Logarithmetics of Finite Quasigroups (II)

By Helen Popova

(Received 25th July, 1951. Revised 9th February, 1955.)

1. Introduction.

In the first paper of this series (L.Q.I) ${ }^{1}$ we have shown that the logarithmetic L_{Q} of a finite quasigroup Q is a quasigroup with respect to addition and that it is a subdirect union of the logarithmetics of the elements of Q.

In this second part we shall discuss further the structure of L_{Q} in its additive aspect, and obtain results concerning the order N of L_{Q}. For plain quasigroups (§3) the structure of $L_{Q}(+)$ is studied in more detail and it is shown that N is a power of n, the order of Q.

2. The structure of $L_{Q}(+)$.

Let $Q=(1,2, \ldots, n)$ be a quasigroup of order n. As in L.Q.I an element of L_{Q} is called a quasi-integer.

If r is the index of a power x^{r}, the corresponding quasi-integer is represented as the column vector $\left\{1^{r}, 2^{r}, \ldots, n^{r}\right\}$. Such columns form the additive quasigroup $L_{Q}(+)$ in which vectors are added by forming products in Q of their corresponding elements :

$$
\begin{equation*}
\{i, \ldots\}+\{j, \ldots\}=\{i j, \ldots\} \tag{1}
\end{equation*}
$$

Let the element 1 of Q generate a subquasigroup $Q_{1}=\left(a_{1}, a_{2}, \ldots, a_{n_{1}}\right)$ of order n_{1}, where $a_{i} a_{j}=a_{i j}\left(i, j=1, \ldots, n_{1}\right)$. Since 1^{r} generates Q_{1} as r varies, L_{Q} must possess quasi-integers with $a_{1}, a_{2}, \ldots, a_{n_{1}}$ in the first row. Let the quasi-integers be collected into classes, $A_{a_{1}}, A_{a_{2}}, \ldots, A_{a_{n_{1}}}$ where $A_{a_{i}}$ is the class of integers with a_{i} in the first row; and let $A_{a_{i}}+A_{a_{j}}$ denote the class of sums $\left\{a_{i}, \ldots\right\}+\left\{a_{j}, \ldots\right\}$. Let the orders of $A_{a_{i}}, A_{a_{j}}, A_{a_{i}}+A_{a}$ be p, q, t respectively.

[^0]It follows from (1) that $A_{a_{i}}+A_{a_{j}} \subset A_{a_{i j}}$; and also, by keeping $\left\{a_{i}, \ldots\right\}$ fixed, and letting $\left\{a_{j}, \ldots\right\}$ run through $A_{a_{j}}$, that $q \leqslant t$.

But since $L_{Q}(+)$ is a quasigroup

$$
\left\{a_{2}, \ldots\right\}+\{x, \ldots\}=\left\{a_{i j}, \ldots\right\}
$$

has a unique solution of the form $\{x, \ldots\}=\left\{a_{j}, \ldots\right\}$, and hence

$$
A_{a_{i j}} \subset A_{a_{i}}+A_{a_{j}}, \quad q \geqslant t
$$

Consequently, the addition table (1) of L_{Q} can be partitioned into

$$
\begin{equation*}
A_{a_{j}}=A_{a_{i}}+A_{a_{j}} \tag{2}
\end{equation*}
$$

and (by similar reasoning comparing p and t)

$$
p=q=t .
$$

The same argument can be applied to any row, and the result may be formulated as follows:

Theorem 1. Let Q be a quasigroup ($1, \ldots, n$) and let the element m of Q generate a subquasigroup $Q_{m}=\left(a_{1}, a_{2}, \ldots, a_{n_{m}}\right)$, of order n_{m}. Then if $A_{a_{4}}$ denotes the set of all quasi-integers having a_{i} in their m-th row
(i) L_{Q} is homomorphic to Q_{m} by the correspondence

$$
\text { (all quasi-integers of } \left.A_{a_{i}}\right) \rightarrow a_{i}
$$

(ii) all $A_{a_{i}}$ are of the same order, say P_{m};
(iii) the order of L_{Q} is $N=n_{m} P_{m}$.

