M.-G. Leu Nagoya Math. J. Vol. 115 (1989), 185-198

ON A PROBLEM OF ONO AND QUADRATIC NON-RESIDUES

MING-GUANG LEU

§0. Introduction

Let k be a quadratic field, Δ_k the discriminant and M_k the Minkowski constant:

$$M_{k} = egin{cases} rac{1}{2} \sqrt{arDeta_{k}} & ext{if k is real,} \ rac{2}{\pi} \sqrt{-arDeta_{k}} & ext{if k is imaginary.} \end{cases}$$

Consider the finite set of prime numbers

$$\Pi_{k} = \{p, \text{ rational prime}; p \leq M_{k}\}.$$

There are exactly 8 fields for which $\Pi_k = \emptyset$. They make up an exceptional family:

$$E_{
m s}=\{k=oldsymbol{Q}(\sqrt{m});\;m=-1,\;\pm2,\;\pm3,\;5,\;-7,\;13\}\,.$$

For any k, let χ_k denote the Kronecker character. The character splits Π_k into 3 disjoint parts:

$$egin{aligned} \Pi_k^0 &= \{p \in \Pi_k; \; \chi_k(p) = 0\}\,, \ \Pi_k^- &= \{p \in \Pi_k; \; \chi_k(p) = -1\}\,, \ \Pi_k^+ &= \{p \in \Pi_k; \; \chi_k(p) = +1\}\,. \end{aligned}$$

We remind the reader that for a positive prime integer p

$$lpha_k(p) = egin{cases} \left(egin{array}{cc} {\it \Delta}_k \ p
ight) & ext{if } p
eq 2, \ p
eq {\it \Delta}_k \, , \ {\it (-1)^{(d_k^2-1)/8}} & ext{if } p = 2, \ 2
eq {\it \Delta}_k \, , \ 0 & ext{if } p \, | {\it \Delta}_k \, . \end{cases}$$

Consider, next, the 3 families of fields:

Received May 23, 1988.

$$egin{aligned} &K^{0}=\{k;\ \Pi_{k}=\Pi_{k}^{0}\},\ &K^{-}=\{k;\ \Pi_{k}=\Pi_{k}^{-}\},\ &K^{+}=\{k;\ \Pi_{k}=\Pi_{k}^{+}\}. \end{aligned}$$

Ono's problem in [4] is to determine explicitly the 3 families. Since E_s is common to all 3 families, it is enough to determine $K^0 - E_s$, $K^- - E_s$, $K^+ - E_s$, respectively. In the first case, the equality $K^0 - E_s = \{k = \mathbf{Q}(\sqrt{m}); m = -5, \pm 6, 7, 15, \pm 30\}^{11}$ is settled in [4]. In the second case, the equality $K^- - E_s = \{k = \mathbf{Q}(\sqrt{m}); m = -11, -19, -43, -67, -163, 21, 29, 53, 77, 173, 293, 437\}$ is almost settled by H.M. Stark [6] and M.-G. Leu [3]. (For more details, see [4].)

In this paper, we shall consider the third case and prove that

$$K^{+} - E_{s} = \{k = Q(\sqrt{m}); m = -15, -23, -47, -71, -119, 17, 33, 73, 97\}$$

which is the equality (5) in [4] hinted by the machine computations. Since $\chi_k(2) = 0$ for $m \equiv 2$, 3 (mod 4), $\chi_k(2) = -1$ for $m \equiv 5$ (mod 8), and $\chi_k(2) = 1$ for $m \equiv 1 \pmod{8}$, we have $m \equiv 1 \pmod{8}$ for $k = Q(\sqrt{m})$ in $K^+ - E_8$. So the problem to determine $K^+ - E_8$ is reduced to prove that M_k is larger than the least quadratic non-residue modulo |m| for certain numbers m of type $m \equiv 1 \pmod{8}$. For $k = Q(\sqrt{m})$, we define the following 3 disjoint classes:

$$egin{aligned} C &= \{n \in oldsymbol{Z}; \ \chi_k(n) &= 0\}\,, \ C_1 &= \{n \in oldsymbol{Z}; \ \chi_k(n) &= -1\}\,, \ C_2 &= \{n \in oldsymbol{Z}; \ \chi_k(n) &= +1\}\,. \end{aligned}$$

