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Nilpotent Group C*-algebras as Compact
Quantum Metric Spaces

Michael Christ andMarc A. Rieòel

Abstract. LetL be a length function on a groupG, and let ML denote the operator of pointwisemul-
tiplication by L on ℓ2(G). Following Connes,ML can be used as a “Dirac” operator for the reduced
group C*-algebra C∗r (G). It deûnes a Lipschitz seminorm on C∗r (G), which deûnes ametric on the
state space of C∗r (G). We show that for any length function satisfying a strong form of polynomial
growth on a discrete group, the topology from this metric coincides with the weak-∗ topology (a
key property for the deûnition of a “compact quantum metric space”). In particular, this holds for
all word-length functions on ûnitely generated nilpotent-by-ûnite groups.

1 Introduction

_e group C*-algebras of discrete groups provide a much-studied class of “compact
non-commutative spaces” (that is, unitalC*-algebras). In [5] Connes showed that the
“Dirac” operator of a spectral triple over a unitalC*-algebra provides, in a naturalway,
ametric on the state space of the algebra. _e class of examples most discussed in [5]
consists of the group C*-algebras of discrete groups G, with the Dirac operator con-
sisting of the pointwisemultiplication operator on ℓ2(G) by a word-length function
on the group. In [18, 19] the second author pointed out that, motivated by what hap-
pens for ordinary compact metric spaces, it is natural to desire that a spectral triple
have the property that the topology from themetric on the state space coincide with
the weak-∗ topology (for which the state space is compact). _is property was veri-
ûed in [18] for certain examples. In [21] this property was taken as the key property
for the deûnition of a “compact quantum metric space”. _is property is crucial for
deûning eòective notions of quantumGromov–Hausdorò distance between compact
quantum metric spaces [21,23–25].

In [20] the second author studied this property forConnes’ original class of exam-
ples consisting of discrete groups with Dirac operators coming from a word-length
functions, and established that it holds for the group Zn , relying on geometric argu-
ments. Later, with N. Ozawa [13], he established this property for hyperbolic groups
with word-length functions. _e argument was very diòerent from that in [20], rely-
ing on ûltered C*-algebras.
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In this paper we verify the property for the case of ûnitely generated nilpotent-by-
ûnite groups equipped with length functions of polynomial growth, and generalize
this to a certain class of length functions on inûnitely generated discrete groups. Since
the approach used in this paper is quite diòerent from those used in [13, 20], this
raises the question of ûnding a uniûed approach that covers both the nilpotent and
hyperbolic settings. _e question ofwhat happens for other classes of groups remains
wide open.

To be more speciûc, let G be a countable (discrete) group, and let cc = Cc(G)

denote the convolution ∗-algebra of complex-valued functions of ûnite support on
G. Let λ denote the usual ∗-representation of cc on ℓ2 = ℓ2(G) coming from the
unitary representation of G by le� translation on ℓ2. _us,

λ f (ξ)(x) = f ∗ ξ(x) = ∑
y∈G

f (xy−1
)ξ(y)

for functions ξ ∈ ℓ2(G). _e completion of λ(cc) for the operator norm is by def-
inition the reduced group C*-algebra, C∗r (G), of G. We identify cc with its image
in C∗r (G), so that it is a dense ∗-subalgebra. We remark that by sending an element
a ∈ C∗r (G) to the element of ℓ2 to which it sends δe ∈ ℓ2, we obtain an embedding of
C∗r (G) into ℓ2. _us, when convenient, we can view all of the elements of C∗r (G) as
functions on G. We denote by e the identity element of G.

_e Følner condition for amenability [11,16] is a simple consequence of polynomial
growth (in the weakest of the three versions deûned below). Consequently, the full
and reduced groupC*-algebras coincide [16] under our hypotheses, and sowe do not
need to distinguish between them.

Let a length function L be given on G. _at is, L is a function from G to [0,∞)

that satisûes
(i) L(xy) ≤ L(x) +L(y) for all x , y ∈ G;
(ii) L(x−1) = L(x) for all x ∈ G;
(iii) L(x) = 0 if and only if x = e.
We say that L is proper if B(r) = {x ∈ G ∶ L(x) ≤ r} is a ûnite subset of G for each
r <∞.

_roughout the paper, we denote by ∣E∣ the cardinality of a ûnite set E.
In the literature there are actually two (or more) inequivalent deûnitions of “poly-

nomial growth”. Since we want to distinguish between them, we will call one of them
“strong polynomial growth”. _e proof of our main theoremworks most naturally for
an intermediate property, which we call “bounded doubling”.

Deûnition 1.1 Let L be a length function on a group G. We say that L has (or is of)
(i) strong polynomial growth if L is proper and there exist constants CL < ∞ and

d <∞ such that

C−1
L rd ≤ ∣B(r)∣ ≤ CLrd for all r ≥ 1;

(ii) bounded doubling if L is proper and there exists a constant CL <∞ such that

(1.1) ∣B(2r)∣ ≤ CL∣B(r)∣ for all r ≥ 1;
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(iii) polynomial growth if L is proper and there exist constants CL < ∞ and d < ∞

such that

∣B(r)∣ ≤ CLrd for all r ≥ 1.

Equivalent deûnitions are obtained by changing the restriction r ≥ 1 to r ≥ r0 for
any r0 > 0, but the constants CL may depend on r0.

Proposition 1.2 Let L be a length function on a group G. If L has strong polynomial
growth, then it has bounded doubling. IfL has bounded doubling, then it has polynomial
growth. If G is ûnitely generated, then these three properties are equivalent. But in
general, no two of these properties are equivalent.

See Section 5 for a proof and for examples illustrating these distinctions.
We let Mh denote the (o�en unbounded) operator on ℓ2 of pointwisemultiplica-

tion by a function h∶G → C. _emultiplication operator ML will serve as our “Dirac”
operator, and we will denote it by D. One sees easily [6, 13,20] that the commutators
[D, λ f ] are bounded operators for each f ∈ cc . We can thus deûne a seminorm, LD ,
on cc by LD( f ) = ∥[D, λ f ]∥, where ∥T∥ denotes the operator norm of a bounded
linear operator T ∶ ℓ2(G) → ℓ2(G). (Connes points out in [6, proposition 6] that L
has polynomial growth exactly if there is a positive constant, p, such that the operator
D = ML is such that (1 + D2)−p is a trace-class operator.)

