Logarithmetics of Finite Quasigroups (II)

By HELEN POPOVA

(Received 25th July, 1951. Revised 9th February, 1955.)

1. Introduction.

In the first paper of this series $(L.Q.I)^{1}$ we have shown that the logarithmetic L_{Q} of a finite quasigroup Q is a quasigroup with respect to addition and that it is a subdirect union of the logarithmetics of the elements of Q.

In this second part we shall discuss further the structure of L_Q in its additive aspect, and obtain results concerning the order N of L_Q . For plain quasigroups (§3) the structure of $L_Q(+)$ is studied in more detail and it is shown that N is a power of n, the order of Q.

2. The structure of $L_{q}(+)$.

Let Q = (1, 2, ..., n) be a quasigroup of order n. As in L.Q.I an element of L_Q is called a quasi-integer.

If r is the index of a power x^r , the corresponding quasi-integer is represented as the column vector $\{1^r, 2^r, ..., n^r\}$. Such columns form the additive quasigroup $L_Q(+)$ in which vectors are added by forming products in Q of their corresponding elements:

$$\{i, \ldots\} + \{j, \ldots\} = \{ij, \ldots\}.$$
(1)

Let the element 1 of Q generate a subquasigroup $Q_1 = (a_1, a_2, ..., a_{n_1})$ of order n_1 , where $a_i a_j = a_{ij}$ $(i, j = 1, ..., n_1)$. Since 1^r generates Q_1 as r varies, L_Q must possess quasi-integers with $a_1, a_2, ..., a_{n_1}$ in the first row. Let the quasi-integers be collected into classes, $A_{a_1}, A_{a_2}, ..., A_{a_{n_i}}$ where A_{a_i} is the class of integers with a_i in the first row; and let $A_{a_i} + A_{a_j}$ denote the class of sums $\{a_i, ...\} + \{a_j, ...\}$. Let the orders of $A_{a_i}, A_{a_j}, A_{a_j}, A_{a_i} + A_a$ be p, q, t respectively.

¹ H. Popova, "Logarithmetics of finite quasigroups (I)", Proc. Edinburgh Math. Soc. (2), 9 (1954), 74-81.

It follows from (1) that $A_{a_i} + A_{a_j} \subset A_{a_{ij}}$; and also, by keeping $\{a_i, \ldots\}$ fixed, and letting $\{a_i, \ldots\}$ run through A_{a_i} , that $q \leq t$.

But since $L_{\rho}(+)$ is a quasigroup

$$\{a_i, \ldots\} + \{x, \ldots\} = \{a_{ij}, \ldots\}$$

has a unique solution of the form $\{x, ...\} = \{a_j, ...\}$, and hence

 $A_{a_{ii}} \subset A_{a_i} + A_{a_i}, \quad q \ge t.$

Consequently, the addition table (1) of L_{Q} can be partitioned into

$$A_{a_{ij}} = A_{a_i} + A_{a_j}; \tag{2}$$

and (by similar reasoning comparing p and t)

p = q = t.

The same argument can be applied to any row, and the result may be formulated as follows:

THEOREM 1. Let Q be a quasigroup (1, ..., n) and let the element m of Q generate a subquasigroup $Q_m = (a_1, a_2, ..., a_{n_m})$, of order n_m . Then if A_{a_n} denotes the set of all quasi-integers having a_i in their m-th row

(i) L_Q is homomorphic to Q_m by the correspondence

(all quasi-integers of A_a) $\rightarrow a_i$;

- (ii) all A_{a_i} are of the same order, say P_m ;
- (iii) the order of L_Q is $N = n_m P_m$.

It follows that

(iv) N is a multiple of the least common multiple of all the n_m :

$$[n_1, n_2, ..., n_m] | N.$$

As before, let 1 generate $Q_1 = (a_1, a_2, ..., a_{n_1})$, and let A_{a_i} denote the class of quasi-integers represented by vectors whose first element is a_i , say $\{a_i, b_{is}, ...\}$. Keeping a_i fixed suppose that the element b_{is} takes k_i distinct values, and let B^{a_i} denote the corresponding class of k_i subvectors $\{a_i, b_{is}\}$. We may define

$$\{a_i, b_{is}\} + \{a_j, b_{js}\} = \{a_i a, b_s b_{js}\}$$

and define $B^{a_i} + B^{a_j}$ as the class of such sums. Then a repetition of an argument which led to Theorem 1 shows that

$$B^{a_i} + B^{a_j} = B^{a_{ij}}, \quad k_i = k_j = \dots = k.$$
(3)

We have seen that all A_{a_i} are of the same order (Theorem 1) and that their quasi-integers have the same number, say k, of distinct elements in their second rows. We shall next show that the order of each A_{a_i} is a multiple of k. In order words, if $A_{a_ib_i}$ denotes the class of all quasi-integers with $\{a_i, b_{is}, \ldots\}$ in their first two rows, then all $A_{a_ib_{ii}}$ are of the same order, and have the same number of distinct elements in their third rows.

