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1. Introduction.

In the first paper of this series (L.Q.I) x we have shown that the
logarithmetic LQ of a finite quasigroup Q is a quasigroup with respect to
addition and that it is a subdirect union of the logarithmetics of the elements
of Q.

In this second part we shall discuss further the structure of LQ in its
additive aspect, and obtain results concerning the order N of LQ. For plain
quasigroups (§3) the structure of LQ(-\-) is studied in more detail and it is
shown that N is a power of n, the order of Q.

2. The structure of LQ(-\-).

Let Q= (1, 2, ..., n) be a quasigroup of order n. As in L.Q.I an
element of LQ is called a quasi-integer.

If r is the index of a power xr, the corresponding quasi-integer is repre-
sented as the column vector {lr, 2r, ..., nr}. Such columns form the
additive quasigroup LQ(-\-) in which vectors are added by forming
products in Q of their corresponding elements:

{», ...}+{j, ...}={*7, . . .}. (1)

Let the element 1 of Q generate a subquasigroup Qx= (av a2, ..., anj of
order %, where at as = atj (i, j = 1, ..., TCX) . Since lr generates Qx as r varies,
LQ must possess quasi-integers with ax, a2, ..., an iin the first row. Let the
quasi-integers be collected into classes, Aai, Aa2, ..., Aa^ where Aa. is the
class of integers with a,- in the first row; and let Aa-\-Aa. denote the class
of sums {a,-, ...}+{ajt . . .} . Let the orders of Aa., Aa., Aa,-\-Aa be p, q, t
respectively.

1 H. Popova, " Logarithmetics of finite quasigroups (I) ", Proc. Edinburgh Math.
Soc. (2), 9 (1954), 74-81.
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It follows from (1) that Aa_-\-Aa,cAa..; and also, by keeping {a,-, ...}
fixed, and letting {a,-, ...} run through Aa., that q ^.t.

But since LQ(-\-) is a quasigroup

{a,, ...}+{*, ...}=K, ...}

has a unique solution of the form [x, . . .}= \at, . . .}, and hence

Consequently, the addition table (1) of LQ can be partitioned into

Aaii = Aai+Aa_; (2)

and (by similar reasoning comparing p and t)

The same argument can be applied to any row, and the result may be
formulated as follows:

THEOREM 1. Let Q be a quasigroup (1, ..., n) and let the element m of
Q generate a subquasigroup Qm = (av a2, ..., anj, of order nm. Then if Aa

denotes the set of all quasi-integers having a( in their m-th row

(i) LQ is homomorphic to Qm by the correspondence

(all quasi-integers of Aa)^-at;

(ii) all Aa. are of the same order, say Pm;

(iii) the order of LQ is N = nmPm.

It follows that

(iv) N is a multiple of the least common multiple of all the nm:

[n1; n2, ..., nm]\N.

As before, let 1 generate Q1 = (av a2, ..., ani), and let Aa. denote the class
of quasi-integers represented by vectors whose first element is a,-, say
{a(, bis, ...}. Keeping a( fixed suppose that the element bis takes lc{ distinct
values, and let Bai denote the corresponding class of k( subvectors
{a,-, bis}. We may define

{a,-, bis}-\-{ap bis}= {a{a , babjt)
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and define Ba<-\-Ba> as the class of such sums. Then a repetition of an
argument which led to Theorem 1 shows that

Ba<+B"J = Ba'i, ki=kj=... = k. (3)

We have seen that all Aa< are of the same order (Theorem 1) and
that their quasi-integers have the same number, say k, of distinct elements
in their second rows. We shall next show that the order of each Aa. is a
multiple oik. In order words, i£Aa.bji denotes the class of all quasi-integers
with {a(, bu, ...} in their first two rows, then all Aa b are of the same order,
and have the same number of distinct elements in their third rows.

Consider the classes Aai> Aaii. Let their quasi-integers be classified
according to their second element bls, but into classes

C°, F'

respectively. By the same method it can be shown that

and that these classes are all of the same order, say px. Thus,

LEMMA 1. The order of A1 is

Pi = Hi (4)

where k is the number of distinct elements of Q in the second row of all vectors
representing the quasi-integers of Alt and qx is the number of quasi-integers
having {1, 2, ...} in their first two rows.

The last lemma may be generalised as follows:

LEMMA 2. Let there be just p quasi-integers of LQ for which the first m
rows are the same row by row; then for any other quasi-integer there are p
(including itself) whose first m rows are identical with it row by row.

The lemma is true if any m rows are chosen.
We denote by J5, the set aiv ai2, ..., aik of all distinct elements in the

second rows of the vectors representing the quasi-integers of Aa.. If the
element 2 generates Q2 of order n2 then

(BVB2, ..., BWl)=(61> b2, ..., 6n2)

where ( ) denotes union. If k = 1, B{ have no elements in common; but
if k > 1, there must exist B( with common elements, for otherwise
(Bv ..., 5 ^ ) would have kn2 distinct elements, which is impossible, the
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order of Q2 being n2. The product of B( and B} may be denned as the set
of distinct products of their elements. Then by (3)

B,Bt=Blt, (5)

a multiplication table which is isomorphic to Q.

THEOEEM 2. If Br and Bs have an element in common, they have all
elements in common.

Let Br = Blm = BtBm, Bs = Blt = Bx Bt (which is always possible by
quasigroup properties), and let alaam^ = dOip, alaalli = caf) (a, £ = 1, ..., k).

There being only k distinct elements dtj, forming the set Br, these by
quasigroup properties must appear in each row and column of the kxk
matrix [daP], which is thus a latin square. Similarly, [ca/3] is a k X k latin
square formed from the k elements of Bs.

