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ANOTHER TEST FOR HETEROGENEITY OF HOST
RESISTANCE IN DILUTION ASSAYS

BY P. A. P. MORAN
Australian National University, Canberra, A.G.T.

Suppose that A is the average density per unit volume in a suspension of infective
particles such as virus particles. To estimate A the usual method is to make up
a series of inocula of various dilutions containing expected numbers of particles
.. .Aj_1; Ai; X{+1,... which are known multiples of A. Each of these is then tested by
inoculation in a host such as an egg. We consider only the case where the dilution
series is twofold (Aj- = A2% say) and the same number of eggs, N, is tested at each
dilution. Then if we are sure that an egg is infected if and only if the inoculum
contains at least one infective particle, the probability that the egg remains sterile
is Pf = exp { — A2f). If each particle is not certainly infective but has a probability p
of infecting the egg, the probability of sterility of an egg chosen at random is
exp { — Ap2i} provided that p does not vary from egg to egg. It is then only possible
to estimate Xp from the results.

If, however, p varies from egg to egg with a probability distribution f(p), the
probability of an egg, chosen at random, being sterile is

e~Xp2if(p) dp
!o

and when plotted against i, this gives a flatter curve. Thus any test of the goodness-
of-fit of the original hypothesis provides us with a method of testing for variation
in host resistance.

Instead of fitting by maximum likelihood and then using x2 for this purpose,
a more effective test has been proposed (Moran (1954a,6)). Provided that
the series is sufficiently long to range from almost certainly sterile to almost
certainly fertile levels we calculate a quantity T= ^,fm(N —fm). Here fm is the

r
Jo

number of fertile eggs at the dilution level 2m and N is the number of eggs tested
at each level. The mean and variance of T have been calculated, thus enabling
a rapid test to be made on the assumption that T is approximately normally
distributed* This test has the advantage of being very much faster than the ;\;2-test
and also appears, in most cases, to be substantially more powerful (Armitage &
Spicer (1956)), since it is so constructed that T is large for one particular kind of
divergence from the theoretically expected numbers, namely, that in the direction
of a flattening of the graph of Pt against i.

Another method is based on the Spearman-Karber approach but is shown by
Armitage & Spicer (1956) to be less efficient than the T-test. Fazekas de St Groth
(1955) has also examined the practical use of these tests.

One disadvantage of the T-test is that it gives equal significance to two such
s e r i e s a s ...000123345555...
and ...000123355545...,
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whereas clearly the latter indicates a stronger divergence from the null hypothesis.
In view of this another test is here proposed.

As a test criterion we take the distance, D say, between the first level at which
at least one egg is sterile and the last level at which at least one egg is fertile. Thus
for N = 5 and the series

...000123354555...

D is equal to 5. We calculate the probability distribution of D on the assumption
that Pi = exp { - A2*}. Write Qt = 1 - Pt. Then

= 4= £ ...P^-2P^_1(l
= — oo

where 5=1, 2,.... The infinite products involved are easily seen to be convergent.
This probability clearly depends on A, but since it is a periodic function of log2 A
with period 1 we may hope, in analogy with the previously given theory of the
T-test, that it will vary only very slightly with A. Write

and put TNi „ = 2
m = —oo

Notice that ^4m = exp { - A 2 2r} = exp { - A2m+1}=Pm+1.

Then prob{D = s}= £ {^-^{ i^ i -^}

iV, s+2 ^ J iV, s+1 T"
 J JV, s"

Besides D= 1, 2... there are two other possibilities; first that the series is of the
form... OOOalVW..., where 0 < a < N, and secondly, that it is of the form... OOOiViViV....
These are easily seen to have probabilities TN 2 — 2TN> 1, and TN x, respectively.

If TN< 8 is averaged over the possible values of log2 A in the interval (0, 1) we
obtain the integral

I " exp { - N2X+1} n {1 - exp { - 2x+»+r}}Ndx,
J-oo r=0

which unfortunately does not appear to be expressible in terms of elementary
functions. We must therefore evaluate TN s numerically and explore the extent of
its variation (or rather, of the variation of prob {D = s}) with A. This has been done
for N = 4 and N = 10, and also the probabilities that D = s found for N = 5, 8, and
one particular value of A. The results are presented in Table 1 in the form of the
probabilities of the tails of the distribution in its statistically interesting part.

