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DIFFERENTIAL ALGEBRAIC FUNCTION FIELDS DEPENDING
RATIONALLY ON ARBITRARY CONSTANTS

KEIJI NISHIOKA

§ 1. Introduction

The general solution of an algebraic differential equation depends
on the initial conditions, though it is in general too difficult to make
explicit the shape of the relationship. Painleve studied in [8] algebraic
differentia] equations of second order with the general solutions de-
pending rationally on the initial conditions and the solvability of such
equations. Giving the precise definition of the notion "rational depend-
ence on the initial conditions", Umemura [10] revived and generalized
rigorously the discussion of Painleve in the language of modern algebraic
geometry. The theorem of Umemura is as follows; Let K be a. differ-
ential field extension of complex number field C generated by a finite
number of meromorphic functions on some domain in C. Let y be the
general solution of a given algebraic differential equation over K. Sup-
pose that y depends rationally on the initial conditions. Then it is
contained in the terminal Km of a finite chain of differential field exten-
sions : K = KQ d K\ C C Km such that each Kt is strongly normal
over i^i-j.

In [5] the author defined the following: Let K be an ordinary differ-
ential field of characteristic zero. A differential field extension L of K
is said to depend rationally on arbitrary constants if there exists a differ-
ential field extension M of K such that L and M are free over K and
LM = MCLM9 where CLM denotes the field of constants of LM. Two
notions "the rational dependence on the initial conditions" and "the ra-
tional dependence on arbitrary constants" are equivalent. The later
originates directly in the author's [4] (see also Matsuda [3]). The objec-
tive of this paper is to prove the following:
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THEOREM. Let K be an algebraically closed ordinary differential field

of characteristic zero. Let R be a differential field extension of K generated

by a single element which is differentially algebraic over K. Then the

following are equivalent:

(i) CR = Cκ and R depends rationally on arbitrary constants)

(ii) there exists a strongly normal extension of K which contains R.

This tells us that the length of the chain needed in the conclusion
of Umemura's theorem is at most 2. It will be worthy to remark a well-
known fact that if K contains nonconstants any differential field exten-
sion of K that is a finitely generated field extension of K contains an
element y with R = K(y} (for instance see Ritt [9]).

The proof of Theorem will be divided into 4 steps. We utilize some
basic facts in Kolchin [2] without warning and discuss entirely from
differential-algebraic viewpoint.

§ 2. The proof of Theorem

The deduction of (ii) from (i) is a straightforward result from Lemma
1 of [7] (see below). So it is sufficient to prove (i) under the condition
(ii). Let U be a universal differential field extension of K. For any in-
termediate differential field L between K and U we denote by CL the
field of constants of L. Here we recall the definition of strongly normal
extensions: A finitely generated differential field extension N of K is
called a strongly normal extension of K if CN = Cκ and there exists a
differential subfield M of U containing K such that M is differentially
isomorphic to N over K, M and N are linearly disjoint over K and
MN = MCMN (cf. Proposition 1 of [1]). We extract Lemma 1 of [7] for
reader's convenience:

LEMMA. Let L and M be two intermediate differential fields between

K and U. Suppose M is a finitely generated differential field extension of

L which is contained in LCV. Then M — LCM.

Now let us return to the proof of our theorem. By assumption of
Theorem there is an element y of R with R = K(y} and tr.deg R/K is
finite. Assume (i). Then there exists a finitely generated differential
field extension E of K such that E and R are linearly disjoint over K
and ER = ECER. We have generators e = {e^lύiύp of E over K: E = K(e).
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Step 1. There exists a finitely generated differential field extension

Ex of K such that Ex and R are linearly disjoint over K, CEχ = Cκ and

Proof. Since y is in ER = ECER = K(e)CER, we have the repre-

sentation:

