Linear Equations with Small Prime and Almost Prime Solutions

Xianmeng Meng

Abstract

Let b_{1}, b_{2} be any integers such that $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$ and $c_{1}\left|b_{1}\right|<\left|b_{2}\right| \leq c_{2}\left|b_{1}\right|$, where c_{1}, c_{2} are any given positive constants. Let n be any integer satisfying $\operatorname{gcd}\left(n, b_{i}\right)=1, i=1,2$. Let P_{k} denote any integer with no more than k prime factors, counted according to multiplicity. In this paper, for almost all b_{2}, we prove (i) a sharp lower bound for n such that the equation $b_{1} p+b_{2} m=n$ is solvable in prime p and almost prime $m=P_{k}, k \geq 3$ whenever both b_{i} are positive, and (ii) a sharp upper bound for the least solutions p, m of the above equation whenever b_{i} are not of the same sign, where p is a prime and $m=P_{k}, k \geq 3$.

1 Introduction

Let b be an integer and b_{1}, b_{2}, b_{3} be non-zero integers. Many mathematicians considered the solvability and small prime solutions p_{1}, p_{2}, p_{3} of the linear equation

$$
\begin{equation*}
b_{1} p_{1}+b_{2} p_{2}+b_{3} p_{3}=b \tag{1.1}
\end{equation*}
$$

The problem on bounds for prime solutions of equation (1.1) was first raised by Baker in connection with his well-known work [1] on the solvability of certain Diophantine inequalities involving primes. Later, this problem was studied by many authors (see $[3,6,8,9]$).

In 1973, Chen [2] proved that every sufficiently large even integer n can be represented as a sum of a prime and a P_{2}. As usual, here and later, P_{k} denotes any integer with no more than k prime factors, counted according to multiplicity. In this paper, we consider the solvability and small solutions of the linear equation

$$
\begin{equation*}
b_{1} p_{1}+b_{2} m=n \tag{1.2}
\end{equation*}
$$

where p is a prime and m is an almost prime.
In order to avoid degenerate cases, we need to impose certain local conditions to equation (1.2). Let b_{1}, b_{2} be any integers such that

$$
\begin{equation*}
\operatorname{gcd}\left(b_{1}, b_{2}\right)=1 \quad \text { and } \quad c_{1}\left|b_{1}\right|<\left|b_{2}\right| \leq c_{2}\left|b_{1}\right|, \tag{1.3}
\end{equation*}
$$

where c_{1}, c_{2} are any given positive constants. Let n be any integer satisfying

$$
\begin{equation*}
\operatorname{gcd}\left(n, b_{i}\right)=1, i=1,2 \tag{1.4}
\end{equation*}
$$

Let M be a sufficiently large number, which will be specified later. We obtain the following.

[^0]Theorem 1 If both b_{1} and b_{2} are positive and satisfy (1.3), and n satisfies (1.4), then for almost all b_{2} with $M / 4<b_{2} \leq M$, except for $O\left(M \log ^{-A} M\right)$ values, equation (1.2) is solvable for prime p and almost prime $m=P_{3}$, provided that $n \geq\left|b_{1}\right|\left|b_{2}\right|^{7.5}$.

If b_{1}, b_{2} are not of the same sign and satisfy (1.3) and n satisfies (1.4), then for almost all b_{2} with $M / 4<b_{2} \leq M$, except for $O\left(M \log ^{-A} M\right)$ values, equation (1.2) is solvable for prime p and almost prime $m=P_{3}$ satisfying $\max \{m, p\} \leq\left|b_{2}\right|^{7.5}$.

We can generalize Theorem 1 to the following.
Theorem 2 If both b_{1} and b_{2} are positive and satisfy (1.3), and n satisfies (1.4) then for almost all b_{2} with $M / 4<b_{2} \leq M$, except for $O\left(M \log ^{-A} M\right)$ values, equation (1.2) is solvable for prime p and almost prime $m=P_{k}$, provided that

$$
n \geq\left|b_{1}\right|\left|b_{2}\right|^{K}, \quad \text { where } \quad K \geq \frac{2(k+1-\log 4 / \log 3)}{k-1-\log 4 / \log 3}, \quad k \geq 3
$$

If b_{1}, b_{2} are not of the same sign and satisfy (1.3) and n satisfies (1.4), then for almost all b_{2} with $M / 4<b_{2} \leq M$, except for $O\left(M \log ^{-A} M\right)$ values, equation (1.2) is solvable for prime p and almost prime $m=P_{k}$ satisfying $\max \{m, p\} \leq\left|b_{2}\right|^{K}$.