In the sequel, $\left(\frac{n}{Q}\right)$ will denote the Jacobi symbol, where Q denotes a positive odd integer and n is an integer such that (n, Q) = 1. Note that $\chi_k(n) = \left(\frac{n}{|\mathcal{A}_k|}\right)$ when $\mathcal{A}_k \equiv 1 \pmod{4}$ and $(n, \mathcal{A}_k) = 1$. Furthermore, mwill denote a square-free integer $\equiv 1 \pmod{8}$, [x] the integral part of a positive real number x, q the least positive integer belonging to C_1 and p, p_1 , p_2 the positive prime numbers.

We shall divide our argument into two parts. In §1 we shall consider the case m < 0 and in §2 the case m > 0. Before the main argument, we prove the following lemma which enables us to consider

¹⁾ In [4] Ono included erroneously m=10 in the set $K^{\circ}-E_{\circ}$. This was pointed out by M. Ishibashi.

only the cases where either m is a prime number or a product of two prime numbers.

LEMMA 1. If $k = Q(\sqrt{m}) \in K^+ - E_8$, then

(1) for m > 0, either m = p or $m = p_1 p_2$,

and

(2) for m < 0, either m = -p or $m = -p_1p_2$.

Proof. Suppose that m > 0 and $m = p_1 p_2 p_3 \cdots p_n$, $n \ge 3$, where p_i is prime for $i = 1, 2, \dots, n$. Without loss of generality, one can assume that $p_1 = \min \{p_1, p_2, \dots, p_n\}$. Then we have $p_1^2 < p_1 p_2 \cdots p_n/4$ which implies that $p_1 \le M_k$. Since $\chi_k(p_1) = 0$, we have $\Pi_k \neq \Pi_k^+$ and so $k = Q(\sqrt{m})$ $\notin K^+ - E_s$ which proves the assertion in the case (1). Similarly one proves the assertion in the case (2), Q.E.D.

§1. The case m < 0

Case 1. $m = -p_1p_2, p_1p_2 \equiv 7 \pmod{8}$.

Without loss of generality, we can assume that $p_1 < p_2$. Since $p_1 > M_k = \frac{2}{\pi} \sqrt{p_1 p_2}$ for $k = Q(\sqrt{-p_1 p_2}) \in K^+ - E_8$, we have $p_2 < \frac{\pi^2}{4} p_1$.

We first prove the following lemma.

LEMMA 2. For $k = Q(\sqrt{-p_1p_2}) \in K^+ - E_8$, we have $q < \frac{p_1p_2}{8}$ if $p_1p_2 > 3000$.

Proof. Suppose, on the contrary, that $q \geq rac{p_1p_2}{8}$ for some $p_1p_2 > 3000$,

since $p_1 < p_2 < 3p_1$, we have $23 < p_1 < q$. So $\left(\frac{23}{p_1p_2}\right) = 1$ by the minimality of q. Since $\left[\frac{p_1p_2}{24}\right] = \frac{p_1p_2}{24} - s$ for some positive real number s < 1, we have

$$egin{aligned} &rac{7}{8}p_1p_2+1 < rac{22}{24}p_1p_2 < rac{22}{24}p_1p_2 + \left(rac{p_1p_2}{24}-23s
ight) \ &= 23igg(rac{p_1p_2}{24}-sigg) \ &= 23igg[rac{p_1p_2}{24}igg] < p_1p_2 \quad ext{ for } p_1p_2 > 3000. \end{aligned}$$

