and Mk(Γ0(16))−

denote these two eigenspaces, respectively. To obtain dimension formulas for these
two spaces, we note that the matrix

( 0 −1
16 0

)
also induces an involution on the modular

curve X0(16) := (H ∪ Q ∪ {∞})/Γ0(16). Let X0(16)/W denote the quotient curve of
X0(16) by the action of this involution. Since

( 0 −1
16 0

)
does not fix any cusps of X0(16),

the ramified points in the double cover X0(16)→ X0(16)/W must be elliptic points of
order 2 on X0(16)/W. Since both X0(16) and X0(16)/W have genus 0, the Riemann–
Hurwitz formula implies that X0(16)/W has two elliptic points of order 2.Therefore,
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from [7, page 107], we deduce that

dim Mk(Γ0(16))+ = 1 − k + 2
[ k
4

]
+

3k
2

= 1 +
k
2

+ 2
[ k
4

]
and

dim Mk(Γ0(16))− = dim Mk(Γ0(16)) − dim Mk(Γ0(16))+ =
3k
2
− 2

[ k
4

]
for even integers k ≥ 0. In particular, there are modular forms f1, f2, f3, g1, g2 of
weights 2 such that {g1, g2} is a basis of M2(Γ0(16))+ and { f1, f2, f3} is a basis of
M2(Γ0(16))−.

Now recall that our goal is to find h1, . . . ,h5 such that (3.2) is a basis for Mk(Γ0(16)).
If we choose h1 = g1, h2 = g2 and h j = f j−2 for j = 3, 4, 5, we will find that the number
of modular forms in (3.2) that lie in Mk(Γ0(16))+ is

1 +
k
2
,

which cannot be a basis of Mk(Γ0(16))+. It turns out that if we choose h1 = f1, h2 = f2,
h3 = f3, h4 = g1 and h5 = g2, then the number of modular forms in (3.2) that lie in
Mk(Γ0(16))+ coincides with the dimension of Mk(Γ0(16))+ and this leads to a set of
functions which could be used to construct a basis for Mk(Γ0(16)).

Now, to construct f1, f2, f3 and g1, g2, we recall that the Dedekind eta-function
satisfies [7, Proposition 1.2.5]

η
(
−

1
z

)
=

√
z
i
η(z).

Using this, we verify that, up to some root of unity, the action of the Atkin–Lehner
involution W fixes ϑ(2z) and interchanges ϑF(2z) and ϑM(2z). In fact, we find that

ϑ4(2z) and ϑ2
F(2z)ϑ2

M(2z) ∈ M2(Γ0(16))−.

Also,

ϑ4(z)|W = −4ϑ4(4z), ϑ4
M(z)|W = −4ϑ4

F(4z), ϑ4
F(z)|W = − 1

4ϑ
4
M(4z)

and, hence,
ϑ4(z) − 4ϑ4(4z), ϑ4

M(z) − 4ϑ4
F(4z) ∈ M2(Γ0(16))+

and
ϑ4(z) + 4ϑ4(4z) ∈ M2(Γ0(16))−.

These are the modular forms that we use to construct a basis for M12(Γ0(16)) in
Theorem 3.2.

We are now ready to give a proof of Seller’s congruence (1.2). In [2], Baruah and
Sarmah showed that if

G(z) =
η29(2z)

η20(z)η10(4z)
+ 48

η5(2z)η6(4z)
η12(z)

, (3.3)
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then

q1/12G(z) =

∞∑
n=0

cφ4(2n)qn. (3.4)

Our first step is to write

h(z) = η25(2z)G(z) = h1(z) + 48h2(z), (3.5)

where

h1(z) :=
η54(2z)

η20(z)η10(4z)
, h2(z) :=

η30(2z)η6(4z)
η12(z)

.

By Propositions 2.4 and 2.5, we deduce that both h1(z) and h2(z) belong to
M12(Γ0(16)). By Proposition 2.2, we know that

h1(z)|T (5) ∈ M12(Γ0(16)) and h2(z)|T (5) ∈ M12(Γ0(16)).