The first result on this problem was due to Liu [7, Theorem 1.1], who proved the following.

Theorem If b_{1}, b_{2} are co-prime positive integers, and m is either 1 or 2 satisfying

$$
b_{1}+b_{2} \equiv m(\bmod 2)
$$

then for any $\delta>0$, there exists a positive constant C depending only on δ such that

$$
\begin{equation*}
b_{1} p-b_{2} P_{3}=m \tag{1.5}
\end{equation*}
$$

has a solution in p, P_{3}, each less than $C^{\left(\max b_{j}\right)^{\delta}}$.
Later, Coleman [4] improved the above result and obtained that for three pairwise co-prime b_{1}, b_{2}, m and $2 \mid b_{1} b_{2} m$, taking P_{2} instead of P_{3} in (1.5), the equation still has a solution with p and P_{2} each less than $\max \left\{N_{0}, b_{1}^{B}, b_{2}^{B}, c|m|\right\}$, where N_{0} and B are effectively computable constants.

To prove Theorem 1, we shall apply the sieve method, which has been used by many authors (see [5], for details). Since the proof of Theorem 2 is similar to that of Theorem 1, we shall omit it and only prove Theorem 1 in the next sections.

Notation Throughout this paper, N is a sufficiently large number, ε is a sufficiently small positive constant, and c, c_{1} and c_{2} are positive constants. The letter A with or without subscripts always denotes sufficiently large positive constants, and p with or without subscripts always denotes prime numbers. Let $\nu(n)$ be the number of distinct prime factors of n, and let P_{k} denote any integer with no more than k prime factors, counted according to multiplicity. Let $(a, b)=\operatorname{gcd}(a, b), a / b=\frac{a}{b}$, and $p \equiv n(d)$ means $p \equiv n(\bmod d)$.

As usual, $\varphi(q)$ and $\mu(q)$ stand for the functions of Euler and Möbius respectively, and $\tau(d)$ stands for the divisor function.

2 Some Preliminary Lemmas

Let \mathcal{A} denote a finite set of integers, which will be specified later, and \mathcal{P} an infinite set of prime numbers. Let $z \geq 2$, and put

$$
\begin{aligned}
P(z)= & \prod_{\substack{p<z \\
p \in \mathcal{P}}} p, \quad S(\mathcal{A}, z)=\sum_{\substack{a \in \mathcal{A} \\
(a, P(z))=1}} 1, \\
& \mathcal{A}_{d}=\{a: a \in \mathcal{A}, d \mid a\}
\end{aligned}
$$

Lemma 1 Suppose

$$
\left|\mathcal{A}_{d}\right|=\frac{\omega(d)}{d} X+r_{d}
$$

and assume the following conditions hold:

$$
\begin{gather*}
1 \leq \frac{1}{1-\frac{\omega(p)}{p}} \leq A_{1} \tag{2.1}\\
-A_{2} \log \log 3 X \leq \sum_{v \leq p \leq w} \frac{\omega(p)}{p} \log p-\log \frac{w}{v} \leq A_{2} \quad \text { for } 2 \leq v \leq w \tag{2.2}\\
\sum_{z \leq p<y}\left|\mathcal{A}_{p^{2}}\right| \leq A_{3}\left(\frac{X \log X}{z}+y\right) \quad \text { for } 2 \leq z \leq y \tag{2.3}\\
\sum_{d<\frac{X \alpha}{\log ^{4} 4}} \mu^{2}(d) 3^{\nu(d)}\left|r_{d}\right| \leq A_{5} \frac{X}{\log ^{2} X}, \quad X \geq 2,0<\alpha<1 \tag{2.4}
\end{gather*}
$$