So we have $23\left[\frac{p_1p_2}{24}\right] = p_1p_2 - x$ for some integer $x, 1 \le x < \frac{p_1p_2}{8}$. Since $\left[\frac{p_1p_2}{24}\right] = \frac{p_1p_2}{24} - s \ne ap_1$ or bp_2 for any integers a, b (otherwise, we have

$$24>24s=egin{cases} p_{\scriptscriptstyle 1}(p_{\scriptscriptstyle 2}-24a)\ {
m or}\ p_{\scriptscriptstyle 2}(p_{\scriptscriptstyle 1}-24b) \end{array}>24,$$

a contradiction), we have $(x, p_1 p_2) = 1$. Furthermore, $\left[\frac{p_1 p_2}{24}\right] < \frac{p_1 p_2}{8} \le q$. Hence, we have

$$\begin{split} 1 &= \left(\frac{23}{p_1 p_2}\right) \left(\frac{\left[\frac{p_1 p_2}{24}\right]}{p_1 p_2}\right) \\ &= \left(\frac{23\left[\frac{p_1 p_2}{24}\right]}{p_1 p_2}\right) \\ &= \left(\frac{p_1 p_2 - x}{p_1 p_2}\right) \\ &= \left(\frac{-x}{p_1 p_2}\right) \\ &= \left(\frac{-x}{p_1 p_2}\right) \\ &= \left(\frac{-1}{p_1 p_2}\right) \left(\frac{x}{p_1 p_2}\right) \\ &= -1, \text{ a contradiction,} \qquad \text{Q.E.D.} \end{split}$$

Now we can prove Theorem 1 after the model of the proof of the theorem in $[2]^{2}$

THEOREM 1. For $k = Q(\sqrt{-p_1p_2}) \in K^+ - E_8$, we have $p_1p_2 \leq 360000$.

360000, it suffices to prove that

$$(1.1) q < \sqrt{2} (p_1 p_2)^{2/5} + 8(p_1 p_2)^{1/5} + 18$$

for $k = Q(\sqrt{-p_1p_2}) \in K^+ - E_{\scriptscriptstyle 6}$ and $p_1p_2 > 360000.$

²⁾ In p. 108 of [2], there seems to be a gap of arguments in the choice of a and the choice of α there. So we make our argument slightly different from [2]. Our inequality (1.1) is weaker than that of Hudson and Williams in [2] (the inequality (2.1)), but our (1.1) is enough to prove our theorems.

Assume, on the contrary, that

$$(1.2) \quad q \geq \sqrt{2} \, (p_1 p_2)^{2/5} + 8 (p_1 p_2)^{1/5} + 18, \quad \text{ for some } p_1 p_2 > 360000.$$

Since $p_1 p_2 \equiv 7 \pmod{8}$, we have $\left(\frac{8}{p_1 p_2}\right) = 1$ and $\left(\frac{-1}{p_1 p_2}\right) = -1 = \chi_k(-1)$.

By Lemma 2, we have $q < \frac{p_1 p_2}{8}$ and so the integers

(1.3)
$$p_1p_2 - 8(q-1), p_1p_2 - 8(q-2), \dots, p_1p_2 - 8$$

are all positive and belong to C or C_1 .

Let r be an odd positive integer of the form

(1.4)
$$r = \left[\frac{1}{2}(p_1 p_2)^{1/5}\right] + \alpha$$

where α is a positive integer ≤ 4 to be chosen later. Since

(1.5)
$$\frac{1}{2}(p_1p_2)^{1/5} < r \le \frac{1}{2}(p_1p_2)^{1/5} + 4$$

and $p_1 > M_k = \frac{2}{\pi} \sqrt{p_1 p_2}$ as $k = Q(\sqrt{-p_1 p_2}) \in K^+ - E_8$, we must have

(1.6)
$$r < p_1 \text{ and } r \le q - 1.$$

Let h be the unique integer satisfying

(1.7)
$$8h \equiv 8q - p_1p_2 \pmod{r}, \quad 1 \le h \le r.$$

By (1.7), we may define an integer n by

(1.8)
$$n = \frac{p_1 p_2 - 8(q - h)}{r}$$

From (1.6) and (1.7), we have $1 \le h \le q - 1$ and $1 \le h < p_1$, and so the numerator in (1.8) is one of the integers in (1.3), and hence n is positive.

.

Now, let $l = [2(p_1p_2)^{1/5}] + 8$ so that

$$(1.9) 2(p_1p_2)^{1/5} + 7 < l < 2(p_1p_2)^{1/5} + 8.$$

Further, put

$$(1.10) a = [n^{1/2}] + 1.$$

Then $n^{1/2} < a \le n^{1/2} + 1$ so that $(a - 1)^2 \le n < a^2$. Finally, choose α such that

either $r \equiv 1 \pmod{8}$ or $r \equiv 5 \pmod{8}$.