Let L be a ∗-seminorm (i.e., L(a∗) = L(a)) on a dense ∗-subalgebra A of a unital
C*-algebra A, satisfying L(1) = 0. Deûne a metric, ρL , on the state space S(A) of A,
much as Connes did, by

ρL(µ, ν) = sup{ ∣µ(a) − ν(a)∣ ∶ a ∈ A, L(a) ≤ 1} .

(Without further hypotheses, ρL may take the value +∞.)

Deûnition 1.3 ([19]) A ∗-seminorm L on A is a Lip-norm if the topology on S(A)
deûned by the associatedmetric ρL coincides with the weak-∗ topology.

We consider aunitalC*-algebra equippedwith aLip-norm L to be a compact quan-
tummetric space [21], but formany purposes onewants L to satisfy further properties.
See the discussion a�er Proposition 1.6. _e main question that we deal with in this
paper is whether the seminorms LD deûned as above in terms of length functions L
on discrete groups are Lip-norms. Our main theorem follows.

_eorem 1.4 Let G be a discrete group, and let L∶G → [0,∞) be a length function
of bounded doubling on G. Let D = ML be the associatedmultiplication operator. _en
the seminorm LD deûned on cc by LD( f ) = ∥[D, λ f ]∥ is a Lip-norm on C∗(G).

Necessary and suõcient conditions for a seminorm on a pre-C*-algebra to be a
Lip-norm are given in [18, 19] (in a more general context). For our present purposes
it is convenient to reformulate these conditions slightly. _e following reformulation
is an immediate corollary of [13, proposition 1.3].
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Proposition 1.5 LetG be a discrete group, and letL∶G → [0,∞) be a length function.
_e associated seminorm LD is a Lip-norm on cc = Cc(G) if and only if λ carries

{ f ∈ cc ∶ f (e) = 0 and LD( f ) ≤ 1}

to a subset of B(ℓ2) that is totally bounded for the operator norm.

Accordingly, the content of this paper consists in verifying the criterion of this
proposition for the case of a group G equipped with a length function L that has
bounded doubling.

Shorn of its functional analytic context and motivation, the result proved in this
paper is as follows. _e proof developed below is loosely related to some elements
of [3,4].

Proposition 1.6 Let G be a discrete group. Let L∶G → [0,∞) be a length function
on G that has bounded doubling, and let DL be the associated Dirac operator on cc(G).
For every ε > 0 there exists a ûnite set Sε ⊂ G such that for any ûnitely supported
f ∶G → C satisfying ∥[DL , λ f ]∥ ≤ 1 there exists a decomposition f = f♯ + f♭ such that f♭
is supported on Sε and ∥λ f♯∥ ≤ ε.

More generally, for an arbitrary function f ∶G → C, [DL , λ f ] is well deûned as a
linear operator from cc to the space of all functions from G to C. _e analysis below
demonstrates that if f ∶G → C is any function for which [DL , λ f ] maps cc to ℓ2 and
extends to a bounded linear operator from ℓ2 to ℓ2 with ∥[DL , λ f ]∥ ≤ 1, then f satisûes
the conclusion ofProposition 1.6. In particular, f (that is, λ f ) isnecessarily an element
of C∗r (G).

We believe that our whole discussion could be extended to the slightly more gen-
eral setting of group C*-algebras twisted by a 2-cocycle [14, 15],much as done in [20],
but we have not checked this carefully.

_e deûnition of a “compact C*-metric” as given in [24, deûnition 4.1] brings to-
gether most of the additional conditions that have been found to be useful to require
of a Lip-norm L on a C*-normed algebra A. Namely, one wants L to be lower semi-
continuouswith respect to the operator norm, to be strongly Leibniz as deûned there,
and one wants the ∗-subalgebra of elements of A on which L is ûnite to be a dense
spectrally-stable subalgebra of the norm-completion A of A. For any group G with
proper length function L and corresponding seminorm LD for D = ML, one can
always obtain these properties in the following way (as explained in [24], especially
its example 4.4). _e one-parameter unitary group generated by D consists of the
operators of pointwisemultiplication by the functions e i tL. Conjugation by these op-
erators deûnes a one-parameter group, α, of automorphisms of B(ℓ2) (which need
not be strongly continuous, and need not carry A = C∗r (G) into itself). By using α
one shows that LD on cc is lower semi-continuous with respect to the operator norm,
and so has a natural extension, LD to a lower semi-continuous seminorm on all of
A = C∗r (G) (which may take the value +∞). Let A∞ denote the ∗-subalgebra of ele-
ments of A that are inûnitely diòerentiable for α. It contains cc and so is dense in A,
and it is spectrally stable inA. _e restriction of LD toA∞ satisûes all the conditions
for being a C∗-metric, for reasons given in [24, section 3], except for the fact that it
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may not be a Lip-norm. _us, this paper veriûes, for groups with length functions of
bounded doubling, themost diõcult condition, namely of obtaining a Lip-norm, so
that for such groups (A∞ , LD) is a compact C*-metric space. One can show that all
continues toworkwell formatrix algebras overA along the lines given in [25], so that
one should give the deûnition of a “matricial C∗-metric”, but we will not pursue that
important aspect here.

Since both nilpotent-by-ûnite groups and hyperbolic groups are groups of “rapid
decrease” [7, 9], it is natural to ask whether our main theorem extends to all groups
of rapid decrease. For the reader’s convenience we recall here the deûnition of this
concept. For any group G and length function L on it, and for any s ∈ R, the Sobolev
spaceHs

L(G) is deûned to be the set of functions ξ on G such that (1+L)s ξ ∈ ℓ2. _e
spaceH∞

L of rapidly decreasing functions is deûned to be ⋂s∈RH
s
L. _e group G is

said to be of rapid decrease if it has a length function L such that H∞
L is contained

in C∗r (G), that is, if all the convolutions of elements of cc by elements ofH∞
L extend

to bounded operators on ℓ2. For closely related Lip-norms (which are not Leibniz)
obtained by using “higher derivatives” for groups of rapid decrease, see [1].