By Theorem 3.2, we deduce that

h1(z)|T (5) = 0 · A1 +
17145

8
A2 +

84225
32

A3 +
3315

32
A4 +

47475
32

A5 + 110A6

+ 0 · A7 + 0 · U1 + 0 · U2 −
15825

32
U3 +

14145
32

U4 −
28075

32
U5 − 55U6

+ 0 · V1 − 55V2 +
15825

64
V3 −

45365
64

V4 +
28075

64
V5 −

55
2

V6

+ 0 ·W1 − 55W2 −
15825

64
W3 −

73655
64

W4 −
28075

64
W5 +

55
2

W6

and

h2(z)|T (5) = 0 · A1 +
525
4

A2 +
25485

128
A3 +

1585
64

A4 + 90A5 +
15
2

A6 + 0 · A7

+ 0 · U1 + 0 · U2 − 30U3 +
1055

32
U4 −

8495
128

U5 −
15
4

U6

+ 0 · V1 −
15
4

V2 + 15V3 −
6005
128

V4 +
8495
256

V5 −
15
8

V6

+ 0 ·W1 −
15
4

W2 − 15W3 −
10225
128

W4 −
8495
256

W5 +
15
8

W6.

Hence,
h1(z)|T (5) ≡ 0 mod 5 and h2(z)|T (5) ≡ 0 mod 5

and we conclude that
h(z)|T (5) ≡ 0 mod 5. (3.6)

Next, we know that if

h(z) =

∞∑
n=0

a(n)qn,
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then

h(z)|T (5) =

∞∑
n=0

(a(5n) + 511a(n/5))qn.

From (3.6), we deduce that
a(5n) ≡ 0 mod 5. (3.7)

Now, by (3.5), we observe that
∞∑

n=0

a(n)qn = η25(2z)G(z) = (q2; q2)25
∞

∞∑
n=0

cφ4(2n)qn+2

≡ (q50; q50)∞
∞∑

n=2

cφ4(2n − 4)qn mod 5,

where we have used the notation

(a; q)∞ =

∞∏
k=1

(1 − aqk−1).

Note that
∞∑

n=2

cφ4(2n − 4)qn ≡

∞∑
k=0

∞∑
n=0

p(k)a(n)q50k+n mod 5.

Therefore, by (3.7),
∞∑

n=2

cφ4(10n − 4)q5n ≡

∞∑
k=0

∞∑
n=0

p(k)a(5n)q50k+5n ≡ 0 mod 5

and the proof of (1.2) is complete.
The method used in the proof of (1.2) can be adapted to yield proofs of (1.3) and

(1.4). Since the proofs of these two congruences are similar, it suffices to prove (1.4).
We simply state the following result needed for the proof.

Theorem 3.3. Let

Bi(z) := f 13−i
1 (z) f i−1

2 (z), 1 ≤ i ≤ 13,

E j(z) := f3(z) f 12− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 12,

F j(z) := g1(z) f 12− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 12,

G j(z) := g2(z) f 12− j
1 (z) f j−1

2 (z), 1 ≤ j ≤ 12.

Then Bi(z) (1 ≤ i ≤ 13), E j(z), F j(z) and G j(z) (1 ≤ j ≤ 12) form a basis of M24(Γ0(16)).

The proof of Theorem 3.3 is similar to Theorem 3.2.
To prove (1.4), we replace (3.5) by

H(z) = η49(2z)G(z) = H1(z) + 48H2(z),
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where

H1(z) =
η78(2z)

η20(z)η10(4z)
and H2(z) =

η54(2z)η6(4z)
η12(z)

.