Case (I) $r \equiv 1 \pmod{8}$.

(1.11) (a) $a \equiv 0 \text{ or } 3 \pmod{4}$.

As we verify it soon, we have

$$(1.12) (n+8l-8)r \le p_1p_2-8,$$

and so the integers nr, (n + 8)r, \cdots , (n + 8l - 8)r appear in the sequence (1.3) (c.f. (1.8)) and the *l* integers

$$(1.13) n, n+8, \cdots, n+8l-8,$$

belong either to C or to C_1 because $\left(\frac{r}{p_1p_2}\right) = 1$. These integers are $\equiv 7 \pmod{8}$. Now, the condition (1.12) is satisfied because by (1.2), (1.5), (1.7), (1.8) and (1.9), we have

$$egin{aligned} &(n+8l-8)r < p_1p_2 - 8q + 8r + 8r(2(p_1p_2)^{1/5}+8) - 8r \ &< p_1p_2 - 8q + 8\Bigl(rac{1}{2}(p_1p_2)^{1/5}+4\Bigr)(2(p_1p_2)^{1/5}+8) \ &< p_1p_2 - 8\sqrt{2}\,(p_1p_2)^{2/5} - 64(p_1p_2)^{1/5} - 144 \ &+ 8(p_1p_2)^{2/5} + 96(p_1p_2)^{1/5} + 256 \ &= p_1p_2 - 8(p_1p_2)^{2/5}(\sqrt{2}\,-1) + 32(p_1p_2)^{1/5} + 112 < p_1p_2 - 8\,. \end{aligned}$$

If $a \equiv 0 \pmod{4}$, we consider the sequence of integers

(1.14) $(a + 1)(a - 1), (a + 3)(a - 3), \dots, (a + 2b - 1)(a - 2b + 1)$ where b is the largest integer such that

$$(1.15) (a+2b-1)(a-2b+1) > (a-1)^2;$$

if $a \equiv 3 \pmod{4}$, we consider the sequence of integers

$$(1.16) (a+2)a, (a+4)(a-2), \dots, (a+2c)(a-2c+2)$$

where c is the largest integer such that

$$(1.17) (a+2c)(a-2c+2) > (a-1)^2.$$

Since the integers in (1.14) and in (1.16) are $\equiv 7 \pmod{8}$, we see that the integers in (1.13) are in the same residue class modulo 8 as those in (1.14) and as those in (1.16).

Next, we have $(a-1)^2 \le n < \frac{p_1p_2}{r} < 2(p_1p_2)^{4/5}$, so $a < \sqrt{2} (p_1p_2)^{2/5} + 1 < p_1$. Then we have

$$egin{array}{ll} a+2b-1 < a+\sqrt{2a-1} < \sqrt{2}\,(p_1p_2)^{2/5} + \sqrt{2\,\sqrt{2}}\,((p_1p_2)^{1/5}+1) + 1 \ < \min\left(p_1,q
ight), \end{array}$$

by (1.2) and by the inequalities, $p_1p_2 > 360000$, $p_1 > \frac{2}{\pi}\sqrt{p_1p_2}$. Therefore the integers in (1.14) belong to C_2 . Similarly the integers in (1.16) belong to C_2 .

Thus, subdividing the integer interval

by the integers in (1.14) and (1.16), respectively, we see, by (1.13), that 8l - 8 is less than the maximum difference between integers in the subdivided interval. This gives the required contradiction; we just give the details for $a \equiv 3 \pmod{4}$. In this case, the difference between integers in (1.16) in the subdivided interval of $[(a - 1)^2, (a - 1)^2 + 1, \dots, a^2 + 2a - 1, a^2 + 2a]$ is at most

$$(a + 2c)(a - 2c + 2) - (a + 2c + 2)(a - 2c) = 8c$$

 $< 4 + 8a^{1/2}$
 $< 4 + 8\sqrt[4]{2}((p_1p_2)^{1/5} + 1)$
 $< 16(p_1p_2)^{1/5} + 20$
 $< 8l - 8.$

(b) $a \equiv 1 \text{ or } 2 \pmod{4}$.