2 Localized Weighted Inequality

In this section we develop a key inequality that holds for any discrete group G
equipped with a proper length function L. For any h ∈ ℓ∞ we let Mh denote the
operator on ℓ2 of pointwise multiplication by h. If E is a subset of G, we let ME de-
note Mh for h the characteristic (or indicator) function χE of E, so ME = MχE is a
projection operator. For any r ≥ 0 we set B(r) = {x ∈ G ∶ L(x) ≤ r}, which is a ûnite
set, since L is proper. We set Mr = MB(r). Each Mr is a spectral projection of D.

It is convenient to use the kernel functions for the operators λ f and [D, λ f ], for any
f ∈ cc . _e kernel function for λ f is f (xy−1), that is, (λ f ξ)(x) = ∑y f (xy−1)ξ(y)
for any ξ ∈ ℓ2. _e kernel function [D, λ f ](x , y) for the operator [D, λ f ] is

[D, λ f ](x , y) = (L(x) −L(y)) f (xy−1
),

with slight abuse of notation. _us, if L(x) /= L(y), then

f (xy−1
) = (L(x) −L(y))−1

[D, λ f ](x , y).

If L(x) > L(y), then

(L(x) −L(y))−1
= L(x)−1

(1 −L(y)/L(x)) = L(x)−1
∞

∑
k=0

L(y)kL(x)−k .

_us, if we are given r, s ∈ [0,∞) with 0 ≤ r < s, and if ξ ∈ ℓ2 is supported in B(r),
then for any x ∈ G satisfying L(x) ≥ s we have

(λ f ξ)(x) =∑
y
f (xy−1

)ξ(y) =∑
y
(L(x) −L(y))−1

[D, λ f ](x , y)ξ(y)

= ∑
y∈B(s)

L(x)−1
∑
k
L(x)−kL(y)k

[D, λ f ](x , y)ξ(y)
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=∑
k
L(x)−1

∑
y∈B(s)

L(x)−k
[D, λ f ](x , y)L(y)k ξ(y)

= (∑
k
D−1−k

(I −Ms)[D, λ f ]DkMr ξ)(x).

_at is,

(I −Ms)λ fMr =
∞

∑
k=0
D−1−k

(I −Ms)[D, λ f ]DkMr .

But ∥D−1−k(I −Ms)∥ ≤ s−1−k , while ∥[D, λ f ]DkMr∥ ≤ rkLD( f ). Consequently,

∥(I −Ms)λ fMr∥ ≤ s−1
∑
k
(r/s)kLD( f ) = (s − r)−1LD( f ).

We have thus obtained the following proposition.

Proposition 2.1 For any f ∈ cc and any r, s ∈ R with s > r ≥ 0, we have

∥(I −Ms)λ fMr∥ ≤ (s − r)−1LD( f ).

Let us compare this proposition with the main result of [13, section 2]. Suppose
that L takes its values in N, and for each n ∈ N let An consist of the elements of cc
supported on B(n). Let A denote the union of the An ’s, so that A is a unital dense
∗-subalgebra of ℓ1(G). _en the family {An} is a ûltration of A, and in the topo-
logical sense it is a ûltration of ℓ1(G), and of the C*-algebra completion C∗r (G) of
ℓ1(G) for the operator norm. _is is discussed in [13, section 1], where the following
observations aremade. For a faithful tracial state on a ûltered C*-algebra (such as the
canonical trace onC∗r (G))withûltration {An}, one can form the correspondingGNS
Hilbert space,H, and the representation λ ofA on it coming from the le� regular rep-
resentation ofA on itself. For each n ∈ N, let Qn denote the orthogonal projection of
H onto its (ûnite-dimensional) subspaceAn . (In the above discussion for groups this
operator would be denoted by Mn .) _en set Pn = Qn − Qn−1 for n ≥ 1, and P0 = Q0.
_e Pn ’s aremutually orthogonal, and their sum is IH for the strong operator topol-
ogy. One then deûnes an unbounded operator D on H by D = ∑

∞
n=0 nPn . For any

a ∈ A, the densely deûned operator [D, λa] is a bounded operator, so it extends to a
bounded operator on H. We can then deûne a seminorm, LD , on A by

LD(a) = ∥[D, λa]∥.

_is LD is essentially a generalization of the LD thatwe have used above for the group
case. Let T be any bounded operator on H such that [D, T] has dense domain con-
taining A and is bounded on its domain, so it extends to a bounded operator on H.
For any natural number N set

T(N) = ∑
∣m−n∣>N

PmTPn .

_en the main result of [13, section 2] provides a speciûc sequence, {CN}, of con-
stants, independent of D and T , that converges to 0 as N goes to∞, such that

∥T(N)∥ ≤ CN∥[D, T]∥
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for all N . Notice then that for any p, q ∈ N such that q − p > N we have

(1 − Qq)( ∑
∣m−n∣>N

PmTPn )Qp = (1 − Qq)TQp ,

and consequently

∥(1 − Qq)TQp)∥ ≤ CN∥[D, T]∥.

_is is essentially a generalization of Proposition 2.1, but with not as good a constant.

3 Cutoff Functions

For the proof of _eorem 1.4 we seek, for any ε > 0 and every f ∈ cc , a decomposi-
tion f = f♯ + f♭ with certain properties. It is natural to accomplish this by means of
multiplication operators, so that in the notation of Proposition 1.6, f♭ = Mg f = g f
where the cutoò function g depends only onG,L, and ε. Itwill bemore convenient to
construct f♯ in thisway, and thiswill be accomplished bymeans of an inûnite series of
ûnitely supported cutoò functions. _us one is led to analyze λgν f in terms of λ f , for
a family of cutoò functions gν whose supports are ûnite for each ν, but not uniformly
so.
As motivation, consider the Abelian case, employing additive notation x − y in

