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Linear Equations with Small Prime and
Almost Prime Solutions

Xianmeng Meng

Abstract. Let b1, b2 be any integers such that gcd(b1, b2) = 1 and c1|b1| < |b2| ≤ c2|b1|, where c1, c2

are any given positive constants. Let n be any integer satisfying gcd(n, bi) = 1, i = 1, 2. Let Pk denote

any integer with no more than k prime factors, counted according to multiplicity. In this paper, for

almost all b2, we prove (i) a sharp lower bound for n such that the equation b1 p + b2m = n is solvable

in prime p and almost prime m = Pk, k ≥ 3 whenever both bi are positive, and (ii) a sharp upper

bound for the least solutions p, m of the above equation whenever bi are not of the same sign, where

p is a prime and m = Pk, k ≥ 3.

1 Introduction

Let b be an integer and b1, b2, b3 be non-zero integers. Many mathematicians consid-

ered the solvability and small prime solutions p1, p2, p3 of the linear equation

(1.1) b1 p1 + b2 p2 + b3 p3 = b.

The problem on bounds for prime solutions of equation (1.1) was first raised by

Baker in connection with his well-known work [1] on the solvability of certain Dio-

phantine inequalities involving primes. Later, this problem was studied by many

authors (see [3, 6, 8, 9]).

In 1973, Chen [2] proved that every sufficiently large even integer n can be repre-

sented as a sum of a prime and a P2. As usual, here and later, Pk denotes any integer

with no more than k prime factors, counted according to multiplicity. In this paper,

we consider the solvability and small solutions of the linear equation

(1.2) b1 p1 + b2m = n,

where p is a prime and m is an almost prime.

In order to avoid degenerate cases, we need to impose certain local conditions to

equation (1.2). Let b1, b2 be any integers such that

(1.3) gcd(b1, b2) = 1 and c1|b1| < |b2| ≤ c2|b1|,

where c1, c2 are any given positive constants. Let n be any integer satisfying

(1.4) gcd(n, bi) = 1, i = 1, 2.

Let M be a sufficiently large number, which will be specified later. We obtain the

following.
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Theorem 1 If both b1 and b2 are positive and satisfy (1.3), and n satisfies (1.4), then

for almost all b2 with M/4 < b2 ≤ M, except for O(M log−A M) values, equation (1.2)

is solvable for prime p and almost prime m = P3, provided that n ≥ |b1||b2|
7.5.

If b1, b2 are not of the same sign and satisfy (1.3) and n satisfies (1.4), then for almost

all b2 with M/4 < b2 ≤ M, except for O(M log−A M) values, equation (1.2) is solvable

for prime p and almost prime m = P3 satisfying max{m, p} ≤ |b2|
7.5.

We can generalize Theorem 1 to the following.

Theorem 2 If both b1 and b2 are positive and satisfy (1.3), and n satisfies (1.4) then

for almost all b2 with M/4 < b2 ≤ M, except for O(M log−A M) values, equation (1.2)

is solvable for prime p and almost prime m = Pk, provided that

n ≥ |b1||b2|
K , where K ≥

2(k + 1 − log 4/ log 3)

k − 1 − log 4/ log 3
, k ≥ 3.

If b1, b2 are not of the same sign and satisfy (1.3) and n satisfies (1.4), then for almost

all b2 with M/4 < b2 ≤ M, except for O(M log−A M) values, equation (1.2) is solvable

for prime p and almost prime m = Pk satisfying max{m, p} ≤ |b2|
K .

The first result on this problem was due to Liu [7, Theorem 1.1], who proved the

following.

Theorem If b1, b2 are co-prime positive integers, and m is either 1 or 2 satisfying

b1 + b2 ≡ m (mod 2),

then for any δ > 0, there exists a positive constant C depending only on δ such that

(1.5) b1 p − b2P3 = m

has a solution in p, P3, each less than C(max b j )
δ

.

Later, Coleman [4] improved the above result and obtained that for three pairwise

co-prime b1, b2, m and 2|b1b2m, taking P2 instead of P3 in (1.5), the equation still has

a solution with p and P2 each less than max{N0, bB
1 , bB

2 , c|m|}, where N0 and B are

effectively computable constants.

To prove Theorem 1, we shall apply the sieve method, which has been used by

many authors (see [5], for details). Since the proof of Theorem 2 is similar to that of

Theorem 1, we shall omit it and only prove Theorem 1 in the next sections.