If $a \equiv 2 \pmod{4}$, we consider the sequence of integers

$$(1.14)'$$
 $(a + 3)(a + 1), (a + 5)(a - 1), \dots, (a + 2b + 1)(a - 2b + 3),$

where b is the largest integer such that

$$(1.15)' \qquad (a+2b-1)(a-2b+1) > (a-1)^2;$$

if $a \equiv 1 \pmod{4}$, we consider the sequence of integers

$$(1.16)'$$
 $(a + 6)a, (a + 8)(a - 2), \dots, (a + 2c)(a - 2c + 6)$

where c is the largest integer such that

MING-GUANG LEU

$$(1.17) (a+2c)(a-2c+2) > (a-1)^2.$$

By a similar argument as in (a), we also get a contradiction.

Similarly one wlll get a contradiction for Case (II) where $r \equiv 5 \pmod{8}$, Q.E.D.

Case 2. $m = -p, p \equiv 7 \pmod{8}$.

By almost the same argument as in the proof of Theorem 1, we have the following theorem.

THEOREM 1'. For $k = Q(\sqrt{-p}) \in K^+ - E_8$, we have $p \leq 360000$.

According to Case 1 and Case 2, for m < 0 and $k = Q(\sqrt{m}) \in K^+ - E_s$, -m must be ≤ 360000 . By the help of a computer in our department, we obtain that m = -15, -23, -47, -71, -119. (See table).

§ 2. The case m > 0

Case 1. $m = p, p \equiv 1 \pmod{8}$.

By applying a theorem of L. Rédei [5], we shall prove Proposition 1 below which will provide $\frac{\sqrt{p}}{2}$ as an upper bound for the least quadratic-nonresidue of a prime $p \equiv 1 \pmod{8}$ for p > 97.

THEOREM (L. Rédei [5]). For 4|p-1, the density δ_2 of the quadratic residues, and also the density δ_1 of the non-residues (mod p) in the interval $[1, \sqrt{p}]$ is grater than $\frac{1}{4+2\sqrt{2}}$ and less than $1-\frac{1}{4+2\sqrt{2}}$.

PROPOSITION 1. For $p \equiv 1 \pmod{8}$ and p > 240000 then $q < M_k = \frac{\sqrt{p}}{2}$.

Proof. Suppose, on the contrary, that there exists a prime $p_0 \equiv 1 \pmod{8}$, $p_0 > 240000$ such that $q > \frac{\sqrt{p_0}}{2}$.

Let $x = [\sqrt{p_0}]$, the integral part of $\sqrt{p_0}$. Then one observes the following four cases.

(i) There are at least $\frac{x-a}{2}$ integers $<\frac{\sqrt{p_0}}{2}$ which are quadratic residues (mod p_0), where a is an integer, $0 \le a \le 1$, such that $\frac{x-a}{2}$ is an integer.

(ii) There are at least $\left(x - \frac{x + a'}{2}\right)/2$ even integers in the inter-

val $\left(\left[\frac{\sqrt{p_0}}{2}\right], [\sqrt{p_0}]\right)$, which are quadratic residues (mod p_0), where a' is an integer, $0 \le a' \le 3$, such that $x - \frac{x+a'}{2}$ is an even integer. (Note that for an even integer $2b < \sqrt{p_0}$, we have $b < \frac{1}{2}\sqrt{p_0}$ and so b is a quadratic residue.)

(iii) There are at least $\left(\frac{x-b}{3} - \frac{x+b'}{6}\right)/2$ odd integers with 3 as a factor in the interval $\left(\left[\frac{\sqrt{p_0}}{2}\right], \left[\sqrt{p_0}\right]\right)$, which are quadratic residues (mod p_0), where b, b' are integers, $0 \le b$, $b' \le 5$, such that $\frac{x-b}{3}$, $\frac{x+b'}{6}$ and $\left(\frac{x-b}{3} - \frac{x+b'}{6}\right)/2$ are integers.