Consider the classes A_{a_1} , $A_{a_{11}}$. Let their quasi-integers be classified according to their second element b_{1s} , b_{11t} into classes

 C^s, F^t

respectively. By the same method it can be shown that

$$C^i + C^j = F^i$$

and that these classes are all of the same order, say p_1 . Thus,

LEMMA 1. The order of A_1 is

$$p_1 = kq_1 \tag{4}$$

where k is the number of distinct elements of Q in the second row of all vectors representing the quasi-integers of A_1 , and q_1 is the number of quasi-integers having $\{1, 2, ...\}$ in their first two rows.

The last lemma may be generalised as follows:

LEMMA 2. Let there be just p quasi-integers of L_Q for which the first m rows are the same row by row; then for any other quasi-integer there are p (including itself) whose first m rows are identical with it row by row.

The lemma is true if any m rows are chosen.

We denote by B_i the set $a_{i1}, a_{i2}, \ldots, a_{ik}$ of all distinct elements in the second rows of the vectors representing the quasi-integers of A_{a_i} . If the clement 2 generates Q_2 of order n_2 then

$$(B_1, B_2, ..., B_{n_2}) = (b_1, b_2, ..., b_{n_2})$$

where () denotes union. If k = 1, B_i have no elements in common; but if k > 1, there must exist B_i with common elements, for otherwise (B_1, \ldots, B_{n_2}) would have kn_2 distinct elements, which is impossible, the

HELEN POPOVA

order of Q_2 being n_2 . The product of B_i and B_j may be defined as the set of distinct products of their elements. Then by (3)

$$B_i B_j = B_{ij},\tag{5}$$

a multiplication table which is isomorphic to Q.

THEOREM 2. If B_r and B_s have an element in common, they have all elements in common.

Let $B_r = B_{1m} = B_1 B_m$, $B_s = B_{1l} = B_1 B_l$ (which is always possible by quasigroup properties), and let $a_{1\alpha} a_{m\beta} = d_{\alpha\beta}$, $a_{1\alpha} a_{l\beta} = c_{\alpha\beta}$ ($\alpha, \beta = 1, ..., k$).

There being only k distinct elements d_{ij} , forming the set B_r , these by quasigroup properties must appear in each row and column of the $k \times k$ matrix $[d_{\alpha\beta}]$, which is thus a latin square. Similarly, $[c_{\alpha\beta}]$ is a $k \times k$ latin square formed from the k elements of B_s .

Now, if B_r , B_s have one common element, say $d_{1i} = c_{1j}$, then we must have $a_{mi} = a_{ij}$, and consequently

$$d_{1i} = c_{1j}, \ d_{2i} = c_{2j}, \ ..., \ d_{ki} = d_{kj},$$

that is, $B_r = B_s$.

THEOREM 3. If amongst $B_1, B_2, ..., B_{n_2}$ there are r and only r which are the same as B_1 , then for every B_i $(i = 1, 2, ..., n_2)$, there exist r and only r B_i 's which are the same as B_i .

This follows from the multiplication table (5). For if (say) B_1, \ldots, B_r are the same, then so are $B_i B_1, \ldots, B_i B_r$, that is B_{i1}, \ldots, B_{ir} $(i = 1, 2, \ldots, n_2)$. Thus there exist at least $r B_{ij}$'s which are the same as B_{i1} . Suppose there are r+1 such, say $B_{i1}, \ldots, B_{i,r+1}$; then

$$B_s B_{i1} = B_s B_{i2} = \dots = B_s B_{i,r+1}$$
 $(i = 1, 2, \dots, n_2)$

and consequently

$$B_x B_{i1} = B_x B_{i2} = \dots = B_x B_{i,r+1}$$
 where $B_x B_{i1} = B_1$.

Thus, there are r+1 B_i 's which are the same as B_1 — a contradiction. Therefore each B_{i1} $(i = 1, 2, ..., n_2)$ has r and only r B_{ij} 's which consist of the same elements; and since $B_{i1}, ..., B_{in}$ is a permutation of $B_1, ..., B_n$, the theorem is proved.

3. Plain quasigroups.

According to Bruck¹, a quasigroup Q = (1, 2, ..., n) is simple if it has

¹ R. H. Bruck, "Simple quasigroups", Bull. American Math. Soc., 50 (1944), 769-781.

no proper homomorph. A simple quasigroup which has no subquasigroups except itself will be called *plain*. If Q is plain, every element is a generator of Q, for otherwise it would generate a subquasigroup.