This table was constructed in the following way. For N = 4, 10 five values of A
were chosen so that one of the probabilities, say, was equal to 0-999000, 0-998800,
...0-998200, respectively (0-001000, 0-001201,0-001401, 0-001601 and0-001802) and
the values of TN s found to six places of decimals. The probabilities of the ordinates
and tails of the distribution were then calculated from these, also to six decimal
places and used for the second and fifth columns of the above table. It was found

https://doi.org/10.1017/S0022172400037815 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400037815


Dilution assays 321

that for N = 4 and O 5, the maximum error due to variation in A is not greater
than 0-000036, whilst for N= 10 and s = 7 the maximum error is not greater than
0-000148. This covers the statistically interesting parts of the tails. These errors
being very small the values for iV = 5 and N — S were calculated solely for
Po = 0-999000 and rounded off to four places. In all cases it was found that suffi-
ciently far along the tail the probabilities of the ordinates were decreasing in such
a way that their successive ratios were of the form \ + K2~^, where K is a constant.
By extrapolation the calculation of the tail for the larger values of s was thus very

Table 1. Probabilities that
N=4 N=5 N=8 N=10

5
6
7
8
9
10
11
12
13
14
15
16

0-3131
0-1755
0-0932
0-0481
0-0244
0-0123
0-0062
00031
00016
0-0008
00004
0-0002

0-3955
0-2289
0-1239
0-0645
00330
0-0167
0-0084
0-0042
00021
0-0011
00005
00003

0-5996
0-3804
0-2177
01170
0-0607
0-0309
0-0156
0-0078
0-0039
0-0020
00010
0-0005

0-6999
0-4697
0-2787
0-1530
0-0803
00412
0-0208
0-0105
0-0053
0-0026
0-0013
0-0007

easy and the whole calculation received a partial check by verifying that the sum
of the probabilities, together with the remaining tail, and the probabilities of the
two additional cases mentioned above, was unity.

The probability distributions for N = 6, 7 and 9 can be found from the above by
linear interpolation with an accuracy which is quite adequate as is shown by
comparing the values for N = 8 with a linear interpolate from N = 5 and N = 10.
Thus for s = l, 8 and 9 we get by interpolation values 0-2168, 0-1176 and 0-0614
which differ from the values given in the table by -0-0009, 0-0006 and 0-0007,
respectively. Thus interpolation for N = 6, 7 and 9 will be quite accurate.

As an example of the use of the test consider the observed sequence 0, 0, 2, 1,
1, 3, 4, 5, 4, 5, 5 (iV = 5). Here D = Q and the probability of as large or larger
a value of D is 0-2289.

The power of this test would be difficult to determine in any general situation
although the change in the distribution of D for particular numerically specified
alternatives of the kind given by Armitage & Spicer (1956) could be found, and
this would be worth doing. Furthermore, the correlation coefficient between T
and D could be found numerically without much difficulty. A small amount of
experience suggests that they are fairly closely related. It seems plausible to
suggest that the present test is less efficient than T since it does not, in a sense,
use all the available information. However, some kinds of alternative hypotheses
often seem in practice to give rise to outliers of fertile eggs at high dilutions and
in this type of situation the present test may be useful. Armitage & Spicer rightly
point out that all known tests of this kind may easily fail to pick up considerable
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heterogeneity in host resistance for the usual values of N. This is partly due to the
fact that we do not know A and partly because the estimator of a binomial
probability has little intrinsic accuracy. Probably the ideal method would be to
compare two sets of inoculations one of which was known for certain to contain
exactly one potentially infective particle, and the other exactly two.

This test could also be extended to other dilution series. A fourfold dilution
series would probably result in a distribution which was reasonably invariant with A
but a tenfold dilution series would almost certainly be unsatisfactory. Moreover,
for such series the smaller number of ordinates in the main part of the distribution
impairs the test.
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