(iv) There are at least $\frac{1}{3}\left\{\left(\frac{x-c}{5}-\frac{x+c'}{10}\right)-d\right\}$ odd integers relatively prime to 3 with 5 as a prime factor in the interval $\left(\left[\frac{\sqrt{p_0}}{2}\right], \left[\sqrt{p_0}\right]\right)$, which are quadratic residues (mod p_0), where c, c' and d are integers, $0 \le c, c' \le 9, 0 \le d \le 2$, such that

$$\frac{x-c}{5}, \ \frac{x+c'}{10} \quad \text{and} \quad \frac{1}{3} \Big\{ \Big(\frac{x-c}{5} - \frac{x+c'}{10} \Big) - d \Big\}$$

are integers.

From (i), (ii), (iii) and (iv), we see that there are at least

$$N = \frac{x-a}{2} + \left(x - \frac{x+a'}{2}\right) / 2 + \left(\frac{x-b}{3} - \frac{x+b'}{6}\right) / 2 \\ + \frac{1}{3} \left\{ \left(\frac{x-c}{5} - \frac{x+c'}{10}\right) - d \right\}$$

distinct integers in the interval $[1, \sqrt{p_0}]$, which are quadratic residues (mod p_0). We have

$$\begin{split} N &\geq \frac{x-1}{2} + \left(x - \frac{x+3}{2}\right) \Big/ 2 + \left(\frac{x-5}{3} - \frac{x+5}{6}\right) \Big/ 2 \\ &\quad + \frac{1}{3} \Big\{ \Big(\frac{x-9}{5} - \frac{x+9}{10}\Big) - 2 \Big\} \\ &\quad = \frac{52x - 244}{60}. \end{split}$$

So the density δ_2 of quadratic residues in $[1, \sqrt{p_0}] > \frac{N}{x} \ge \frac{1}{60} \left(52 - \frac{244}{x}\right)$.

Since
$$\frac{1}{4+2\sqrt{2}} > \frac{1}{7}$$
, we have
 $1 = \delta_1 + \delta_2 > \frac{1}{7} + \frac{52 - \frac{244}{x}}{60} = \frac{424 - \frac{1708}{x}}{420} > 1$ for $p_0 > 240000$,

Q.E.D.

a contradiction,

Case 2. $m = p_1 p_2, p_1 p_2 \equiv 1 \pmod{8}$.

Without loss of generality, one can assume that $p_1 < p_2$. Since $p_1 > M_k = \frac{\sqrt{p_1 p_2}}{2}$ for $k = Q(\sqrt{p_1 p_2}) \in K^+ - E_8$, we have $p_2 < 4p_1$.

For $p_1p_2 \equiv 1 \pmod{8}$, $p_1 < p_2 < 4p_1$ and $p_1p_2 > 300$, by a theorem of Thue [1], the congruence $x \equiv ny \pmod{p_1p_2}$ has non-trivial solutions x, y for which $|x| \leq \sqrt{p_1p_2}$ and $|y| \leq \sqrt{p_1p_2}$. We can choose a positive integer n such that $n < p_1p_2$, $(n, p_1p_2) = 1$, $n \not\equiv +1 \pmod{p_2}$ and $\left(\frac{n}{p_1p_2}\right) = -1$. By the choice of n, we see that one of the numbers x and y, say x, must belong to C_1 . (Note that $p_1 < \sqrt{p_1p_2} < 2p_1$, so neither $|x| \operatorname{nor} |y|$ equal to p_1 , because otherwise $n \equiv +1$ or $-1 \pmod{p_2}$, which contradicts the choice of n.) Since $\left(\frac{x}{p_1p_2}\right) = -1$, we have $\left(\frac{-x}{p_1p_2}\right) = -1$. Bo there exists a positive integer $x < \sqrt{p_1p_2}$ such that $\left(\frac{x}{p_1p_2}\right) = -1$. Denote by v_i the number of elements in C_i , i = 1, 2, which lie in the interval $[1, \sqrt{p_1p_2}]$. Furthermore, since $\left(\frac{2}{p_1p_2}\right) = 1$, we see that $v_i \neq 0$, i = 1, 2, for $k = Q(\sqrt{p_1p_2}) \in K^+ - E_8$ and $p_1p_2 > 300$. We have $v_1 + v_2 = [\sqrt{p_1p_2}] - 1$ because $p_1 < \sqrt{p_1p_2}$. Denote by $\delta_i = \frac{v_i}{[\sqrt{p_1p_2}-1]}$ the density of the class C_i in the interval $[1, \sqrt{p_1p_2}]$, for i = 1, 2. Now we are ready to prove Theorem 2 which is similar to a theorem of Rédei [5].