It follows that
(iv) N is a multiple of the least common multiple of all the n_{m} :

$$
\left[n_{1}, n_{2}, \ldots, n_{m}\right] \mid N
$$

As before, let 1 generate $Q_{1}=\left(a_{1}, a_{2}, \ldots, a_{n_{1}}\right)$, and let $A_{a_{i}}$ denote the class of quasi-integers represented by vectors whose first element is a_{i}, say $\left\{a_{i}, b_{i s}, \ldots\right\}$. Keeping a_{i} fixed suppose that the element $b_{i s}$ takes k_{i} distinct values, and let $B^{a_{i}}$ denote the corresponding class of k_{i} subvectors $\left\{a_{i}, b_{i s}\right\}$. We may define

$$
\left\{a_{i}, b_{i s}\right\}+\left\{a_{j}, b_{j s}\right\}=\left\{a_{i} a, b_{s} b_{j s}\right\}
$$

and define $B^{a_{i}}+B^{a_{j}}$ as the class of such sums. Then a repetition of an argument which led to Theorem 1 shows that

$$
\begin{equation*}
B^{a_{i}}+B^{a_{j}}=B^{a_{i j}}, \quad k_{i}=k_{j}=\ldots=k \tag{3}
\end{equation*}
$$

We have seen that all $A_{a_{4}}$ are of the same order (Theorem 1) and that their quasi-integers have the same number, say k, of distinct elements in their second rows. We shall next show that the order of each $A_{a_{i}}$ is a multiple of k. In order words, if $A_{a_{i} b_{i},}$ denotes the class of all quasi-integers with $\left\{a_{i}, b_{i s}, \ldots\right\}$ in their first two rows, then all $A_{a_{1} b_{i s}}$ are of the same order, and have the same number of distinct elements in their third rows.

Consider the classes $A_{a_{1}}, A_{a_{11}}$. Let their quasi-integers be classified according to their second element b_{18}, b_{116} into classes

$$
C^{s}, F^{t}
$$

respectively. By the same method it can be shown that

$$
C^{i}+C^{j}=F^{i j}
$$

and that these classes are all of the same order, say p_{1}. Thus,
Lemma 1. The order of A_{1} is

$$
\begin{equation*}
p_{1}=k q_{1} \tag{4}
\end{equation*}
$$

where k is the number of distinct elements of Q in the second row of all vectors representing the quasi-integers of A_{1}, and q_{1} is the number of quasi-integers having $\{1,2, \ldots\}$ in their first two rows.

The last lemma may be generalised as follows:
Lemma 2. Let there be just p quasi-integers of L_{Q} for which the first m rows are the same row by row; then for any other quasi-integer there are p (including itself) whose first m rows are identical with it row by row.

The lemma is true if any m rows are chosen.
We denote by B_{i} the set $a_{i 1}, a_{i 2}, \ldots, a_{i k}$ of all distinct elements in the second rows of the vectors representing the quasi-integers of $A_{a_{i}}$. If the clement 2 generates Q_{2} of order n_{2} then

$$
\left(B_{1}, B_{2}, \ldots, B_{n_{2}}\right)=\left(b_{1}, b_{2}, \ldots, b_{n_{2}}\right)
$$

where () denotes union. If $k=1, B_{i}$ have no elements in common; but if $k>1$, there must exist B_{i} with common elements, for otherwise ($B_{1}, \ldots, B_{n_{2}}$) would have $k n_{2}$ distinct elements, which is impossible, the
order of Q_{2} being n_{2}. The product of B_{i} and B_{j} may be defined as the set of distinct products of their elements. Then by (3)

$$
\begin{equation*}
B_{i} B_{j}=B_{i j} \tag{5}
\end{equation*}
$$

a multiplication table which is isomorphic to Q.
Theorem 2. If B_{r} and B_{s} have an element in common, they have all elements in common.

Let $B_{r}=B_{1 m}=B_{1} B_{m}, B_{s}=B_{1 l}=B_{1} B_{l}$ (which is always possible by quasigroup properties), and let $a_{1 \alpha} a_{m \beta}=d_{\alpha \beta}, a_{1 \alpha} a_{t \beta}=c_{\alpha \beta}(\alpha, \beta=1, \ldots, k)$.