Using Propositions 2.4 and 2.5, we conclude that H1(z), H2(z) ∈ M24(Γ0(16)). This
implies that H(z) ∈ M24(Γ0(16)). Hence,

H(z)|T (7) ∈ M24(Γ0(16))

and

H(z)|T (7) = 0 · B1 + 266B2 +
1366995

4
B3 −

217306383
8

B4 +
4034706291

128
B5

−
3377131961

128
B6 +

6386194899
16

B7 +
112095809819

128
B8

−
57905721111

128
B9 −

58634742285
128

B10 −
93182859

16
B11

+ 456064B12 + 0 · B13 + 0 · E1 + 0 · E2 −
455665

4
E3

+
18805745

4
E4 −

1344902097
128

E5 −
530116111

128
E6

−
2128731633

16
E7 −

3241721959
128

E8 +
19301907037

128
E9

−
5698594195

128
E10 +

31060953
16

E11 − 133E12

+ 0 · F1 − 133F2 +
455665

8
F3 −

4721493
16

F4

+
1344902097

256
F5 +

11965914359
256

F6 +
2128731633

32
F7

+
1957710559

256
F8 −

19301907037
256

F9 −
7301480949

256
F10

−
31060953

32
F11 + 0 · F12 + 0 ·G1 − 133G2

−
455665

8
G3 −

79944473
16

G4 −
1344902097

256
G5 +

13026146581
256

G6

−
2128731633

32
G7 +

8441154477
256

G8 +
19301907037

256
G9

+
4095707441

256
G10 +

31060953
32

G11 +
133

2
G12.

Since all 49 coefficients are congruent to 0 modulo 7, we conclude that

H(z)|T (7) ≡ 0 mod 7.

As in the proof of (1.2), we conclude that if

H(z) =

∞∑
n=0

A(n)qn,
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then
A(7n) ≡ 0 mod 7.

Since H(z) = η49(2z)G(z), we deduce that

cφ4(14n + 6) ≡ 0 mod 7

and the proof of (1.4) is complete.
The method illustrated in this section can be applied to congruences satisfied by

other types of partition functions. We illustrate this by giving a new proof of a
congruence satisfied by the overpartition function. We recall that an overpartition of
n is a nonincreasing sequence of natural numbers whose sum is n in which the first
occurrence of a number may be overlined. For example, the overpartitions of 2 are

2, 2, 1 + 1, 1 + 1.

We denote the number of overpartitions of n by p(n). In our example above, we find
that p(2) = 4. Using some elementary methods, Wang [17] proved that

p(5n) ≡ (−1)nr3(n) mod 5, (3.8)

where r3(n) denotes the number of representations of n as a sum of three squares. This
result was first discovered by Treneer [16, (5.14)] using modular forms. Congruence
(3.8) gave a satisfactory explanation of

p(5(8n + 7)) ≡ 0 mod 40, (3.9)

which is a congruence discovered by Hirschhorn and Sellers [9]. More precisely, the
appearance of 8n + 7 in (3.9) is a consequence of (3.8) and the fact that any positive
integer N of the form 8n + 7 is not a sum of three squares.

To prove (3.8), we recall that the generating function for p(n) is
∞∑

n=0

p(n)qn =
1

ϑM(z)
. (3.10)

As in the proofs of (1.2) and (1.4), we first multiply the right-hand side of (3.10)
by a suitable modular form to obtain a modular form of positive integer weight. By
Propositions 2.4 and 2.5, we conclude that

ϑ24
M (z) =

η48(z)
η24(2z)

∈ M12(Γ0(2)).

Recall that

E(∞)
12 (q) = 691 + 16

∞∑
k=1

k11(−q)k

1 − qk

and

E(0)
12 (q) =

∞∑
k=1

k11qk

1 − q2k
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are the Eisenstein series of weight 12 on Γ0(2) associated with the cusps infinity and
zero, respectively. Moreover, for m > 1, let

T2m(q) =

∞∑
k=1

k2m−1qk

1 − q2k .

From [5, Lemma 2.1], we know that

T4(q)T8(q) ∈ M12(Γ0(2)) and T 2
6 (q) ∈ M12(Γ0(2))

and, from [13, Theorem 7.1.4], we know that dim M12(Γ0(2)) = 4. By using the
coefficients of the q-expansions of E(∞)

12 (q), E(0)
12 (q), T4(q)T8(q) and T 2

6 (q), we verified
that these functions are linearly independent and, thus, they form a basis of M12(Γ0(2)).

