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Abstract. GG Tau is a textbook example of a binary system. The cir-
cumstellar material around GG Tau is divided in several distinct regions:
1) small, low mass, circumstellar disks, detected in the near-IR and mm
domain, 2) a well defined ring, of inner radius 180 AU, detected in the
mm domain and in scattered near-IR light, 3) a more extended, colder
disk detected in the 13CO(2-1) and 13CO(1-0) lines. Recent observations
of the 12CO(2-1) clearly show this extended disk, but also reveal a fourth
component of the circumstellar material: (relatively) diffuse and hot gas
in the tidally unstable region. Estimate of the gas content suggest this
material may be feeding the inner disks at about 10-6 M0/yr.

Discovered by Leinert et al. (1991), GG Tau has become the classical example
of a young binary system. Although GG Tau was known as featuring the second
strongest mm emission from a T Tauri star (just after HL Tau, Beckwith et al.
1990), it was not before 1992 that it attracted the astronomer's eyes following two
independent discoveries. First, Simon and Guilloteau (1992) discovered that the
mm emission from GG Tau was heavily resolved with the TRAM interferometer,
with an apparent size of about 2". Second, Skrustkie et al. (1993) discovered CO
emission from GG Tau with the 45-m telescope. Follow up observations with
the Nobeyama array in CO showed a velocity gradient suggestive of rotation
(Kawabe et al.1993). Complete evidence for Keplerian rotation was revealed by
the observations of the 13CO(I-0) line with the IRAM interferometer (Dutrey,
Guilloteau and Simon, 1994, hereafter DGS94).

From the rv 21/ resolution continuum image, DGS94 also showed that the
continuum emission from GG Tau displayed a hole in the middle, rather than
being centrally peaked as in single T Tauri stars. By modeling the aspect of the
continuum and line emission, DGS94 concluded that the radius of the hole was
about 180 AU, while the circumbinary disk extended out to 600 AU or more.
DGS94 also pointed out that the continuum and 13CO images were inconsistent
with a "classical", but truncated, power law density distribution. Instead, they
inferred that most of the mass was confined in a ring-like structure around the
inner hole surrounded by a less dense outer disk. Comparison of the 13CO
and continuum suggested CO and its isotopomers were depleted by a factor
of 20 compared to the standard abundances in the Taurus molecular cloud.
The kinematic pattern obtained from 13CO{I-0) was consistent with Keplerian
rotation around a central mass of 1.2 MG. The inclination derived from both
continuum and 13CO was about 35 - 40°.

Subsequent near-infrared observations with adaptive optics at the CFHT
by Roddier et al. (1996) revealed the ring in scattered light. The images fully
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Figure 1. Images of the GG Tau circumstellar environment. Top: In-
tegrated intensity map of 13CO(2-1) and derived velocity map. Middle:
same for 12CO(2-1) but with a I'.J 1/1 resolution. Bottom: combined con-
tinuum image with a 0.6/1 resolution. Coordinates are in /I. The cross
indicates the centroid of the disk and the direction of the major and
minor axis.
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resolved for inner hole for the first time and revealed the inner disks. These data
confirmed the inner radius of 180 AU for the ring and showed that the stars were
not located at the center of the ring as seen in near infrared, but slightly offset.
Roddier et al. (1996) interpreted this offset as an indication for an elliptical ring,
in which the stars are expected to be located at the ellipse focus.

With the installation of 1.3 mm receivers at the IRAM Plateau de Bure
interferometer, it became possible to perform sub-arcsecond angular resolution
observations with sufficient sensitivity in the 13CO(2-1) line. Figure 1 shows the
integrated intensity map (top left), velocity map (top right), and continuum
image (bottom) obtained by Guilloteau, Dutrey and Simon (1999, GDS99).
While the continuum emission is obviously confined to a ring, the 13CO(2-1)
line emission extends out to several hundred AUs from the star, confirming the
initial interpretation of DGS94. The high angular resolution and sensitivity al-
low GDS99 to perform a X2 analysis, similar to that performed for DM Tau by
Guilloteau and Dutrey (1998). This allows proper error determinations for the
disk and ring parameters (see GDS99, their Table 2). In particular, the velocity
pattern is found to be essentially Keplerian, and the dynamical mass derived is
1.28 ± 0.07M0 , for a distance of 140 pc. The ring, located within 180 and 260
AU, contains 70 % of the total mass and has sharp edges.