place of multiplicative xy−1 for the group operation. _e operator λg f has kernel
function g(x − y) f (x − y). As in the proof of Proposition 2.1, it can be useful to
express g as an inûnite sum of product functions g(x − y) = ∑k ϕk(x)ψk(y) with
∑k ∥ϕk∥L∞∥ψk∥L∞ ≤ C0,whereC0 is a ûnite constant that is to be bounded uniformly
over a suitable family of cutoò functions g. _is expresses λg f as∑k Mϕk λ fMψk with
∑k ∥Mϕk λ fMψk∥ ≤ C0∥λ f ∥. If the Fourier transform ĝ satisûes ∥ĝ∥L1 ≤ C0, then one
obtains at once a continuum decomposition of this type:

g(x − y) = ∫ ĝ(ξ)e2πi ξ⋅(x−y) dξ = ∫ ĝ(ξ)e2πi ξ⋅x e−2πi ξ⋅y dξ,

and one sets ϕξ(x) = ĝ(ξ)e2πix ⋅ξ and ψξ(y) = e−2πiy⋅ξ to obtain

∫ ∥ϕξ∥∞∥ψξ∥∞ dξ ≤ C0 .

One eòective way to ensure that ∥ĝ∥L1 ≤ C0 is to express g as a convolution product
g = g1 ∗ g2 with ∥g1∥ℓ2∥g2∥ℓ2 ≤ C0. For not necessarily Abelian groups with length
functions of bounded doubling, we will show below how convolution products of
appropriately chosen ℓ2 functions can be used to construct useful cutoò functions g,
despite the lack of a convenient Fourier transform.

3.1 Convolutions as Cutoff Functions

We begin with some generalities concerning λg f when the cutoò function g is ex-
pressed as a convolution h∗ ∗ k for h, k ∈ cc . Let ρ denote the right regular represen-
tation of G on ℓ2, deûned by ρu(ξ)(x) = ξ(xu−1). _en ρu commutes with λ f for
any f ∈ cc . For any h ∈ cc , we deûne h̃(x) = h(x−1) and h∗(x) = h(x−1).
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Proposition 3.1 For any f , h, k ∈ cc , we have
(3.1) λ(h∗∗k) f =∑

z
ρ∗z M∗

h̃ λ fM k̃ρz ,

where this sum converges for the weak operator topology. Furthermore,
∥λ(h∗∗k) f ∥ ≤ ∥λ f ∥∥h∥2∥k∥2 .

Proof Notice that

(h∗ ∗ k)(yx−1
) =∑

z
h(z−1

)k(z−1 yx−1
) =∑

z
h(z−1 y−1

)k(z−1x−1
).

_en, on using this, for any ξ, η ∈ cc we have
⟨λ(h∗∗k) f ξ, η⟩ =∑

y
(λ(h∗∗k) f ξ)(y)η(y)

=∑
y
∑
x
(h∗ ∗ k)(yx−1

) f (yx−1
)ξ(x)η(y)

=∑
y
∑
x
∑
z

h(z−1 y−1
)k(z−1x−1

) f (yx−1
))ξ(x)η(y)

=∑
y
∑
x
∑
z
f (yx−1

)k(x−1
)ξ(xz−1

)h(y−1
)η(yz−1

)

=∑
z
⟨λ fM k̃ρz ξ, Mh̃ρzη⟩

=∑
z
⟨ρ∗z M∗

h̃ λ fM k̃ρz ξ, η⟩.

But

∑
u

∥M k̃ρu ξ∥2
2 =∑

u
∑
x

∣M k̃ρu ξ(x)∣2 =∑
u
∑
x

∣k(x−1
)ξ(xu−1

)∣
2

=∑
x

∣k(x−1
)∣

2
∥ξ∥2

2 = ∥k∥2
2∥ξ∥2

2 ,

and similarly for Mh̃ρvη, so that by Cauchy–Schwarz,

∑
z
∣⟨λ fM k̃ρz ξ, Mh̃ρzη⟩∣ ≤ ∥λ f ∥∥h∥2∥k∥2∥ξ∥2∥η∥2 .

_is implies both convergence of the series (3.1) for the weak operator topology and
the stated norm inequality. Notice that because ρ is a unitary representation the norm
of each operator ρ∗z M∗

h̃
λ fM k̃ρz is equal to ∥M∗

h̃
λ fM k̃∥.

Proposition 3.1 ûts very well into the setting of “proper actions of groups on C*-
algebras” that is deûned and discussed in [17]. Let A denote the algebra of compact
operators on ℓ2, and let α denote the action of G onA by conjugation by ρ. From [17,
example 2.1] but with the roles of λ and ρ reversed, we see that α is a proper action as
deûned in [17]. _e ûnite-rank operator M∗

h̃
λ fM k̃ above is easily seen to have kernel

function of ûnite support, putting it in the dense subalgebra A0 of [17, example 2.1].
Accordingly∑z αz(M∗

h̃
λ fM k̃) exists in theweak sense discussed in [17], and this sum

is an element of the “generalized ûxed-point algebra” for α as deûned in [17]. Towards
the end of example 2.1 it is explained that this generalized ûxed-point algebra is, in the
case of this example, just the C*-algebra generated by the le� regular representation
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(for the roles reversed). Proposition 3.1 yields λ(h∗∗k) f , which is indeed in this C*-
algebra. _is general setting is explored further in [22], especially in Sections 7 and 8.

We do not, strictly speaking, need the following proposition, but it provides some
perspective on the path that we will take below, e.g., in Proposition 4.6.

Proposition 3.2 Let f , h, k ∈ cc . _en
LD(λ(h∗∗k) f ) ≤ ∥h∥2∥k∥2LD( f ).

Proof Because (h∗ ∗ k) f has ûnite support, [D, λ(h∗∗k) f ] is a bounded operator.
Let ξ, η ∈ cc , so they are in the domain of D. _en

⟨ [D, λ(h∗∗k) f ]ξ, η⟩ = ⟨λ(h∗∗k) f ξ,Dη⟩ − ⟨λ(h∗∗k) fDξ, η⟩,
so by Proposition 3.1

⟨ [D, λ(h∗∗k) f ]ξ, η⟩ =∑
z
⟨Dρ∗z M∗

h λ fMkρz ξ, η⟩ − ⟨ρ∗z M∗
h λ fMkρzDξ, η⟩.