Now, if Br, Bs have one common element, say dxi = cu, then we must
have ami = %, and consequently

^ l i = Cl3> ^2i = C2i> • • • > dki = dkj,

that is, Br = Bs.

THEOREM 3. If amongst Bv B2, ..., BUi there are r and only r which are
the same as Bly then for every Bt (i = 1, 2, ..., n2), there exist r and only r B/s
which are the same as B{.

This follows from the multiplication table (5). For if (say) Blt ..., Br

are the same, then so are BfB^ ..., B(Br, that is Ba, ..., Bir (i = 1, 2, ..., n2).
Thus there exist at least r B{/B which are the same as Ba. Suppose there
are r+1 such, say Ba, ..., Bir+1; then

BsBa = BsBi2 = ... = BsBiir+1 (i = 1, 2, ..., n2)

and consequently

BxBa = BxBi2=... = BxBUr+1 where BxBn = Bv

Thus, there are r + 1 B('s which are the same as B± — a contradiction.
Therefore each Ba (i=l, 2, ..., n2) has r and only r Bti'& which consist of
the same elements; and since Ba, ..., Bin is a permutation of Blt ..., Bn,
the theorem is proved.

3. Plain quasigroups.
According to Bruck1, a quasigroup Q = (1, 2, ..., n) is simple if it has

1 R. H. Bruck, " Simple quasigroups ", Bull. American Math. Soc, 50 (1944), 769-781.
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no proper homomorph. A simple quasigroup which has no subquasi-
groups except itself will be called plain. If Q is plain, every element is a
generator of Q, for otherwise it would generate a subquasigroup.

Let Q be a plain quasigroup, and let N be the order of LQ. We know
that N ^Lnn (a stronger result was proved in L.Q.I), and we shall prove
that N is always some power of n. As examples, the plain quasigroups
with multiplication tables

12 34 12 34 12 3 4 1 2 3 4

2 4 3 1
3 124
1342
4 2 13

4 2 3 1
13 2 4
2 4 13
3 14 2

3 14 2
4 2 13
13 2 4
2 4 3 1

3 12 4
4 3 12
12 4 3
2 4 3 1

have logarithmetics of orders 4, 42, 43, 44. This was found by actually
constructing the logarithmetics. On the other hand the simple (not plain)
quasigroup given by

12 3 4 5

2 14 5 3
12 5 3 4
4 5 3 1 2
5 3 241
3 4 12 5

has logarithmetic of order 2, all powers xr being equal t o either x or x2

( » = 1 , 2, 3, 4, 5).
If Q is plain Theorem 1 becomes:

THEOBBM 4. / / Q== (1, 2, ..., n) is a plain quasigroup of order n, and
A{ denotes the set of all quasi-integers having i in their m-ih row, then

(i) LQ(-\-) is homomorphic to Q by

(all quasi-integers of At) -+i;

(ii) all At are of the, same order, say p;

(iii) the order of LQis N = np.

THEOREM 5. In a plain quasigroup the orders of Bt are either 1 or n.

Since Q is plain, 2 is a generator of Q. Consequently, the elements of
the classes Bv ..., Bn exhaust Q. I t follows at once that if all JB( are mutually
exclusive, then each Bt consists of one and only one element.
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Suppose Bt are of order k > 1; then there exist at least two B('s, say
Bx and B2, with elements in common. By Theorem 2, B1 and B2 are the
same. Let r be the number of Bt's which are the same as Bx say

B1 = B2= ... = Br.

If r = n, all B( are the same; consequently Q = Bt and the order of
Bt is n. So suppose r < n. Then there exists at least one Bt distinct from
Bx, ..., Br, and, by Theorem 3, r such: say

Br+1=... = B2r, Br+1^Bt.

I t follows from Theorem 3 that Bir\Bi = 0 for all i = 1, ..., r and
j = r-\-l, ..., 2r. Continuing this process we find that r divides n:

n = rs,

and that all Bt'a fall into s mutually exclusive classes, each consisting of
r identical B('s:

D1={B1, ..., BT), D2=(Br+1, ..., B2r), ..., Ds= {Bn_+1, ..., Bn).

The same classification divides the n elements of Q into s classes, so that r
must be the same as k, the order of each B{.

Hence the multiplication table (5) can be replaced by

DaDp=Dal3 (a, 0=1, ..., s),

showing that the Da's form a homomorph of Q. Since Q is simple, $ = n
or s = 1, and k = r = 1 or n.

THEOREM 6. Let Q = (1, 2, ..., n) be a plain quasigroup of prime order
n, such that 2 generates Q. If Bx and B2 are the same, then all B( (i = 1,...,«.)
are the same.

If the order k of B( is less than n, then by the proof of Theorem 5,

n = ks

and this, since n is prime, is only possible if k = 1 or k = n. Since 2 generates
Q, the i?,-'s exhaust Q, and if two Bt's are the same, k cannot equal 1.
Consequently h = n, and each of the B('s consists of all the n elements of # .

THEOREM 7. The order of the logarithmetic of a glain quasigroup is a
power of the order of the quasigroup.
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By combining N — np (Theorem 4) and Lemma 1, the order of LQ can
be expressed as N = rikq where N, n, k are the orders of LQ, Q, B{ respectively
and q is the order of the class of all the quasi-integers with {1, 2, ...} in the
first two rows. We denote by -Bi>2,...,fc_i the set of all distinct elements
of Q in the fc-th row of the quasi-integers {1, 2, ..., k—1, ...} (k = 2, ..., n).
Then if the orders of B1 {are ms we have (Lemma 2)

where, by Theorem 5, m,- are either 1 or n. The theorem follows.
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