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Abstract

Let B(H) be the Banach algebra of all (bounded linear) operators on an infinite-dimensional
separable complex Hilbert space H and let {am}™=0 be a bounded sequence of positive real numbers.
For a given injective operator A in B(H) and a non-zero vector / in H, we put wm =
am\\Am+]f\\/\\Amf\\, »n = 0 ,1 ,2 , . . . . We define a weighted shift Tw with the weight sequence
w = {wm}™=0 on the Hilbert space I2 of all square-summable complex sequences x = {x0, xx, x2, • •.}
by Tw(x) = {0, W0XQ, W|XI, W2X2,- • • }. The main object of this paper is to characterize the invariant
subspace lattice of Tw under various nice conditions on the operator A and the sequence {am}m=0

1980 Mathematics subject classification (Amer. Math. Soc): primary 47 A 15, 47 B 99; secondary 47 C
05.

1. Introduction

Let H be an infinite-dimensional separable complex Hilbert space and B{H) the
algebra of all (bounded linear) operators from H into H. If / / i s I2, that is, the
Hilbert space of all square-summable complex sequences x = {x0, xu x2,. • •}
with the norm

/ oc \ l / 2
|| || _ V | |2
1 1 " •" I "" I I

\ m = 0 /

and if a = {am}*=0 is a bounded sequence of non-zero complex numbers, then
the operator Ta on I2 defined by

Ta{x0,xi,x2,...} = {0,a0x0,a]Xl,a2x2,...}
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136 B. S. Yadav and S. Chatterjee U1

is called a (unilateral forward) weighted shift on I2 with the weight sequence
a = {«m}m=o- We may, and shall assume, without any loss of generality that the
weights am are positive real numbers [3, Problem 2]. The invariant subspaces of
this class of operators have been extensively studied by many authors; see, for
example, Donoghue [1], Nikolskii [7], [8], [9], Kelley [5], Nordgren [10], Harrison
[4] and Shields [13].

By an invariant subspace M of T we shall mean a closed linear manifold of I2

such that TM C M. By Lat T we shall denote the lattice of invariant subspaces of
T. The object of this paper is to characterize the lattice of a rather specialised
class of weighted shifts. Such weighted shifts have recently been studied for their
subnormality by Lambert [6].

Let A be an injective operator on H and suppose that {am}™=0 is a bounded
sequence of positive real numbers. For each non-zero vector / in H, let Tw be the
weighted shift on I2 with the weight sequence w = {wm}^=0, where

A vector x in I2 is called a cyclic vector of Tw if

00

the subspace spanned by x, Twx, T^x,
A sequence {am)m=0 is said to be of bounded variation if

00

lo\am-am+l\<oo.

It is easy to see that if {am}™=0 is monotonically decreasing, then it is of bounded
variation, but the converse is not true. We shall say that {am}™=0 is in the class
BV(*) if it is of bounded variation and satisfies the condition:

m3»2,n k = C

An operator^ in B(H) is power-bounded if

(2) \\A"\\<8

for all n = 1,2,3,. . . , where 6 is a constant. We first prove
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LEMMA 2.1. Let A be power-bounded and such that for every non-zero vector f in
H, A"f •*+ 0 as n -> oo. / / the sequence {flm}^=o 's 'n -® (̂*)» tnen any vector
x = {xm}m=o in I2 with xQ ¥= 0 « a cyclic vector of Tw.

PROOF. We first observe that

(3) inf \\A"f\\ =n(f)>0 forall/^O.
n3>0

In fact ju(/) = 0 implies that there exists, for every e > 0, an «0 = no(f, e) such
that \\An°f || < e/S; and hence

II A"f || = || A"-"°A"°f || < 61| A"°f || < E

for n > n0. This contradicts our hypothesis that A"f-t+ 0.
Let {em}^= 0 be the standard orthonormal basis of I2. As

T ^ x = { 0 , 0 , . . . , 0 , x o w o w l • • • w n _ i , x l w l w 2 • • • w n , . . . } ,

we have

WA"f\\2

m = 0 k = C

(by(0)

(by (2) and (3))

'm+2 um+n

2 _ 2

(1+1

(by Abel's transformation [15])

(by(*))
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where a = supm{am} and C denotes a constant not necessarily the same every-
where.

Since {en}™=0 is an orthonormal basis in I2, and by (*) 2^=0a^ < oo, it follows
by the Paley-Wiener theorem [12, page 208] that the system

T"x

is a Riesz basis in I2, whence we conclude that

V { 7 » = I2.
n = 0

An operator A in B(H) is said to belong to the class C,. if it is a contraction
(that is \\A\\< 1) and ^"/-«. 0 for a l l / ^ 0. The class C,. plays an important role
in the study of general contractions [14, page 72]. The following special case of
Lemma 2.1 is worth mention:

COROLLARY 2.2. Lemma 2.1 holds if {am}™=0 is a monotonically decreasing
square-summable sequence and A G C,..

Define

It is obvious that Mk D Mk+, and Mk G Lat Tw for all k = 1,2, We show that
the Mk are the only non-trivial invariant subspaces of Tw when A and {am}™=0

satisfy the hypothesis of Lemma 2.1.