But if by slight abuse of notationwe let ρz(h) denote the corresponding right translate
of h, we see that ρ∗z M∗

hρz = M∗
ρz(h), which commutes with D, and similarly for Mk .

Furthermore, ρz commutes with λ f . It follows that

⟨ [D, λ(h∗∗k) f ]ξ, η⟩ =∑
z
⟨ ρ∗z M∗

h[D, λ f ]Mkρz ξ, η⟩ .

Consequently,

∣ ⟨ [D, λ(h∗∗k) f ]ξ, η⟩ ∣ ≤ LD( f )∥h∥2∥k∥2∥ξ∥2∥η∥2

for much the same reasons as given near the end of the proof of Proposition 3.1.

3.2 The Seminorm JD and Cutoff Functions

Later in the proof we will partly lose control of LD(g f ) for certain functions g of
interest. It is possible to retain some control, as follows. Notice that if, for any r > 0,
we set s = 2r in Proposition 2.1, we obtain

∥(I −M2r)λ fMr∥ ≤ r−1LD( f ).
_is motivates the following deûnition.

Deûnition 3.3 _e seminorm JD on cc is deûned by
JD( f ) = sup{r∥(I −M2r)λ fMr∥ ∶ r > 0}

for any f ∈ cc .

_e inequality JD( f ) ≤ LD( f ) for all f ∈ cc is an equivalent formulation of the
special case s = 2r of Proposition 2.1.

We emphasize that for the rest of this section, and for much of the next, we use JD
but not LD , although some steps do have versions for LD . Only near the end of the
next sectionwillwe use the fact that JD ≤ LD . Wewill need the following proposition.

Proposition 3.4 Let f ∈ cc . If f (x) /= 0 for some x /= e, then JD( f ) /= 0. _us, the
seminorm JD is a norm on the subspace { f ∈ cc ∶ f (e) = 0}.
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Proof Let δe be the delta-function at e, viewed as an element of ℓ2. _en for any
r > 0, we have ((I −M2r)λ fMr)(δe) = (I −M2r)( f ), where on the right-hand side
f is viewed as an element of ℓ2. Let x ∈ G be such that f (x) /= 0 and x /= e so
that L(x) /= 0. Choose r > 0 such that 2r < L(x). _en (M2r f )(x) = 0, so that
(I −M2r)( f )(x) /= 0, and thus JD( f ) /= 0.

We now proceed to develop properties of JD with respect to cutoòs of functions.

Proposition 3.5 For a given r > 0, suppose that h is supported on G∖B(2r) and that
k is supported on B(r). _en for any f ∈ cc we have

∥λ(h∗k) f ∥ ≤ r−1
∥h∥2∥k∥2 JD( f ).

Proof For any ξ, η ∈ cc we have, by Proposition 3.1,

∣⟨λ(h∗∗k) f ξ, η⟩∣ = ∣∑
z
⟨λ fM k̃ρz ξ, Mh̃ρzη⟩∣

= ∣∑
z
⟨(I −M2r)λ fMrM k̃ρz ξ, Mh̃ρzη⟩∣

≤ r−1 JD( f )∑
z
∥M k̃ρz ξ∥2∥Mh̃ρzη∥2

≤ r−1
(∑

u
∥M k̃ρu ξ∥2

2)
1/2

(∑
v

∥Mh̃ρvη∥
2
2)

1/2 JD( f )

= r−1
∥h∥2∥k∥2∥ξ∥2∥η∥2 JD( f ),

for reasons given near the end of the proof of Proposition 3.1.

Quite parallel to Proposition 3.2 we have the following proposition.

Proposition 3.6 Let f , h, k ∈ cc . _en

JD((h∗ ∗ k) f ) ≤ ∥h∥2∥k∥2 JD( f ).

Proof _e justiûcations for the calculations in the proof are very similar to those in
the proof of Proposition 3.2. For any r > 0 we have, by Proposition 3.1,

∣ ⟨ (I −M2r)λ(h∗∗k) fMr ξ, η⟩ ∣ = ∣ ⟨ λ(h∗∗k) fMr ξ, (I −M2r)η⟩ ∣

= ∣∑
z
⟨ λ fM k̃ρzMr ξ,Mh̃ρz(I −M2r)η⟩ ∣

= ∣∑
z
⟨(I −M2r)λ fMrM k̃ρz ξ,Mh̃ρz(I −M2r)η⟩ ∣

≤∑
z
∣ ⟨ (I −M2r)λ fMrM k̃ρz ξ, Mh̃ρz(I −M2r)η⟩ ∣

≤ r−1
∥h∥2∥k∥2 JD( f )∥ξ∥2∥η∥2 ,

for reasons given near the end of the proof of Proposition 3.1.
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Corollary 3.7 For given r > 0, suppose that E ⊂ B(r) and F ⊂ G ∖ B(2r), and set
k = χE and h = χF . _en for any f ∈ cc , we have

∥λ(h∗∗k) f ∥ ≤ r−1
∣E∣1/2∣F∣1/2 JD( f ),

JD((h∗ ∗ k) f ) ≤ ∣E∣1/2∣F∣1/2 JD( f ).

3.3 Cutoff Functions Approximating Indicator Functions of Annuli

Notation 3.8 For t > s > 0 we deûne the annulus A(s, t) to be

A(s, t) = B(t) ∖ B(s) = {x ∈ G ∶ s < L(x) ≤ t}.

Corollary 3.9 For given t > s > 2r > 0, let k = ∣B(r)∣−1 χB(r) and h = χA(s ,t), and let
g = h∗ ∗ k. _en for any f ∈ cc we have

∥λg f ∥ ≤ r−1
(∣B(r)∣−1

∣B(t)∣)1/2 JD( f ),

JD(g f ) ≤ (∣B(r)∣−1
∣B(t)∣)1/2 JD( f ).

One can consider here thatwe are interested in restricting f to A(s, t), as χA(s ,t) f ,
but we are ûrst “smoothing” χA(s ,t) by convolving it with the probability function k
centered at 0, to give g f .

_e following facts are easily veriûed.