^ = Σ < W Σ 6 Λ > 1 ̂  jf ^ g

where the α's and 6's are elements of CER, the x's are elements of K{e}

which are linearly independent over CER and bt does not vanish for some

ί. Since a} and b} lie in J57J2, we have the representations:

aj = Σ

where the y's are elements of i? which are linearly independent over K

and ajh9 bjh, cjh, djh are elements of K{e} such that for any j there are

j1 and j 2 with bjhdjj2 Φ 0 and cίh Φ 0 for some Λ. By lί; we denote the

wronskian of (x;.). Then the linear independence of (x3) over constants

implies w Φ 0. Note that w; is an element of K{e}. By Kolchin [2] there

exists a differential homomorphism φ of if{e} to U over if such that

φ(bjhdjj2) Φ 0 for any j9 φ(wcih) Φ 0 and Cκ<φe> = C^. It is readily seen

from the universality of U that there exists a differential field extension

Ex of i£ such that Ex is differentially isomorphic to K(φe} and ̂  and

jR are linearly disjoint over K. Then φ can be extended to a differential

homomorphism of R{e} to jE î? over i?. We denote this by the same

symbol φ. Since φw Φ 0 we see (φXj) are linearly independent over

constants. Noting also φbt is defined and nonzero because (yh) are linearly

independent over Ex and φcih Φ 0 we have

And

y = Φy = Σ Φaj

is contained in EίCEιR since 0α^ and ^6^ belong to C^ lS. Thus we con-

clude R is contained in ExCElR and so

Step 2. There exists a finitely generated differential field extension

E2 of K such that E2 and J? are linearly disjoint over K9 CE2 = Cκ, E2R

= E2CE2R and E2 contains an element z which is a generic differential

specialization of y over K.
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Proof. Take a generic differential specialization z of y over K with

the property that K(z} and EXR are linearly disjoint over K. This is

possible according to the universality of U. Let L denote the algebraic

closure of K(z) in U. Then LEX and LR are linearly disjoint over L.

In fact L and EXR are linearly disjoint over K and so EXR and ̂ L are

linearly disjoint over £Ί. Hence R and L£Jj are linearly disjoint over K.

This implies our assertion. Clearly LEJH = LExCEχR. Similarly to Step 1

we can find a finitely generated differential field extension F of L such

that LE and F are linearly disjoint over L, CF — CL — Cκ and Fi? =

FCFR. Take a differential subfield i*\ of F which is a finitely generated

differential field extension of K and satisfies R = F^FR. Then 2^ and i?

are linearly disjoint over K, CFl = C^ and Fji? = FxCFlR by virtue of

Lemma. As Z?2 we may take Fx(z}. The verification of required prop-

erties is easy.

By the finite generatedness of E2y CE2R is finitely generated over

Cκ in the ordinary sense. Hence we have elements u — (u^ύjύ3 with

CE2R = Cκ(u) and the representation:

where /i and / are in E2[u], f Φ 0. We may write

where gj and ̂  are in Ez{y}9 g φ 0. By substitution we get

g(fMlf(u)) =

where h is in £J2[w] and d is a natural number. Let X be the set of all

c in C^ that are specializations of u over Cκ and V be the set of all c

in X with f(c)h(c) Φ 0. Then X is an irreducible affine variety, V is

open and dense in X. In fact noting K is algebraically closed we see

CE2 = C# is also algebraically closed. Hence

E2[u] = E2 ®Cκ Cκ[u].

From this we have a representation fh = 2] α^P^> where the α̂  are in £J2,

linearly independent over Cκ, the p ; are in Cκ[u]. Using this representa-

tion we find that c is an element of V is equivalent to that fh(c) Φ 0

and therefore that p^c) Φ 0 for some j . This shows V is open in X.

Denote by Ez the differential field extension of K generated with z and

all y(c), c being in V. Then Ez is a differential subfield of E2 with the
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finite transcendence degree over K since the generators are all differ-

entially algebraic over K and E2 is a finitely generated differential field

extension of K. The element y(c) of Ez is a differential specialization of

y over K associated with the specialization c oί u over Cκ. Note that

any element c of V is characterized by f(c) Φ 0, g(y(c)) Φ 0.

Step 3. E3R = £ 3C* 3 β.