Observe that

ϑ24
M (z) =

ϑ25
M (z)
ϑM(z)

= ϑ25
M (z)

∞∑
n=0

p(n)qn. (3.11)

Applying the Hecke operator T (5) to ϑ24
M (z) and using the fact that ϑ24

M (z)|T (5) ∈

M12(Γ0(2)), we find by direct computations that

ϑ24
M (z)|T (5) =

296326553600
2073

T4(q)T8(q) +
698055608320

2073
T 2

6 (q)

−
160124160

691
E(0)

12 (q) +
48828126

691
E(∞)

12 (q).

Therefore,

ϑ24
M (z)|T (5) ≡ E(∞)

12 (q) mod 5

≡ 1 + 16
∞∑

k=1

k3(−q)k

1 − qk mod 5

≡ ϑ8
M(z) mod 5. (3.12)

The last equality is due to Jacobi [3, Theorem 3.5.3].
On the other hand, as applying T (5) is the same as applying U(5) modulo 5, from

(3.11),

ϑ24
M (z)|T (5) ≡ ϑ

5
M(5z)

∞∑
n=0

p(n)qn|U(5) mod 5

≡ ϑ5
M(z)

∞∑
n=0

p(5n)qn mod 5. (3.13)

Comparing (3.12) with (3.13), we deduce that
∞∑

n=0

p(5n)qn ≡ ϑ3
M(z) mod 5

and (3.8) follows immediately.
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In a similar manner, we can also derive the congruence [18]

pod(5n + 2) ≡ 2(−1)nr3(8n + 3) mod 5, (3.14)

where pod(n) denotes the number of partitions where the odd parts are distinct with
generating function

∞∑
n=0

pod(n)qn =
1

ψ(−q)
,

where

ψ(q) =

∞∑
j=0

q j( j+1)/2.

We leave the proof of (3.14) as an exercise.

4. Second approach to the congruences

Let M be a positive integer and

f (z) =

∞∑
n=0

a(n)qn

be a formal power series in the variable q = e2πiz with rational integer coefficients. The
M-adic order of f is defined as

ordM( f ) := inf{n|a(n) . 0 mod M}.

Our second proof relies on Sturm’s criterion [15] for determining whether two modular
forms are congruent modulo l, where l is a prime number.

Proposition 4.1 (Sturm’s criterion). Let l be a prime and f (z), g(z) ∈ Mk(Γ0(N)) with
rational integer coefficients. If

ordl( f (z) − g(z)) >
kN
12

∏
p|N

(
1 +

1
p

)
,

where the product is over the distinct prime divisors of N, then ordl( f (z) − g(z)) = ∞

or, equivalently,
f (z) ≡ g(z) mod l.

Proof of (1.2). In view of (3.3) and (3.4), we shall choose appropriate integers
a1, a2, a3, a4 so that both

`1(z) = ηa1 (5z)ηa2 (10z)ηa3 (20z) ·
(
η5(z)
η(5z)

)a4

·
η29(2z)

η20(z)η10(4z)
and

`2(z) = ηa1 (5z)ηa2 (10z)ηa3 (20z) ·
(
η5(z)
η(5z)

)a4

·
η5(2z)η6(4z)

η12(z)
belong to Mk(Γ0(20)) for some integer k. By Proposition 2.4, a j, 1 ≤ j ≤ 4, have to
satisfy the following conditions:
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(i) k = 1/2(a1 + a2 + a3 + 4a4 − 1) ∈ Z;
(ii)

∑
δ|20 δrδ ≡ 0 mod 24 or a1 + 2a2 + 4a3 ≡ 10 mod 24;

(iii)
∑
δ|20 (20/δ)rδ ≡ 0 mod 24 or 4a1 + 2a2 + a3 ≡ 16 mod 24.