Lemma 3.10 For g deûned as in Corollary 3.9, we have 0 ≤ g ≤ 1, and furthermore,
(i) if g(x) /= 0, then s − r < L(x) ≤ t + r, that is, x ∈ A(s − r, t + r);
(ii) if x ∈ A(s + r, t − r), that is, s + r < L(x) ≤ t − r, then g(x) = 1.

For later usewe draw the following consequences fromCorollary 3.9 and the above
lemma. Suppose that t > s > 2r > 0, and suppose that f ∈ cc vanishes identically on
both the annuli A(s − r, s + r) and A(t − r, t + r) . _en

∥λ f χA(s+r ,t−r)∥ ≤ r−1
(∣B(r)∣−1

∣B(t)∣)1/2 JD( f )

JD( f χA(s+r ,t−r)) ≤ (∣B(r)∣−1
∣B(t)∣)1/2 JD( f ).

If we reparametrize this inequality by sending t to t + r and s to s − r, we obtain the
following result.

Proposition 3.11 Suppose that t > s > 3r > 0, and suppose that f ∈ cc vanishes
identically on both the annuli A(s − 2r, s) and A(t, t + 2r). _en

∥λ f χA(s ,t)∥ ≤ r−1
(∣B(r)∣−1

∣B(t + r)∣)1/2 JD( f ),

JD( f χA(s ,t)) ≤ (∣B(r)∣−1
∣B(t + r)∣)1/2 JD( f ).

4 Application to Nilpotent-by-finite Groups

We assume for the remainder of the paper thatL is a length functionwith the property
of bounded doubling.
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Notation 4.1 For a ûxed R ∈ R with R ≥ 2, and for any natural numbers m, n,
we set B̃(n) = B(Rn) and Ã(m, n) = A(Rm , Rn). For n ≥ 1 we then set kn =

∣B̃(n − 1)∣−1 χB̃(n−1), hn = χÃ(n ,n+1), and gn = hn ∗ kn .

_ese deûnitions imply that h∗n = hn , and the support of gn is contained in
A(Rn − Rn−1 , Rn+1 + Rn−1). We now ûx a parameter R of the form R = 2K ,with K ∈ N
to be chosen later. In particular, R ≥ 2. _is R will be used implicitly for much of the
rest of this section. From inequality (5.1) coming from bounded doubling, we obtain

∣B̃(n − 1)∣−1
∣B̃(n + 1)∣ ≤ C2K

L .

Notice that the bound on the right is independent of n. Notice also that Rn+1−Rn−1 ≥

2Rn−1 because R ≥ 2.
In the series of results belowwe employ the following notation. By Ck we denote a

ûnite, positive quantity that depends only on the constant CL in the formulation (1.1)
of the bounded doubling hypothesis for L, and on the supplementary quantity R that
is to be chosen later in the proof. In particular, each Ck is independent of quantities
n,N that appear in the analysis. Explicit expressions for each of these constants as
functions of CL , R can be extracted from the steps below, but their precise values are
of no intrinsic signiûcance for our purposes.

We can apply Corollary 3.9 to obtain the following lemma.

Lemma 4.2 For any f ∈ cc and for any n ≥ 1, we have ∥λgn f ∥ ≤ C1R−n JD( f ), where
C1 = CK

L .

It is natural to askwhether there exist length functionswithout bounded doubling
for which this lemma has an analogue.

Proposition 4.3 If ∣n −m∣ ≥ 2, then gn and gm have disjoint support.

Proof We can assume that n > m. If gm(x) /= 0, then L(x) ≤ Rm+1 + Rm−1, while if
gn(x) /= 0, then Rn − Rn−1 < L(x). But Rm+1 + Rm−1 < Rn − Rn−1, because R ≥ 2 and
n −m ≥ 2.

In particular, g2n and g2(n+1) have disjoint support. Because of this, we for the
moment restrict to using these functions. From Lemma 4.2 and R ≥ 2, we obtain, for
any integer N ≥ 1,

∥ ∑
n≥N

λg2n f ∥ ≤ ∑
n≥N

R−2nC1 JD( f ) = 2C1R−2N JD( f ).

Notation 4.4 Set pN = p fN = ∑n≥N g2n f .

We then have the following proposition.

Proposition 4.5 For any integer N ≥ 1, ∥λpN ∥ ≤ 2C1R−2N JD( f ).
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Although Proposition 3.2 gives some information about LD(gn f ), we have not
seen how to get a useful bound for LD(pN). In contrast, by using the support prop-
erties of the gn ’s we can obtain the following useful bound for JD(pN), that is inde-
pendent of N .

Proposition 4.6 For any positive integer N , JD(p fN) ≤ C2 JD( f ), where C2 = 4RC1.

Proof Fix N , and let r > 0 be given. Let Nr be the biggest M such that for n < M
the annulus A(R2n − R2n−1 , R2n+1 + R2n−1) is contained in B(r), that is, such that
R2n+1 + R2n−1 ≤ r. If ξ ∈ cc has its support in B(r), then for any n < Nr the support of
λg2n f ξ is contained in B(2r), and so (I −M2r)λg2n f ξ = 0. _us, for n < Nr ,

(I −M2r)λg2n fMr = 0.

Consequently, by Lemma 4.2,

∥(I −M2r)λpN Mr∥ ≤ ∑
n≥Nr

∥λg2n f ∥ ≤ ∑
n≥Nr

C1R−2n JD( f ) = 2C1R−2Nr JD( f ).

Now from the deûnition of Nr we have

r ≤ R2Nr+1
+ R2Nr−1

≤ 2R2Nr+1 ,

because R ≥ 2. _us R2Nr ≥ r/(2R). On using this in the previous displayed equation,
we obtain

∥(I −M2r)λpN Mr∥ ≤ 2(2R/r)C1 JD( f ).
Since this is true for all r > 0, the proof is complete.

Now set qN = q fN = f − pN . Notice that qN(x) = 0 when for some n ≥ N we have
g2n(x) = 1, which from Lemma 3.10 happens when

R2n
+ R2n−1

< L(x) ≤ R2n+1
− R2n−1 .

_us, qN is supported in the union of the annular regions An = A(sn , tn), with

sn = R2(n−1)+1
− R2(n−1)−1 and tn = R2n

+ R2n−1 .