Let δ be a real number satisfying $0<\delta \leq \frac{2}{3}$, and let $r \geq 2$ be so large that $|a| \leq$ $X^{\alpha\left(\Lambda_{r}-\delta\right)}$ for all $a \in \mathcal{A}$, where

$$
\Lambda_{r}=r+1-\frac{\log 4 /\left(1+3^{-r}\right)}{\log 3}
$$

Then we have

$$
\left|\left\{P_{r}: P_{r} \in \mathcal{A}\right\}\right| \geq \frac{\delta}{\alpha} \prod_{p} \frac{1-\omega(p) / p}{1-1 / p} \frac{X}{\log X}
$$

This is [5, Theorem 9.3].
Lemma 2 Let

$$
\pi(x ; d, l)=\sum_{\substack{p \leq x \\ p \equiv l(\bmod d)}} 1, \quad(l, d)=1
$$

Then for any given constant $A>0$, there exists a constant $B=B(A)>0$ such that

$$
\sum_{d \leq D} \tau(d)\left|\pi(x ; d, l)-\frac{L i x}{\varphi(d)}\right| \ll \frac{x}{\log ^{A} x}
$$

where

$$
\text { Lix }=\int_{2}^{x} \frac{d t}{\log t}, \quad D=\frac{x^{1 / 2}}{\log ^{B} x}
$$

This follows from [10, Theorem 8.2].
Lemma 3 With the notations in Lemma 2, let

$$
R(D, q)=\sum_{d \leq \frac{D}{q}} \mu^{2}(d) 3^{\nu(d)}\left|\pi(x ; d q, l)-\frac{L i x}{\varphi(d q)}\right|
$$

Then for any $A>0$ and $0<\theta<1 / 2$, there exists a constant $B=B(A)>0$ such that for $q \leq x^{\theta}$, except for $O\left(x^{\theta} \log ^{-A} x\right)$ values, we have

$$
R(D, q) \ll \frac{x}{q \log ^{A} x}, \quad \text { where } D=\frac{x^{1 / 2}}{\log ^{B} x} .
$$

Proof Let

$$
r_{d, q}=\pi(x ; d q, l)-\frac{L i x}{\varphi(d q)}
$$

By Lemma 2, we have

$$
\begin{aligned}
\sum_{q \leq x^{\theta}} \sum_{d \leq \frac{D}{q}} r_{d, q} & =\sum_{q \leq x^{\theta}} \sum_{d \leq \frac{D}{q}}\left|\pi(x ; d q, l)-\frac{L i x}{\varphi(d q)}\right| \\
& \ll \sum_{d \leq D} \tau(d)\left|\pi(x ; d, l)-\frac{L i x}{\varphi(d)}\right| \\
& \ll x \log ^{-5 A} x .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\sum_{q \leq x^{\theta}} R(D, q) & =\sum_{\substack{q \leq x^{\theta}}} \sum_{\substack{d \leq D / q \\
3^{\nu(d)} \geq \log ^{3 A} x}}+\sum_{\substack{q \leq x^{\theta}}} \sum_{\substack{d \leq D / q \\
3^{\nu(d)}<\log ^{3 A} x}} \mu^{2}(d) 3^{\nu(d)} r_{d, q} \\
& \leq \frac{1}{\log ^{3 A} x} \sum_{\substack{q \leq x^{\theta}}} \sum_{\substack{d \leq D / q \\
3^{2 \nu(d)} \geq \log ^{3 A} x}} \mu^{2}(d) 3^{2 \nu(d)} r_{d, q}+\log ^{3 A} x \sum_{q \leq x^{\theta}} \sum_{d \leq D / q} r_{d, q} \\
& \ll x \log ^{-3 A+1} x \sum_{q \leq x^{\theta}} \frac{1}{q} \sum_{d \leq D / q} \frac{\mu^{2}(d) 3^{2 \nu(d)}}{d}+x \log ^{-2 A} x \\
& \ll x \log ^{-3 A+1} x \sum_{q \leq x^{\theta}} \frac{1}{q} \sum_{n \leq x / q} \frac{\tau^{4}(n)}{n}+x \log ^{-2 A} x \ll x \log ^{-2 A} x,
\end{aligned}
$$

where we have used the fact (see [10]) that $\mu^{2}(n) 3^{2 \nu(n)} \leq \tau^{4}(n)$ and

$$
\sum_{n \leq x} \frac{\tau^{r}(n)}{n} \ll(\log x)^{2^{r}}
$$

Thus by the above, we have

$$
\sum_{\substack{q \leq x^{\theta} \\ R(D, q)>\frac{x}{q \log ^{A} x}}} 1 \ll \frac{\log ^{A} x}{x} \sum_{q \leq x^{\theta}} q R(D, q) \ll \frac{x^{\theta} \log ^{A} x}{x} \sum_{q \leq x^{\theta}} R(D, q) \ll x^{\theta} \log ^{-A} x
$$

So Lemma 3 is proved.