We also need to ensure that (2.1) holds. It turns out that the choice

(a1, a2, a3, a4) = (4,−1, 2, 3)

meets all these requirements. With this choice of a j, 1 ≤ j ≤ 4, we define

`1(z) :=
η(5z)η2(20z)η29(2z)
η5(z)η10(4z)η(10z)

and `2(z) :=
η3(z)η5(2z)η6(4z)η(5z)η2(20z)

η(10z)
.

By Propositions 2.4 and 2.5, we can verify that both `1(z) and `2(z) belong to
M8(Γ0(20)).

Let
`(z) := `1(z) + 48`2(z).

Then

`(z) =
η4(5z)η2(20z)

η(10z)
·

(
η5(z)
η(5z)

)3
·

(
η29(2z)

η20(z)η10(4z)
+ 48

η5(2z)η6(4z)
η12(z)

)
.

By the binomial theorem,
η5(z) ≡ η(5z) mod 5

and hence

`(z) ≡
η4(5z)η2(20z)

η(10z)
·

(
η29(2z)

η20(z)η10(4z)
+ 48

η5(2z)η6(4z)
η12(z)

)
mod 5. (4.1)

This implies that if

`(z) =

∞∑
n=0

a(n)qn,

then, by (4.1) and (3.4), we deduce that

∞∑
n=0

a(n)qn ≡ q2 (q5; q5)4
∞(q20; q20)2

∞

(q10; q10)∞

∞∑
n=0

cφ4(2n)qn mod 5.

Thus, to prove that
cφ4(10n + 6) ≡ 0 mod 5,

it suffices to show that
a(5n) ≡ 0 mod 5.

By Proposition 2.3, we know that

`(z)|U(5) ∈ M8(Γ0(20)).
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Applying Sturm’s criterion, it suffices to check that

a(5n) ≡ 0 mod 5

for

0 ≤ n ≤
8 · 20

12

(
1 +

1
2

)(
1 +

1
5

)
+ 1 = 25.

This follows directly from the Fourier series expansion of `(z) and the proof is
complete. �

Proof of (1.4). Using the same idea as in the proof of (1.2), we construct the functions

L1(z) =
η29(2z)η3(7z)η9(14z)
η13(z)η10(4z)η2(28z)

, L2(z) =
η5(2z)η6(4z)η3(7z)η9(14z)

η5(z)η2(28z)
.

By Propositions 2.4 and 2.5, we verify that both L1(z) and L2(z) belong to M8(Γ0(28)).
Let

L(z) := L1(z) + 48L2(z) =

∞∑
n=0

a(n)qn.

Then

L(z) =
η4(7z)η9(14z)
η2(28z)

·
η7(z)
η(7z)

(
η29(2z)

η20(z)η10(4z)
+ 48

η5(2z)η6(4z)
η12(z)

)
.

By the binomial theorem, we deduce that

L(z) ≡
η4(7z)η9(14z)
η2(28z)

(
η29(2z)

η20(z)η10(4z)
+ 48

η5(2z)η6(4z)
η12(z)

)
mod 7.

This implies that∑
n≥0

a(n)qn ≡ q4 (q7; q7)4
∞(q14; q14)9

∞

(q28; q28)2
∞

∑
n≥0

cφ4(2n)qn mod 7.

Thus, to prove that
cφ4(14n + 6) ≡ 0 mod 7,

it suffices to show that
a(7n) ≡ 0 mod 7.

By Proposition 2.3, we know that

L(z)|U(7) ∈ M8(Γ0(28)).

Applying Sturm’s criterion, it suffices to check that

a(7n) ≡ 0 mod 7
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for

0 ≤ n ≤
8 · 28

12

(
1 +

1
2

)(
1 +

1
7

)
+ 1 = 33.

This follows from the Fourier series expansion of L(z) and our proof is complete. �

5. Concluding remarks

In the first method, we use spaces of modular forms of level 16 with different
weights to establish the congruences of the form

cφ4(m`n − d`) ≡ 0 mod `

for various odd primes `. In the second method, we use spaces of modular forms
of weight 8 with different levels to establish such congruences. It is beneficial to
understand both methods when one wishes to prove congruences associated with other
partition functions.
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