THEOREM 2. For $k = Q\sqrt{p_1p_2}$), if $p_1p_2 \equiv 1 \pmod{8}$, $p_1 < p_2 < 4p_1$ and $p_1 > 265$, then we have $\frac{1}{7} < \delta_1$, $\delta_2 < 1 - \frac{1}{7}$.

Proof. Since $(p_1 - 1)(p_2 - 1)/2$ is the number of incongruent elements $(\mod p_1 p_2)$ in C_d , d = 1, 2, for $\alpha \in C_1$ with $\alpha \not\equiv \pm 1 \pmod{p_2}$, there exist x,

y, $x \in C_i$, $y \in C_j$, $i \neq j$, $1 \le x$, $y < \sqrt{p_1 p_2}$, such that $\alpha \equiv \frac{y}{x}$ or $-\frac{y}{x}$ (mod $p_1 p_2$). From this, we have

(2.1)
$$2(v_1v_2 + v_2v_1) \ge \frac{(p_1 - 1)(p_2 - 1)}{2} - 2p_1$$

where $2p_1$ is the number of elements in the set

$$\{n \in N; \ n < p_1 p_2, \ n \equiv +1 \ {
m or} \ -1 \ ({
m mod} \ p_2)\}.$$

Then since $v_1 + v_2 = [\sqrt{p_1 p_2}] - 1$, one has, by (2.1),

(2.2)
$$\delta_1 \delta_2 + \delta_2 \delta_1 \ge x \qquad \left(x = \frac{(p_1 - 1)(p_2 - 1) - 4p_1}{4([\sqrt{p_1 p_2}] - 1)^2}\right)$$

$$(2.3) \qquad \qquad \delta_1+\delta_2=1\,.$$

Consider the equations:

$$(2.4) 2uv = x,$$

(2.5)
$$u + v = 1$$
.

One solution for (2.4), (2.5) is

(2.6)
$$u = \frac{1 + \sqrt{1 - 2x}}{2}, \quad v = \frac{1 - \sqrt{1 - 2x}}{2}$$

by which the square root may be chosen positive because 2x < 1 for $p_1 > 265$.

We set

(2.7)
$$\delta_1 = \frac{v_1}{[\sqrt{p_1 p_2}] - 1} = u + \alpha_1, \quad \delta_2 = \frac{v_2}{[\sqrt{p_1 p_2}] - 1} = v + \alpha_2$$

where α_1 , α_2 are real numbers. By (2.3), (2.5) we have

$$(2.8) \qquad \qquad \alpha_1 + \alpha_2 = 0.$$

Furthermore, it follows from (2.2) that

$$2\delta_1\delta_2\geq x$$
 ,

i.e., by (2.3), $\delta_1^2 + \delta_2^2 \le 1 - x$. By (2.7) we have

$$u^2 + v^2 + 2ulpha_1 + 2vlpha_2 + (lpha_1^2 + lpha_2^2) \le 1 - x$$
 .