Notation Throughout this paper, N is a sufficiently large number, ε is a sufficiently

small positive constant, and c, c1 and c2 are positive constants. The letter A with or

without subscripts always denotes sufficiently large positive constants, and p with or

without subscripts always denotes prime numbers. Let ν(n) be the number of distinct

prime factors of n, and let Pk denote any integer with no more than k prime factors,

counted according to multiplicity. Let (a, b) = gcd(a, b), a/b =
a
b
, and p ≡ n (d)

means p ≡ n (mod d).

As usual, ϕ(q) and µ(q) stand for the functions of Euler and Möbius respectively,

and τ (d) stands for the divisor function.
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2 Some Preliminary Lemmas

Let A denote a finite set of integers, which will be specified later, and P an infinite set

of prime numbers. Let z ≥ 2, and put

P(z) =

∏

p<z
p∈P

p, S(A, z) =

∑

a∈A

(a,P(z))=1

1,

Ad = {a : a ∈ A, d|a}.

Lemma 1 Suppose

|Ad| =
ω(d)

d
X + rd,

and assume the following conditions hold:

1 ≤
1

1 − ω(p)
p

≤ A1;(2.1)

−A2 log log 3X ≤
∑

v≤p≤w

ω(p)

p
log p − log

w

v
≤ A2 for 2 ≤ v ≤ w;(2.2)

∑

z≤p<y

|Ap2 | ≤ A3

( X log X

z
+ y

)

for 2 ≤ z ≤ y;(2.3)

∑

d< Xα

logA4 X

µ2(d)3ν(d)|rd| ≤ A5
X

log2 X
, X ≥ 2, 0 < α < 1.(2.4)

Let δ be a real number satisfying 0 < δ ≤ 2
3
, and let r ≥ 2 be so large that |a| ≤

Xα(Λr−δ) for all a ∈ A, where

Λr = r + 1 −
log 4/(1 + 3−r)

log 3
.

Then we have

|{Pr : Pr ∈ A}| ≥
δ

α

∏

p

1 − ω(p)/p

1 − 1/p

X

log X
.

This is [5, Theorem 9.3].

Lemma 2 Let

π(x; d, l) =

∑

p≤x
p≡l (mod d)

1, (l, d) = 1.

Then for any given constant A > 0, there exists a constant B = B(A) > 0 such that

∑

d≤D

τ (d)
∣

∣

∣
π(x; d, l) −

Lix

ϕ(d)

∣

∣

∣
≪

x

logA x
,
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where

Lix =

∫ x

2

dt

log t
, D =

x1/2

logB x
.

This follows from [10, Theorem 8.2].

Lemma 3 With the notations in Lemma 2, let

R(D, q) =

∑

d≤ D
q

µ2(d)3ν(d)
∣

∣

∣
π(x; dq, l) −

Lix

ϕ(dq)

∣

∣

∣
.

Then for any A > 0 and 0 < θ < 1/2, there exists a constant B = B(A) > 0 such that

for q ≤ xθ , except for O(xθ log−A x) values, we have

R(D, q) ≪
x

q logA x
, where D =

x1/2

logB x
.

Proof Let

rd,q = π(x; dq, l) −
Lix

ϕ(dq)
.

By Lemma 2, we have

∑

q≤xθ

∑

d≤ D
q

rd,q =

∑

q≤xθ

∑

d≤ D
q

∣

∣

∣
π(x; dq, l) −

Lix

ϕ(dq)

∣

∣

∣

≪
∑

d≤D

τ (d)
∣

∣

∣
π(x; d, l) −

Lix

ϕ(d)

∣

∣

∣

≪ x log−5A x.

Then we have

∑

q≤xθ

R(D, q) =

∑

q≤xθ

∑

d≤D/q

3ν(d)≥log3A x

+
∑

q≤xθ

∑

d≤D/q

3ν(d)<log3A x

µ2(d)3ν(d)rd,q

≤
1

log3A x

∑

q≤xθ

∑

d≤D/q

32ν(d)≥log3A x

µ2(d)32ν(d)rd,q + log3A x
∑

q≤xθ

∑

d≤D/q

rd,q

≪ x log−3A+1 x
∑

q≤xθ

1

q

∑

d≤D/q

µ2(d)32ν(d)

d
+ x log−2A x

≪ x log−3A+1 x
∑

q≤xθ

1

q

∑

n≤x/q

τ 4(n)

n
+ x log−2A x ≪ x log−2A x,
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where we have used the fact (see [10]) that µ2(n)32ν(n) ≤ τ 4(n) and

∑

n≤x

τ r(n)

n
≪ (log x)2r

.