3 Proof of Theorem 1

Let N be a sufficiently large number with $N \geq \max \left\{\left|b_{1}\right|^{7.5}\left|b_{2}\right|,\left|b_{1}\right|\left|b_{2}\right|^{7.5}\right\}$ that also satisfies the following hypotheses:
(i) If b_{1}, b_{2} are positive, then $n \geq 4 \max \left\{b_{1}, b_{2}\right\}$, and

$$
N=\min \left\{\frac{\varphi\left(b_{1}\right) n}{b_{1}}, \frac{\varphi\left(b_{2}\right) n}{b_{2}}\right\}
$$

(ii) If b_{1}, b_{2} are not of the same sign, then $N \geq 4 \max \left\{|n|,\left|b_{1}\right|,\left|b_{2}\right|\right\}$.

Let $N_{i}=\frac{N}{\varphi\left(b_{i}\right)}, i=1,2$, and define

$$
\begin{aligned}
\mathcal{A} & =\left\{a: b_{1} p+b_{2} a=n, N_{1} / 4<p \leq N_{1}, N_{2} / 4<a \leq N_{2}\right\}, \\
\mathcal{A}_{d} & =\{a: d \mid a, a \in \mathcal{A}\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|\mathcal{A}_{d}\right| & =\left|\left\{p: b_{1} p \equiv n\left(b_{2} d\right),\left(d, n b_{1}\right)=1, N_{1} / 4<p \leq N_{1}\right\}\right| \\
& =\left|\left\{p: p \equiv \overline{b_{1}} n\left(b_{2} d\right),\left(d, n b_{1}\right)=1, N_{1} / 4<p \leq N_{1}\right\}\right|
\end{aligned}
$$

where $\overline{b_{1}}$ is an integer satisfying $b_{1} \overline{b_{1}} \equiv 1\left(b_{2} d\right)$.
By Lemma 2, we have $\left|\mathcal{A}_{d}\right|=\frac{\omega(d)}{d} X-r_{d}$, where $X=\frac{1}{\varphi\left(b_{2}\right)}\left(\operatorname{Li} N_{1}-L i\left(N_{1} / 4\right)\right)$,

$$
\begin{equation*}
\omega(d)=\frac{\varphi\left(b_{2}\right) d}{\varphi\left(b_{2} d\right)}, \mu(d) \neq 0,\left(d, n b_{1}\right)=1 \tag{3.1}
\end{equation*}
$$

and

$$
r_{d}=\pi\left(N_{1} / 4, N_{1} ; b_{2} d, \overline{b_{1}} n\right)-\frac{1}{\varphi\left(b_{2} d\right)}\left(\operatorname{Li} N_{1}-\operatorname{Li}\left(N_{1} / 4\right)\right), \mu(d) \neq 0,\left(d, n b_{1}\right)=1
$$

where

$$
\pi(y, x ; d, l)=\sum_{\substack{y<p \leq x \\ p \equiv l(d)}} 1,(l, d)=1 .
$$

By Lemma 3, for almost all $b_{2} \leq N_{1}^{\frac{1}{7.5}}$, except for $O\left(N_{1}^{\frac{1}{7.5}} \log ^{-A} N_{1}\right)$ values, we have

$$
\sum_{d \leq \frac{D}{b_{2}}} \mu^{2}(d) 3^{\nu(d)}\left|r_{d}\right| \ll \frac{N_{1}}{b_{2} \log ^{A} N}
$$

where $D=\frac{N_{1}^{1 / 2}}{\log ^{B} N}$.
Thus condition (2.4) in Lemma 1 holds.
By (3.1), we have

$$
\omega(p)=\frac{\varphi\left(b_{2}\right) p}{\varphi\left(b_{2} p\right)}= \begin{cases}\frac{1}{\varphi(p)} & \text { if }\left(p, b_{2}\right)=1 \\ 1 & \text { if }\left(p, b_{2}\right) \neq 1\end{cases}
$$