There being only k distinct elements $d_{i j}$, forming the set B_{r}, these by quasigroup properties must appear in each row and column of the $k \times k$ matrix $\left[d_{\alpha \beta}\right]$, which is thus a latin square. Similarly, $\left[c_{\alpha \beta}\right]$ is a $k \times k$ latin square formed from the k elements of B_{s}.

Now, if B_{r}, B_{s} have one common element, say $d_{1 i}=c_{1 j}$, then we must have $a_{m i}=a_{t j}$, and consequently

$$
d_{1 i}=c_{1 j}, d_{2 i}=c_{2 j}, \ldots, d_{k i}=d_{k j}
$$

that is, $B_{r}=B_{s}$.
Theorem 3. If amongst $B_{1}, B_{2}, \ldots, B_{n_{2}}$ there are r and only r which are the same as B_{1}, then for every $B_{i}\left(i=1,2, \ldots, n_{2}\right)$, there exist r and only $r B_{j}$'s which are the same as B_{i}.

This follows from the multiplication table (5). For if (say) B_{1}, \ldots, B_{r} are the same, then so are $B_{i} B_{1}, \ldots, B_{i} B_{r}$, that is $B_{i 1}, \ldots, B_{i r}\left(i=1,2, \ldots, n_{2}\right)$. Thus there exist at least $r B_{i j}$'s which are the same as $B_{i 1}$. Suppose there are $r+1$ such, say $B_{i 1}, \ldots, B_{i, r+1}$; then

$$
B_{s} B_{i 1}=B_{s} B_{i 2}=\ldots=B_{s} B_{i, r+1} \quad\left(i=1,2, \ldots, n_{2}\right)
$$

and consequently

$$
B_{x} B_{i 1}=B_{x} B_{i 2}=\ldots=B_{x} B_{i, r+1} \text { where } B_{x} B_{i 1}=B_{1}
$$

Thus, there are $r+1 B_{i}$'s which are the same as B_{1} - a contradiction. Therefore each $B_{i 1}\left(i=1,2, \ldots, n_{2}\right)$ has r and only $r B_{i j}$'s which consist of the same elements; and since $B_{i 1}, \ldots, B_{i n}$ is a permutation of B_{1}, \ldots, B_{n}, the theorem is proved.

3. Plain quasigroups.

According to Bruck ${ }^{1}$, a quasigroup $Q=(1,2, \ldots, n)$ is simple if it has

[^1]no proper homomorph. A simple quasigroup which has no subquasigroups except itself will be called plain. If Q is plain, every element is a generator of Q, for otherwise it would generate a subquasigroup.

Let Q be a plain quasigroup, and let N be the order of L_{Q}. We know that $N \leqslant n^{n}$ (a stronger result was proved in L.Q.I), and we shall prove that N is always some power of n. As examples, the plain quasigroups with multiplication tables

	1234		1234		1234		1234
1	2431	1	4231	1	3142	1	3124
2	3124	2	1324	2	4213	2	4312
3	1342	3	2413	3	1324	3	1243
4	4213	4	3142	4	2431	4	2431

have logarithmetics of orders $4,4^{2}, 4^{3}, 4^{4}$. This was found by actually constructing the logarithmetics. On the other hand the simple (not plain) quasigroup given by

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2 | 3 | 4 | 4 | |
| 1 | 2 | 1 | 4 | 5 | 3 |
| 2 | 1 | 2 | 5 | 3 | 4 |
| 3 | 4 | 5 | 3 | 1 | 2 |
| 4 | 5 | 3 | 2 | 4 | 1 |
| 5 | 3 | 4 | 1 | 2 | 5 |

has logarithmetic of order 2, all powers x^{r} being equal to either x or x^{2} ($x=1,2,3,4,5$).

If Q is plain Theorem 1 becomes:
Theorem 4. If $Q=(1,2, \ldots, n)$ is a plain quasigroup of order n, and A_{i} denotes the set of all quasi-integers having i in their m-th row, then
(i) $L_{Q}(+)$ is homomorphic to Q by
(all quasi-integers of A_{i}) $\rightarrow i$;
(ii) all A_{i} are of the same order, say p;
(iii) the order of L_{Q} is $N=n p$.