Proo/. The field Ez{u), the quotient field of E2 ®Cκ Cκ[u], is the

function field of the irreducible variety Xf determined from X by base

extension Cκ -»E2. Let us show that V is dense in X'. Let ί be a

regular function on X\ Then we can express as t = 2] &A> α* in 2£2> ̂

in C^M, the α* being linearly independent over Cκ. For any c in V we

have t(c) = 2] att(c). If ί(c) = 0 then tt(c) = 0 for all i. Each ί< would

be identically 0 on X and hence 0 on X'. Thus ί = 0 o n X'. This shows

V is dense in X7. Let F be the algebraic closure of Ez in £J2 We re-

gard E2 as a field with operators in the sense of [1], where as operators

we take Der (£J2/£J3). Then F is the field of constants of E2. Since E2

and E3(u) are linearly disjoint over E3, we may set Dut = 0 for each i

and each derivative D in Der (E2/Es)9 and 2£2(̂ ) becomes a field extension

of E3(ύ) in the sense of [1]. For any D in Όeτ(E2IE3) we have Zty(c) = 0

and

f(c)Dfλ{c) - U{c)Df{c) = 0

holds for each c in V. From this and the fact V is dense in Xr it follows

= o

holds in E2(u). Thus Dy = 0 and hence y is in F(w) since F(u) is the

field of constants of the field E2(u) with operators Der (EJEZ) according

to Lemma 1 of [1]. Thus FR is included in FCEzR and by Lemma it fol-

lows FR = FCFR. We assume F is normal over E3 by enlarging F if

necessary. We have CF = Cκ recalling CE2 = Cκ. By defining zut = ut

for each i and any r of G(F/£J3), the Galois group of F over 2?s, we find

F(w) is normal over -E3(&) and the Galois group is identified with G(F/EΆ).

Now from τy(c) = y(c) e Ez it follows

/(c)rΛ(c) - fic)τf{c) = 0

holds for any c in V, hence

https://doi.org/10.1017/S0027763000001331 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001331


178 KEIJI NISHIOKA

UU ~ M = 0

holds in F(u) because V is dense in X'. This shows τy = y and y lies

in Ez(u).

By Step 3 we may assume from the first that E has the finite tran-

scendence degree over K, CE = Cκ and E has an element z which is a

generic differential specialization of y over K. Take an £J4 among such

E's with the least transcendence degree over K. Define M from E^ in

the same manner as we defined E3 from E2. Then the degree of E± over

M is finite. We use the same notations such as u, /„ /, gp g. Let F be

a normal algebraic extension of M which contains E4. As before we sup-

pose F(ύ) is normal over E±(u) and identify the Galois group

with G(FIF<). Then

where /* = /• [ J ^ i r/, /* = I L ^ / e F[M], τeG(F/E4). Since /* is left in-

variant under any r it is contained in M(u) and therefore in M[u]. This

is derived from the fact F and M(u) are linearly disjoint over M. By

Ml? = MCMR = Af(κ) it follows /* = y/* belongs to M[u]. Similarly we

obtain the representation:

Uj = gjlg = gflg* ,

where g* = ft.[[τ,i^ g* = Π«^eM{y}, τeG(F/E<). And from the

fact JF and M(M) = M{y} are linearly disjoint over M it follows that g*

and ^^ are contained in M{y). By the definitions of /* and g* every

element c of V is characterized by /*(c) =̂ 0, g*(y(c)) Φ 0. Take a differ-

ential field extension N of K such that iV and M are differentially iso-

morphic and linearly disjoint over K and N contains R.

Step 4. N is a strongly normal extension of K.

Proof. There are a finite number of elements (cΛ)i ̂  A ̂  m of V for which

M = JSΓ<2?, 2?!, , zm), zh = y(cA). We can write N = iΓ<y, y1? , ym}>

where each yh is a generic differential specialization of zh over if. Since

JV and M are linearly disjoint over K we see 2Λ is a differential special-

ization of yh over M and yh is a differential specialization of y over M.

From g*(zh) ΐ O w e get g*(yA) ^ 0. Define υh = (vftJ) by

^ = gf(yh)lg*(yh).
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Then (zh9 ch) is a differential specialization of (yh9 vh) over M and (yh9 vh)

is a differential specialization of (y, u) over M. All vh are elements of

CM<yh>. The equality yf* = /* implies yj*{υh) = /*(ι;Λ) and so y* is con-

tained in M(vh). This derives AfiV = M(u, υl9 , ι>m) and completes the

proof of Theorem.
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