We now arrange to apply Proposition 3.11 to control λ f χA(sn ,tn) . We seek rn such
that 3rn < sn = R2n−3(R2 − 1). To ensure that q fN vanishes on A(sn − 2rn , sn), it
suõces to have sn − 2rn ≥ R2(n−1) + R2(n−1)−1, that is,

2rn < R2n−1
− R2n−2

− 2R2n−3
= R2n−3

(R2
− R − 2),

while its vanishing on A(tn , tn + 2rn) is ensured if tn + 2rn ≤ R2n+1 − R2n−1, that is, if

2rn < R2n+1
− R2n

− 2R2n−1
= R2n−1

(R2
− R − 2).

We assume henceforth that R ≥ 4, because it is easily checked that rn = 1
6R

2n−1 then
satisûes all three of these conditions.

We can now apply Proposition 3.11. With the values of rn , sn , tn chosen above,

An = A(sn , tn) = A(R2(n−1)+1
− R2(n−1)−1 , R2n

+ R2n−1
).

_en by inequality (5.1),

∣B(rn)∣−1
∣B(tn + rn)∣ ≤ C

1+log2((tn+rn)/rn)
L = C1+log2(6R+7)

L .
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_e uniform (with respect to n) boundedness of these ratios is crucial to our anal-
ysis and relies on the bounded doubling hypothesis. _is uniform boundedness, in
combination with Proposition 3.11, gives

(4.1) ∥λ(qN χAn)∥ ≤ C3R−2n JD(qN)

where C3 depends only on CL , R.
From Proposition 4.6 we obtain

JD(q fN) ≤ JD( f ) + JD(p fN) ≤ (1 + C2)JD( f ),
which together with inequality (4.1) establishes the following lemma.

Lemma 4.7 With notation as above, for each n, ∥λ(qN χAn)∥ ≤ C4R−2n JD( f ), where
C4 = (1 + C2)C3.

Notation 4.8 Set ρN = ρ fN = ∑n≥N q fN χAn .

Notice that if L(x) > R2N + R2N−1, then ρ fN(x) = q fN(x), so that f − (pN + ρN)

is supported in B(R2N + R2N−1). Much as in the proof of Proposition 4.5 we obtain
from the last displayed inequality above.

Proposition 4.9 With notation as above, for any integer N ≥ 2,

∥λρN ∥ ≤ 2C4R−2N JD( f ).

But we also need control of JD(ρN).

Proposition 4.10 With notation as above, for any integer N ≥ 2,

JD(ρ fN) ≤ 4C4 JD( f ).

Proof _e proof is very similar to that of Proposition 4.6, but we give the details,
since the bookkeeping is somewhat diòerent. Fix N , and let r > 0 be given. Let Nr be
the biggest M such that for n < M the annulus An is contained in B(r), that is, such
that R2n +R2n−1 ≤ r. If ξ ∈ cc has its support in B(r), then for any n < Nr the support
of λ(qN χAn )ξ is contained in B(2r), and so (I −M2r)λ(qN χAn )ξ = 0. _us, for n < Nr
we have

(I −M2r)λ(qN χAn )Mr = 0.
Consequently, by Lemma 4.7 we have

∥(I −M2r)λ(qN χAn )Mr∥ ≤ ∑
n≥Nr

∥λ(qN χAn )∥

≤ ∑
n≥Nr

R−2nC4 JD( f ) = 2C4R−2Nr JD( f ).

Now from the deûnition of Nr , we have r ≤ R2Nr + R2Nr−1 ≤ 2R2Nr , because R ≥ 4.
_us, R2Nr ≥ r/2. On using this in the previous displayed equation, we obtain

∥(I −M2r)λ(qN χAn )Mr∥ ≤ 4C4r−1 JD( f ).
Since this is true for all r > 0, this concludes the proof.
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Proposition 1.6, and its extension about arbitrary functions for which [DL , λ f ] is
bounded, have now been established.

We ûnally assemble the pieces to conclude the proof of our main theorem. Let
ε > 0 be given. We will show that the set

BJ = {λ f ∶ f ∈ cc , f (e) = 0, and JD( f ) ≤ 1}

can be covered by a ûnite number of ε-balls for the operator norm. Since JD ≤ LD ,
thiswill imply the same result for LD in place of JD above,which veriûes the criterion
of Proposition 1.5, and so proves the assertion of our main theorem. Note that up to
this point we have not even shown that BJ is bounded for the operator norm.
Fix R ≥ 4, and choose N ≥ 2 such that

R−2N max(C1 ,C4) < ε/4.
From Propositions 4.5 and 4.9 it now follows that if f ∈ BJ , then

max (∥λp fN
∥, ∥λρ fN

∥) < ε/4

so that ∥λp fN+ρ fN
∥ < ε/2. _us, ∥λ f − λ f−(pN+ρN)∥ < ε/2.

We need next to know that the set of functions of the form f − (p fN + ρ fN) with
f ∈ BJ is bounded for the operator norm. To do this we ûrst show that it is bounded
for the norm JD . From Propositions 4.6 and 4.10 it follows that for any f ∈ BJ , we
have

JD( f − (p fN + ρ fN)) ≤ JD( f ) + C2 JD( f ) + 4C4 JD( f ) ≤ 1 + C2 + 4C4 ,

giving the desired boundedness for JD .
Now by construction, f − (p fN + ρ fN) is supported in B(R2N + R2N−1). Let

VN
J = { f ∈ cc ∶ f (e) = 0, and f is supported in B(R2N

+ R2N−1
)} .

Let
BN

J = { f ∈ VN
J ∶ JD( f ) ≤ 1 + C2 + 4C4} ,

and notice that each f −(p fN +ρ fN) is in BN
J . Both JD and the operator norm (via λ) re-

strict to norms on the vector spaceVN
J , and these norms are equivalent becauseVN

J is
ûnite-dimensional. _us BN

J is bounded for the operator norm. Since we have shown
above that every f ∈ BJ is in the operator-norm ε/2-neighborhood of an element of
BN

J , it follows that BJ is bounded for the operator norm.
Since VN

J is ûnite-dimensional, BN
J can be covered by a ûnite number of operator-

norm ε/2-balls. Consequently, since BJ is contained in the operator-norm ε/2-neigh-
borhood of BN

J , it follows that BJ can be covered by a ûnite number of operator-norm
ε-balls. _us, BJ is totally bounded for the operator norm. _is concludes the proof
of_eorem 1.4.