Theorem 5. In a plain quasigroup the orders of B_{i} are either 1 or n.
Since Q is plain, 2 is a generator of Q. Consequently, the elements of the classes B_{1}, \ldots, B_{n} exhaust Q. It follows at once that if all B_{i} are mutually exclusive, then each B_{i} consists of one and only one element.

Suppose B_{i} are of order $k>1$; then there exist at least two B_{i} 's, say B_{1} and B_{2}, with elements in common. By Theorem $2, B_{1}$ and B_{2} are the same. Let r be the number of B_{i} 's which are the same as B_{1} say

$$
B_{1}=B_{2}=\ldots=B_{r} .
$$

If $r=n$, all B_{i} are the same; consequently $Q=B_{i}$ and the order of B_{i} is n. So suppose $r<n$. Then there exists at least one B_{j} distinct from B_{1}, \ldots, B_{r}, and, by Theorem 3, r such: say

$$
B_{r+1}=\ldots=B_{2 r}, \quad B_{r+1} \neq B_{1} .
$$

It follows from Theorem 3 that $B_{i} \cap B_{j}=0$ for all $i=1, \ldots, r$ and $j=r+1, \ldots, 2 r$. Continuing this process we find that r divides n :

$$
n=r s,
$$

and that all B_{i} 's fall into s mutually exclusive classes, each consisting of r identical B_{i} 's:

$$
D_{1}=\left(B_{1}, \ldots, B_{r}\right), \quad D_{2}=\left(B_{r+1}, \ldots, B_{2 r}\right), \ldots, D_{s}=\left(B_{n-r+1}, \ldots, B_{n}\right) .
$$

The same classification divides the n elements of Q into s classes, so that r must be the same as k, the order of each B_{i}.

Hence the multiplication table (5) can be replaced by

$$
D_{\alpha} D_{\beta}=D_{\alpha \beta} \quad(\alpha, \beta=1, \ldots, s),
$$

showing that the D_{α} 's form a homomorph of Q. Since Q is simple, $s=n$ or $s=1$, and $k=r=1$ or n.

Theorem 6. Let $Q=(1,2, \ldots, n)$ be a plain quasigroup of prime order n, such that 2 generates Q. If B_{1} and B_{2} are the same, then all $B_{i}(i=1, \ldots, n)$ are the same.

If the order k of B_{i} is less than n, then by the proof of Theorem 5,

$$
n=k s
$$

and this, since n is prime, is only possible if $k=1$ or $k=n$. Since 2 generates Q, the B_{i} 's exhaust Q, and if two B_{i} 's are the same, k cannot equal 1 . Consequently $k=n$, and each of the B_{i} 's consists of all the n elements of Q.

Theorem 7. The order of the logarithmetic of a plain quasigroup is a power of the order of the quasigroup.

By combining $N=n p$ (Theorem 4) and Lemma 1, the order of L_{Q} can be expressed as $N=n k q$ where N, n, k are the orders of L_{Q}, Q, B_{i} respectively and q is the order of the class of all the quasi-integers with $\{1,2, \ldots\}$ in the first two rows. We denote by $B_{1,2, \ldots, k-1}$ the set of all distinct elements of Q in the k-th row of the quasi-integers $\{1,2, \ldots, k-1, \ldots\}(k=2, \ldots, n)$. Then if the orders of $B_{1, \ldots, i}$ are m_{i} we have (Lemma 2)

$$
N=n m_{1} m_{2} \ldots m_{n-1}
$$

where, by Theorem $5, m_{i}$ are either 1 or n. The theorem follows.
Department of Mathematics, University of Aberdeen.

[^0]: ${ }^{1}$ H. Popova, "Logarithmetics of finite quasigroups (I)", Proc. Edinburgh Math. Soc. (2), 9 (1954), 74-81,

[^1]: ${ }^{1}$ R. H. Bruck, " Simple quesigroups ", Bull. American Math. Soc., 50 (1944), 769-781.