Then it is easy to check that conditions (2.1) and (2.2) hold. We have

$$
\begin{aligned}
\sum_{\substack{z<p<y \\
p \in \mathcal{P}}}\left|\mathcal{A}_{p^{2}}\right| & \leq \sum_{\substack{z<p<y \\
p \in \mathcal{P}}} \sum_{\substack{m \leq N_{1} \\
b_{1} m \equiv n\left(b_{2} p^{2}\right)}} 1 \\
& \leq \sum_{\substack{z<p<y \\
p \in \mathcal{P}}}\left(\frac{N_{1}}{b_{2} p^{2}}+1\right) \leq \frac{N_{1}}{b_{2} z}+y \leq \frac{X}{z \log X}+y
\end{aligned}
$$

By the above, condition (2.3) also holds. So far, we can prove Theorem 1 by Lemma 1.
Let $\Lambda_{3}=3+1-\frac{\log 4 /\left(1+3^{-3}\right)}{\log 3}$, then $\Lambda_{3}>3+1-\frac{\log 4}{\log 3}$. For $D=N_{1}^{1 / 2} \log ^{-B} N$ and $b_{2} \leq N_{1}^{1 / 7.5}$, we have

$$
d \leq \frac{D}{b_{2}} \ll X^{11 / 26} \log ^{-B} X
$$

For $a \in \mathcal{A}$, we have $a \leq N_{2} \leq X^{7.5 / 6.5}$. Since

$$
\frac{11}{26}\left(3+1-\frac{\log 4}{\log 3}\right)>\frac{7.5}{6.5}
$$

we can find a small $\delta>0$, such that $\frac{11}{26}\left(\Lambda_{3}-\delta\right) \geq \frac{7.5}{6.5}$. Thus by Lemma 1 , we have

$$
\left|\left\{P_{3}: P_{3} \in \mathcal{A}\right\}\right| \geq \frac{\delta}{\alpha} \prod_{p} \frac{1-\omega(p) / p}{1-1 / p} \frac{X}{\log X}
$$

where $\alpha=11 / 26$.
Theorem 1 follows.

References

[1] A. Baker, On some diophantine inequalities involving primes. J. Reine Angew. Math. 228(1967), 166-181.
[2] J.-R. Chen, On the representation of a larger even intger as the sum of a prime and the product of at most two primes. Sci. Sinica 16(1973), 157-176.
[3] K. K. Choi, M. C. Liu, and K. M. Tsang, Conditional bounds for small prime solutions of linear equations. Manuscripta Math. 74(1992), no. 3, 321-340.
[4] M. D. Coleman, On the equation $b_{1} p-b_{2} P_{2}=b_{3}$. J. Reine Angew. Math. 403(1990), 1-66.
[5] H. Halberstam and H. E. Richert, Sieve Methods. London Mathematical Society Monographs 4, London, Academic Press, 1974.
[6] H. Z. Li, Small prime solutions of linear ternary equations. Acta Arith. 98(2001), no. 3, 293-309.
[7] M. C. Liu, On binary equations. Monatsh. Math. 96(1983), no. 4, 271-276.
[8] M. C. Liu and K. M. Tsang, Small prime solutions of linear equations. In: Théorie des Nombres. Walter de Gruyter, Berlin, 1989, pp. 595-624.
[9] M .C. Liu and T. Z. Wang, A numerical bound for small prime solutions of some ternary linear equations. Acta Arith. 86(1998), no. 4, 343-383.
[10] C. D. Pan and C. B. Pan, Goldbach Conjecture. Science Press, Beijing, 1992.

Department of Statistics and Mathematics, Shandong Finance Institute, Jinan, Shandong, 250014, P.R. China e-mail: mengxm@beelink.com

[^0]: Received by the editors January 9, 2006; revised July 9, 2006.
 The author is supported by Project 973 (no. 2007CB807903) of China.
 AMS subject classification: Primary: 11P32; secondary: 11N36.
 Keywords: sieve method, additive problem.
 (C)Canadian Mathematical Society 2008.