Thus by the above, we have

∑

q≤xθ

R(D,q)> x

q logA x

1 ≪
logA x

x

∑

q≤xθ

qR(D, q) ≪
xθ logA x

x

∑

q≤xθ

R(D, q) ≪ xθ log−A x.

So Lemma 3 is proved.

3 Proof of Theorem 1

Let N be a sufficiently large number with N ≥ max{|b1|
7.5|b2|, |b1||b2|

7.5} that also

satisfies the following hypotheses:

(i) If b1, b2 are positive, then n ≥ 4 max{b1, b2}, and

N = min
{ ϕ(b1)n

b1

,
ϕ(b2)n

b2

}

.

(ii) If b1, b2 are not of the same sign, then N ≥ 4 max{|n|, |b1|, |b2|}.

Let Ni =
N

ϕ(bi )
, i = 1, 2, and define

A = {a : b1 p + b2a = n, N1/4 < p ≤ N1, N2/4 < a ≤ N2},

Ad = {a : d|a, a ∈ A}.

We have

|Ad| =
∣

∣{p : b1 p ≡ n (b2d), (d, nb1) = 1, N1/4 < p ≤ N1}
∣

∣

=
∣

∣{p : p ≡ b1n (b2d), (d, nb1) = 1, N1/4 < p ≤ N1}
∣

∣ ,

where b1 is an integer satisfying b1b1 ≡ 1 (b2d).

By Lemma 2, we have |Ad| =
ω(d)

d
X − rd, where X =

1
ϕ(b2)

(LiN1 − Li(N1/4)),

(3.1) ω(d) =
ϕ(b2)d

ϕ(b2d)
, µ(d) 6= 0, (d, nb1) = 1,

and

rd = π(N1/4, N1; b2d, b1n) −
1

ϕ(b2d)
(LiN1 − Li(N1/4)), µ(d) 6= 0, (d, nb1) = 1,
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where

π(y, x; d, l) =

∑

y<p≤x
p≡l (d)

1, (l, d) = 1.

By Lemma 3, for almost all b2 ≤ N
1

7.5
1 , except for O(N

1
7.5

1 log−A N1) values, we have

∑

d≤ D
b2

µ2(d)3ν(d)|rd| ≪
N1

b2 logA N
,

where D =
N

1/2
1

logB N
.

Thus condition (2.4) in Lemma 1 holds.

By (3.1), we have

ω(p) =
ϕ(b2)p

ϕ(b2 p)
=

{

1
ϕ(p)

if (p, b2) = 1,

1 if (p, b2) 6= 1.

Then it is easy to check that conditions (2.1) and (2.2) hold. We have

∑

z<p<y
p∈P

|Ap2 | ≤
∑

z<p<y
p∈P

∑

m≤N1

b1m≡n (b2 p2)

1

≤
∑

z<p<y
p∈P

( N1

b2 p2
+ 1

)

≤
N1

b2z
+ y ≤

X

z log X
+ y.

By the above, condition (2.3) also holds. So far, we can prove Theorem 1 by Lemma 1.

Let Λ3 = 3 + 1 − log 4/(1+3−3)
log 3

, then Λ3 > 3 + 1 − log 4
log 3

. For D = N
1/2
1 log−B N and

b2 ≤ N
1/7.5
1 , we have

d ≤
D

b2
≪ X11/26 log−B X.

For a ∈ A, we have a ≤ N2 ≤ X7.5/6.5. Since

11

26

(

3 + 1 −
log 4

log 3

)

>
7.5

6.5
,

we can find a small δ > 0, such that 11
26

(Λ3 − δ) ≥ 7.5
6.5 . Thus by Lemma 1, we have

|{P3 : P3 ∈ A}| ≥
δ

α

∏

p

1 − ω(p)/p

1 − 1/p

X

log X
,

where α = 11/26.

Theorem 1 follows.
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Walter de Gruyter, Berlin, 1989, pp. 595–624.
[9] M .C. Liu and T. Z. Wang, A numerical bound for small prime solutions of some ternary linear

equations. Acta Arith. 86(1998), no. 4, 343–383.
[10] C. D. Pan and C. B. Pan, Goldbach Conjecture. Science Press, Beijing, 1992.

Department of Statistics and Mathematics, Shandong Finance Institute, Jinan, Shandong, 250014, P.R. China
e-mail: mengxm@beelink.com

https://doi.org/10.4153/CMB-2008-040-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-040-9