5 On Polynomial Growth

Proposition 1.2 states that strong polynomial growth implies the bounded doubling
property, which implies polynomial growth, and that these are equivalent for ûnitely
generated groups.

https://doi.org/10.4153/CMB-2016-040-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-040-6


92 M. Christ andM. A. Rieòel

Proof of Proposition 1.2 Suppose that L has strong polynomial growth. _en, with
notation as in Deûnition 1.1, for any strictly positive r, s we get

∣B(s)∣ ≤ c2sd r−d ∣B(r)∣,

which for s = 2r gives the bounded doubling property. Suppose instead that L has
bounded doubling. _en for any s ≥ 1we get ∣B(2k s)∣ ≤ Ck

L∣B(s)∣ for eachnonnegative
integer k. From this we ûnd that if 1 ≤ s ≤ r, then

(5.1) ∣B(r)∣ ≤ C1+log2(r/s)
L ∣B(s)∣

where log2 denotes the base 2 logarithm. Indeed, let k be the positive integer that
satisûes 2k−1s < r ≤ 2k s. _en ∣B(r)∣ ≤ ∣B(2k s)∣ ≤ Ck

L∣B(s)∣ and k − 1 ≤ log2(r/s). On
setting s = 1 and rearranging we see that L has polynomial growth.

Suppose now thatG is ûnitely generated and thatL is a length function onG. _en
for any word-length function L̃ on G there exists C < ∞ such that L ≤ C−1L̃; that
is, the balls B̃(r) associated with L̃ satisfy B̃(r) ⊂ B(Cr). _us, if L has polynomial
growth, it follows that L̃ does also. According to a theorem of Gromov [8, 10–12,
26], this implies that G is nilpotent-by-ûnite. But the property of strong polynomial
growth holds for any word-length function on a ûnitely generated nilpotent-by-ûnite
group [2,11,27]. _us, L̃ has strong polynomial growth, and so there are constants C̃L̃
and d̃ such that

C̃−1
L̃ r d̃ ≤ ∣B̃(r)∣ ≤ ∣B(Cr)∣

for all r ≥ 0. _is implies that L has strong polynomial growth.

We conclude by exhibiting simple examples illustrating the inequivalence between
these growth properties, for groups that are not ûnitely generated. Chapter 9 of [11]
also contains an interesting discussion of inûnitely generated groups that are of locally
polynomial growth.

Example 5.1 _e function L(x) = ln(2∣x∣) for all x /= 0 on the group G = Z is a
length function that is not of polynomial growth.

_e remaining examples are based on inûnite direct sums of ûnite groups. Let
(Gn)n∈N be an arbitrary sequence of ûnite groups, with identity elements en . Let G
be the direct sum of all these groups; G consists of all sequences x = (x1 , x2 , x3 , . . . )
with xn ∈ Gn for all n and xn = en for all but ûnitely many indices n. Multiplication
is deûned componentwise. Let e = (e1 , e2 , . . . ) be the identity element of G. Let 1 ≤
a1 < a2 < a3 < ⋅ ⋅ ⋅ be a strictly increasing sequence of positive real numbers satisfying
limn→∞ an = ∞. Deûne L∶G → [0,∞) by L(e) = 0 and L(x) = maxn∶xn /=en an for
all x /= e. _en L is a proper length function. Moreover, if r = an , then ∣B(r)∣ =
∏

n
m=1 ∣Gm ∣.

Example 5.2 Let Gn = Z/2Z, the group with 2 elements. Let ak = 2k2
. _en

∣B(2K2
)∣ = 2K for all K ∈ N, and,more generally,

∣B(r)∣ ≤ eC
√

ln(r)
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for all r ≥ 2, for a certain constant C < ∞. _us, the growth rate of L is slower than
polynomial, and so L can not have strong polynomial growth. But if r ≥ 2 and if the
natural number p is such that 2p2 ≤ r < 2(p+1)2 so that ∣B(r)∣ = 2p , then 2r ≤ 2(p+1)2

so that ∣B(2r)∣ ≤ 2p+1. _us, ∣B(2r)∣ ≤ 2∣B(r)∣, so that L has bounded doubling.

Example 5.3 Now choose (Gn) such that ∣Gn ∣ > 1 for all n, and limn→∞ ∣Gn ∣ =

∞. Choose an = ∏
n
m=1 ∣Gm ∣. _e balls on the direct sum group G satisfy ∣B(an)∣ =

∏
n
m=1 ∣Gm ∣ = an for all n, and ∣B(r)∣ < r for all other r > 1, so L has polynomial

growth. However, for 2 ≤ r = an ,

∣B(r)∣
∣B(r/2)∣

≥
∣B(r)∣

∣B(r − 1)∣
= ∣Gn ∣

is not bounded above uniformly in n, and so the doubling property does not hold.

_e next example shows that L can have polynomial growth, yet grow irregularly.

Example 5.4 Let G be as above. Choose any two parameters 1 < γ1 < γ2 < ∞,
and let 1 = N1 < N2 < N3 < ⋅ ⋅ ⋅ be a sequence tending to inûnity. Set a1 = 1 and for
Nk ≤ n < Nk+1, choose ak+1/ak = γ1 if k is odd, and = γ2 if k is even. _en L has
polynomial growth. However, L need not have strong polynomial growth. Indeed, it
is plainly possible to arrange, by choosing the sequence (Nk) to increase to inûnity
suõciently rapidly, that

lim sup
r→∞

log ∣B(r)∣
log r

= γ−1
1 , while lim inf

r→∞

log ∣B(r)∣
log r

= γ−1
2 .

Example 5.5 Let G0 be a ûnite non-commutative simple group, and let γ > 1.
Choose Gn = G0 for all n, and an = γn . _en L has polynomial growth, yet G is
not nilpotent-by-ûnite.
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