THEOREM 2.3. Let A be power-bounded and such that for every non-zero vector f
in H, A"f+*0 as n -> oo. / / the sequence {am}™=0 is in BV(*), then Lat Tw is
order-isomorphic to 1 + *co, where *« denotes the order-type of the negative integers
[11, page 26].

PROOF. Let M be a non-trivial invariant subspace of Tw. If x = {xm}™=0 is any
vector in M, then, in view of Lemma 2.1, x0 = 0. Suppose that k is the least
positive integer such that xk =£ 0. We first show that

00
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Recalling that {em}™=k is an orthonormal basis of Mk and following the proof of
Lemma 2.1, we have

Tnx
XkWkWk+\ •

- e.+ k

= 1
am + k+\ • • • a m + k + n \ \\A

n+\

\ \ A k lf\\2\\Ak+nf\

"H2M7ll2M"H2M7ll
k+"f\\2\Ak+nf

*m+k+\

(fi{f)?\xk\
2{akak+x)

2 ^ \ ak+2---ak+n

lk+n-\

m+k+2

+ k+l

i + k + n
'm+k+\

Cak + n-

It is now immediate by the Paley-Wiener theorem that V ^= 0 {T£x} = Mk.
Since the span of any number of Mk is again an Mk, we conclude that M = Mk.

Consequently, we have

and thus Lat Tw is order-isomorphic to 1 + *w.

COROLLARY 2.4. Let A be invertible with both A and A ~' power-bounded. If the
sequence {am}^=0 is in BV(*), then Lat Tw is order-isomorphic to 1 + *u.

PROOF. If |M"|| < 8, n = 0, ±1, ±2 , . . . , then \\A"f\\ >( l / f i ) | | / | | , s o / # 0 =»
A"f +> 0.

We now consider the Hilbert space 12(C*), k > 1 of norm-square-summable
sequences of vectors of the A:-dimensional unitary spaces C*. Thus 12(C*) consists
of sequences

such that 2 ^ = 0 IUmH* < oo, where IUm||+ is the norm of xm in Ck and

1/2
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Although we have not been able to prove the analogues of Theorem 2.3 and
Corollary 2.4 for the Hilbert space 12(C*), we shall, however, show that Lemma
2.1 has an interesting extension in this case.

We shall say that a non-empty subset S of 12(C*) is a cyclic set of an operator
Ton l2(C*)if

V {Tnx:x£S} = \2(Ck).

THEOREM 3.1. Let A be power-bounded and such that for every non-zero vector f
in H, A"f •** 0 as n -* oo. / / the sequence {am}™=0 is in BV(*), then any set of
k-vectors in \2(Ck) such that their first coordinates form a basis ofCk is a cyclic set
of the weighted shift Tw on \2(Ck).

PROOF. Let xU) = { x ^ } ~ = 0 , i = 1,2,...,A:, be k elements of 12(C*) such that
{x{

Q
l), X£\. .. ,x{

o
k)} is a basis in C*. We assume, without any loss of generality,

that {X{Q\ xtf\...,x(
o
k)) is an orthonormal basis in C*. Then

7 > < ' > = { 0 , 0 , . . . , 0 , w n _ , • • • w]Wox<o'\ Wn... w 2 w ] X \ ' \ . . . } .
n

If en(z), z £ C*, denotes the element of 12(C*) having z in the nth place and 0
elsewhere, we have

- Pc«VAo

Since {en(x
(d))}n>Ot !«,-«* is an orthonormal basis in 12(C*) and by (*)

it follows that the system

' n»0, l

is a Riesz basis in \2(Ck) and consequently {xU)}k
=i is a cyclic set of TK.

COROLLARY 3.2. Let A be invertible with both A and A ~' power-bounded and
suppose that {am}^t=0 is in BV{*). Then any set of k-vectors in l^C*) such that
their first coordinates form a basis of Ck is a cyclic set of Tw.

A strictly cyclic operator algebra & on H is a uniformly closed subalgebra of
B(H) such that (Sfo = H for some vector/0 in H. In this case/0 is called a strictly
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cyclic vector for ($. Moreover, if Af0 = 0, A E & implies that A = 0, we say that/0

is a separating vector for 6B. The following lemma is due to Embry [2]:

LEMMA 3.3. Let f0 be a strictly cyclic separating vector for &. Then there exists a
constant C such that

\\A\\ < C M / 0 | |

for every A in &.

THEOREM 3.4. Let & be a strictly cyclic operator algebra with a strictly cyclic
separting vector f0, and let A £ &. If the sequence {am}™=0 is in BV{*), then any set
of k-vectors in 12(C*) such that their first coordinates form a basis of Ck is a cyclic
set of Tw, where the weight sequence w = {wm}™=0 is defined by wm =

PROOF. Following the proof of Theorem 3.1, it suffices to observe that

w

WnW, • • • Wn_n-\ M7ol l 2 J o I «o«. • • • « . - .
oo

± L « ± - (byLemma3.3)

The authors thank the referee, and also the editor, for their suggestions to
rewrite the paper in the present form.
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