The angular resolution in the continuum is now sufficient to resolve the
ring, and the high sensitivity allowed the first detection of the inner disks in
the mm range. Using dust opacity appropriate for circumstellar disks, GDS99
indicate a lower limit to the mass of ~ 10-4 M0 and a lower radius limit of
~ 4 AU for the inner disks. In this image, the inner disks and circumbinary ring
are approximately centered, contrary to the IR image of Roddier et al. (1996).
Using the inner disks to register the two images, the comparison between the
two images indicates that the IR ring is offset by ~ 0.25" northward of the radio
ring. GDS99 interpreted this offset as a result of the finite thickness of the ring
combined with the large difference in optical depth between 2J-Lm and 1.3 mm.
This interpretation has been subsequently confirmed by the optical polarimetry
images obtained with the HST by Silber et al. (2000) (see also Menard, this
conference). The required thickness to obtain the apparent shift is large (120
AU). This is ~ 3.5 times the scale height (32 AU) derived from the temperature
measured in 13CO(2-1), consistent with an expected near-IR / visible optical
depth of order 100 (GDS99). The temperature of the ring is large compared
to that of the surrounding disk, but both values are consistent with what is
expected since the inner edge of the ring is heated by direct light from the stars
and inner disks (GDS99).

Observations of GG Tau in 12CO(2-1) were performed in the winter 1998-
1999. Figure 1 show the integrated intensity (middle left) and velocity (middle
right) maps. Comparison with the 13CO data reveal two differences: a) 12CO
is detectable much further out, up to 800 AU. This is expected since it is 60
times more abundant than 1300, b) there is detectable 12CO(2-1) emission
from within the ring. There are a priori three possible explanations for the
12CO(2-1) emission from within the ring: 1) CO from the inner disks, 2) CO
from an outflow emanating from one of the two stars, 3) CO within the tidally
unstable region between the inner disks and the ring. Option 1 is not consistent
with the apparent size of the emission, since the inner disks are expected to be
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smaller than about 20 AU. Option 2 is unlikely, because the kinematic pattern
of the CO emission follows the general rotation curve. Hence we are left with
option 3. The detection of 12CO, combined with the upper limit in 13CO and
in continuum, allows us to constrain the mass contained within the ring.

The determination of the gas parameters in the tidally unstable region is a
difficult task, because of the presence of the ring and large outer disk coupled
to the marginally sufficient angular resolution. We proceed in two steps, first
subtracting the best model of the GG Tau ring, as derived from the 13CO data
(see GDS99 Table 2), and noting that to first order, the 120 0 data confirm these
values. The residual image has been analyzed with (yet another) "classical"
Keplerian disk model. Preliminary results from this analysis suggest that:
1) The position angle of the CO emission is different from that of the outer
disk (220 ± 10° instead of 187°). The inclination also appears somewhat lower
(25 ± 3° instead of 37°).
2) The CO gas fills a significant fraction of the gap (outer radius> 120 AU).
3) The CO gas is almost optically thin but warm (temperature ~ 200 K).
A more thorough presentation will be given in Guilloteau et al. (2001, in prep.).
The first two points suggest a significant distortion of the disk pattern in the
tidal region, which is not unexpected since numerical simulations show that
streamers of gas should form.

The last point is in agreement with the 'fact that 13CO was not detected.
If we further assume that the CO depletion is similar to that in-the disk-i-ring
('" 20), the implied gas mass is 610-4 M0 . Since the orbital-timescale is on the
order of a few 100 years, this gas content may be feeding the inner disks with
an accretion rate of ~ 10-6 M0/yr. This would be sufficient to replenish the
inner disks. There are obviously many uncertainties affecting this number. Note
however that a direct measurement of the H2 density may be possible. With
the above values, the H2 density in the gap plane is only about 107 em":'. This
value indicates that, if molecules like HCO+, CN or HCN exist in the tidal gap
like in the ring (Dutrey, Guilloteau and Guelin, 1997), a direct estimate of the
density may be possible from constraints on the molecular line excitation.
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