Since $u^2 + v^2 = 1 - x$ by (2.6) and $\alpha_1^2 + \alpha_2^2 \ge 0$, we have $2u\alpha_1 + 2v\alpha_2 \le 0$. By (2.8), we also have $2u\alpha_1 - 2v\alpha_1 \le 0$. On the other hand it follows from (2.6) that u - v > 0, and so $\alpha_1 \le 0$, i.e., by (2.7), $\delta_1 \le u$. Because the conditions (2.2), (2.3) are symmetric in δ_1 , δ_2 , one has $\delta_i \le u$, i = 1, 2. Furthermore, we have $([\sqrt{p_1p_2}] - 1)^2 \le \frac{65}{64}[(p_1 - 1)(p_2 - 1) - 4p_1]$ because

 $p_1>265$ and, by (2.2), we have $2x\geq rac{32}{65}$. Therefore, by (2.6), we have

$$egin{aligned} \delta_i &\leq u \leq \Big(1 + \sqrt{rac{33}{65}}\Big)\Big/2 \ &pprox 0.8562 \cdots \ &\leq 1 - rac{1}{7} pprox 0.8571 \cdots \end{aligned}$$

where i = 1, 2,

Q.E.D.

By the similar argument as the proof of Proposition 1, we have the following proposition:

PROPOSITION 2. Assume that $k = Q(\sqrt{p_1p_2}), p_1p_2 \equiv 1 \pmod{8}, p_1 < p_2$ $< 4p_1, p_1 > 265 and p_1p_2 > 240000.$ Then $q \le M_k = \frac{\sqrt{p_1p_2}}{2}.$

According to Proposition 1 and Proposition 2, we see that for m > 0and $k = Q(\sqrt{m}) \in K^+ - E_8$, *m* must be less than 290000. With the help of computer, we obtain that m = 17, 33, 73, 97. (See table.)

Combining the results in §1 and §2, we have proved that

$$K^{*}-E_{_{8}}=\{k=old Q(\sqrt{m});\ m=-15,\ -23,\ -47,\ -71,\ -119,\ 17,\ 33,\ 73,\ 97\}\,.$$

${f Table}^{\scriptscriptstyle 3)}$								
m > 0			m < 0					
	q	$m = p_1 p_2$	\boldsymbol{q}		-m = p	q	$-m=p_1p_2$	q
-		33			23		15	
	3	65	3		31	3	55	3
		161	3		47		119	
	3	209	3		71		143	5
		377	3		79	3	247	3
	3	473	3		103	3	391	3
	3	481	7		127	3	527	5
	5	697	5		151	3	551	11
	3	713	3		167	5	703	3
	7	817	5		191	7	943	3
	3	1073	3		199	3	1247	5
	3	1081	7		223	3	1271	7
	•		:			•	: : :	:
	•	•	:		• •	•	•	•
	7	239969	3		359311	3	356047	3
	11	240809	3		359327	5	356359	3
	5	241697	3		359407	3	356519	7
	5	243721	19		359479	3	356639	19

 $\mathbf{5}$

 $\mathbf{5}$

 $\mathbf{5}$

 $\overline{7}$

 $\mathbf{5}$

³⁾ In the column "q" of the table, the smallest odd prime $q \leq M_k$ such that $\chi_k(q) = -1$ is given. Since the complete table would occupy at least 20 pages long, we only show the beginning and the end of the original table.

 $\mathbf{5}$

 $\mathbf{5}$

m = 0

.

MING-GUANG LEU

References

- A. Brauer, Combinatorial Methods in the Distribution of k-th Power Residues, Combinatorial Mathematics and its Applications, Chapel Hill 1967, 14-37.
- [2] R. H. Hudson and K. S. Williams, On the Least Quadratic Nonresidue of a prime $p \equiv 3 \pmod{4}$, J. Reine Angew. Math., **318** (1980), 106-109.
- [3] M.-G. Leu, On a Conjecture of Ono on Real Quadratic Fields, Proc. Japan Acad., 63A (1987), 323-326.
- [4] T. Ono, A Problem on Quadratic Fields, Proc. Japan Acad., 64A (1988), 78-79.
- [5] L. Rédei, Über die Anzahl der Potenzreste mod p im Intervall, 1, \sqrt{p} Nieuw Arch. Wiskunde, (2) 23 (1950), 150–162.
- [6] H. M. Stark, A complete determination of the complex quadratic fields of classnumber one, Michigan Math. J., 14 (1967), 1-27.

Department of Mathematics The Johns Hopkins University Baltimore, MD 21218 U.S.A.

Permanent address: Department of Mathematics National Central University Chung-Li, Taiwan 32054 R. O. C.