Let Q be a plain quasigroup, and let N be the order of L_Q . We know that $N \leq n^n$ (a stronger result was proved in L.Q.I), and we shall prove that N is always some power of n. As examples, the plain quasigroups with multiplication tables

	$1\ 2\ 3\ 4$		$1\ 2\ 3\ 4$		1234		$1\ 2\ 3\ 4$
1	$2\ 4\ 3\ 1$	1	$4\ 2\ 3\ 1$	1	3142	1	3124
2	3124	2	$1\ 3\ 2\ 4$	2	$4\ 2\ 1\ 3$	2	$4\ 3\ 1\ 2$
3	1342	3	$2\ 4\ 1\ 3$	3	$1\ 3\ 2\ 4$		1243
4	4213	4	3142	4	2431	4	2431

have logarithmetics of orders 4, 4^2 , 4^3 , 4^4 . This was found by actually constructing the logarithmetics. On the other hand the simple (not plain) quasigroup given by

		2	3	4	5
1	2	1	4	5	3
2	1			3	
3	4	5	3	1	2
4	5	3	2	4	1
5	3	4	1	2	5

has logarithmetic of order 2, all powers x^r being equal to either x or x^2 (x = 1, 2, 3, 4, 5).

If Q is plain Theorem 1 becomes:

THEOREM 4. If Q = (1, 2, ..., n) is a plain quasigroup of order n, and A_i denotes the set of all quasi-integers having i in their m-th row, then

(i) $L_Q(+)$ is homomorphic to Q by

(all quasi-integers of A_i) $\rightarrow i$;

(ii) all A_i are of the same order, say p;

(iii) the order of L_Q is N = np.

THEOREM 5. In a plain quasigroup the orders of B_i are either 1 or n.

Since Q is plain, 2 is a generator of Q. Consequently, the elements of the classes B_1, \ldots, B_n exhaust Q. It follows at once that if all B_i are mutually exclusive, then each B_i consists of one and only one element.

HELEN POPOVA

Suppose B_i are of order k > 1; then there exist at least two B_i 's, say B_1 and B_2 , with elements in common. By Theorem 2, B_1 and B_2 are the same. Let r be the number of B_i 's which are the same as B_1 say

$$B_1 = B_2 = \ldots = B_r$$

If r = n, all B_i are the same; consequently $Q = B_i$ and the order of B_i is n. So suppose r < n. Then there exists at least one B_j distinct from B_1, \ldots, B_r , and, by Theorem 3, r such: say

$$B_{r+1} = \ldots = B_{2r}, \quad B_{r+1} \neq B_1.$$

It follows from Theorem 3 that $B_i \cap B_j = 0$ for all i = 1, ..., r and j = r+1, ..., 2r. Continuing this process we find that r divides n:

$$n = rs$$
,

and that all B_i 's fall into s mutually exclusive classes, each consisting of r identical B_i 's:

$$D_1 = (B_1, ..., B_r), \quad D_2 = (B_{r+1}, ..., B_{2r}), ..., D_s = (B_{n-r+1}, ..., B_n).$$

The same classification divides the *n* elements of Q into *s* classes, so that *r* must be the same as k, the order of each B_i .

Hence the multiplication table (5) can be replaced by

$$D_{\alpha} D_{\beta} = D_{\alpha\beta} \quad (\alpha, \beta = 1, ..., s),$$

showing that the D_{α} 's form a homomorph of Q. Since Q is simple, s = n or s = 1, and k = r = 1 or n.

THEOREM 6. Let Q = (1, 2, ..., n) be a plain quasigroup of prime order n, such that 2 generates Q. If B_1 and B_2 are the same, then all B_i (i = 1, ..., n) are the same.

If the order k of B_i is less than n, then by the proof of Theorem 5,

n = ks

and this, since *n* is prime, is only possible if k = 1 or k = n. Since 2 generates Q, the B_i 's exhaust Q, and if two B_i 's are the same, k cannot equal 1. Consequently k = n, and each of the B_i 's consists of all the *n* elements of Q.

THEOREM 7. The order of the logarithmetic of a plain quasigroup is a power of the order of the quasigroup.

By combining N = np (Theorem 4) and Lemma 1, the order of L_Q can be expressed as N = nkq where N, n, k are the orders of L_Q, Q, B_i respectively and q is the order of the class of all the quasi-integers with $\{1, 2, ...\}$ in the first two rows. We denote by $B_{1, 2, ..., k-1}$ the set of all distinct elements of Q in the k-th row of the quasi-integers $\{1, 2, ..., k-1, ...\}$ (k = 2, ..., n). Then if the orders of $B_{1,...,i}$ are m_i we have (Lemma 2)

$$N = n m_1 m_2 \dots m_{n-1}$$

where, by Theorem 5, m_i are either 1 or n. The theorem follows.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABERDEEN.