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Abstract

Any representation of a group G on a vector space V extends uniquely to a representation of G
on the free metabelian Lie algebra on V. In this paper we study such representations and make
some group-theoretic applications.

1991 Mathematics subject classification (Amer. Math. Soc): 20 C 15, 20 F 40.

1. Introduction

Let K be a commutative ring with identity and let X be a set. We write SK(X)
for the free commutative associative AT-algebra with identity on X (equal to
the polynomial ring K[X]), LK{X) for the free Lie algebra over K on X,
and MK{X) for the free metabelian Lie algebra over K on X. (Thus MK{X) is
isomorphic to LK (X) factored out by its second derived algebra. See [2,4,5,15]
for basic material concerning Lie algebras.) Let V be a free AT-module such
that X is a basis of V. (All our modules will be left unital modules.) Then
V can be identified with the A'-submodule of SK(X) spanned by X; and the
same can be done for LK(X) and MK{X). We define SV = SK(X), LV =
LK(X) and MV = MK{X). (With V identified in the way described, these
algebras are independent of the choice of basis of V.) SV has a A'-module
decomposition SV = (&n>0SnV where SnV is the submodule spanned by all
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146 R. M. Bryant, R. Stohr and R. Zerck [2]

monomials JC,, . . .xi n with *,-,,..., xin e X. Similarly LV = 0 n > 1 LnV and
MV — 0 n > 1 MnV where LnV and MnV are spanned by the left-normed Lie
monomials [*,, , . . . , JC,-,] with JC,-, , . . . , xin e X. (We use square-bracket notation
for Lie products.)

For any ^T-module V (not necessarily free) we write GL* (V) or GL( V) for the
group of all #-module automorphisms of V. If V is free then for each g e GL( V)
the action of g on V extends (uniquely) to give algebra automorphisms of S V,
L V and MV: for example, g[x,, *,•„] = [g*,,, • • •, gxt,]. Thus SV, LV and
MV become modules for the group algebra ^TGL(V) in which each element
of GL(V) acts as an algebra automorphism. Clearly each Sn V, Ln V and Mn V
is a X"GL(V)-submodule. More generally, if H is any group and V is a KH-
module which is free as a AT-module then the representation H ->GL(V) gives
a £//-module structure to SV, LV and MV.

THEOREM A. Let V be a finite dimensional vector space of dimension at least 2
over afield K and let G be a finite subgroup o/GL(V). Then, for all n > 1,
there exists t >n such that Mn V © • • • © M, V has a regular KG-submodule.

A similar result for SV is well known. (We shall give a simple proof in
Section 3.) An analogue of Theorem A for LV was proved by Bryant and
Kov£cs [8] where the result was applied to the study of automorphism groups
of finite p-groups {p a prime). If P is a finite p-group and <$>(P) denotes the
Frattini subgroup of P then every automorphism of P induces an automorphism
of P/®(P), giving a homomorphism n : Aut(P) -> Aut(P/O(/J)) from the
automorphism group of P to that of P/(t>(/)). We may regard />/<I>(P)asa
vector space over Fp, the field of p elements: thus 7r(Aut(/>)) is a linear group
over Fp. In [8] it was shown that every linear group of finite dimension at least 2
over ¥p arises from some P in this way. Here we use Theorem A to show that
P may be taken to be metabelian.

THEOREM B. Let p be a prime number. For every linear group G of finite
dimension at least 2 over Fp there exists a finite metabelian p-group P such that
G is isomorphic as linear group to the image of it : Aut(/>) —>• Aut(P/Q>(P)).

Our other results are concerned with the case where K is a field of char-
acteristic 0 and V is a finite dimensional vector space over K. Thus the
A'GL(V)-modules SnV, LnV and MnV are all finite dimensional. For any
finite dimensional A"GL(V)-module W we write Xw for the character of GL(V)
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[3] Metabelian Lie powers of group representations 147

on W. A formula for XL, V was given by Brandt [6]. Here we shall give formulae
for the 'generating functions' of xsnv and XM,V (see Proposition 4.1).

We shall apply these formulae to the 'relation module' of a finite group. Let
F be a free group of finite rank and let R be a normal subgroup of F such that
G = F/R is finite. The relation module for G is the derived factor group R/R'
regarded as a ZG-module (Z the ring of integers) by means of conjugation:
(fR)(uR') = (fuf-^R' for all / e F, u e R. This module is faithful
for G when F is non-cyclic (see [3]). So, with G regarded as a subgroup of
GLZ(R/R'), the algebras S(R/R'), L(R/R') and M(R/R') have the structure
of ZG-modules. By tensoring with Q (the field of rational numbers) we obtain
a finite dimensional QG-module V = Q ®2 (/?//?') and QG-modules SV,
LV and MV. Several results about L,V as QG-module, derived from Brandt's
character formula, were obtained by Gupta, Laffey and Thomson [13]. Here we
obtain some analogous results concerning SV and MV.

In the statement of the following theorem, \G\ denotes the order of the finite
group G and \g\ denotes the order of the element g of G. For non-negative
integers a and b, (a, b) denotes the greatest common divisor of a and b and,
when a > b, (£) denotes the binomial coefficient a\/(b\(a — b)\).

THEOREM C. Let F be a free group of finite rank e > 2 and let R be a normal
subgroup of F such that G = FI Ris finite and \G\ # 1. Let V = Q<S)i(R/R'),
and regard V as a QG -module by means ofconjugation. Let m = l+(e — 1)|G|.

(i) Let g e G and write q = |g|. For all n > 0,

[n/q]

where [n/q] is the greatest integer not exceeding n/q.
(ii) Let g € G and write o = |g|. For all n > 2,

0 ifq\n,

({m+n-q-\)/q\
—I , \ifq\n andq ^ 1,

V n/q )XM,,v(g)=

(iii) For n > 2, the multiplicity of the one-dimensional trivial QG-module

https://doi.org/10.1017/S1446788700034819 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034819


148 R. M. Bryant, R. Stohr and R. Zerck [4]

in Mn V is

where v(q) denotes the number of elements of G with order q. Furthermore dn

is the multiplicity in Mn V of the regular QG -module (that is, the greatest rank
of a free QG-submodule ofMnV).

(iv) Ifn > 2 and (n, \G\) = 1 then Mn V is a free QG-module of rank

Theorem C has some group-theoretic consequences. Most of our notation
for groups is standard but, to avoid confusion with Lie multiplication, we use
round brackets for group commutators: (g,h) = g~lh~xgh. For n > l,yHH
denotes the nth term of the lower central series of the group H: yxH = H and
Yn+iH = (ynH, / / ) . Also, for n > 1, we write \xnH = (ynH)H" (where H" is
the second derived group of H). Thus H//xnH is the largest factor group of H
which is both nilpotent of class n — 1 and metabelian.

Let F, R and G = F/R be as before. The factor groups ynR/yn+\R and
(j,nR/(Mn+lR may be regarded as ZG-modules by means of conjugation. Thus
(fR)(uyn+iR) = (fuf-l)yn+iR for all / e F, u e ynR, and similarly for
\inR/n,n+\R. The modules /„R/yn+\R are the 'higher relation modules'. There
are ZG-module isomorphisms ynR/yn+iR = Ln(/?//?') and ixnR/ixn+\R =
Mn(R/R') (see Section 4). In [13] results about Ln(Q <g> (/?//?')) were used
to obtain information about ynR/yn+xR. Here we use Theorem C to obtain
information about /xn/?//in+1/?. For any group H we write Z(H) for the centre
of H and, for any //-module W, we write WH = {w € W : hw — w for all
h e / / } .

THEOREM D. Let F, R and G be as in Theorem C. Let dx = e and, for n > 2,
let dn be defined as in Theorem C (iii).

(i) For n > 1, Z(F /iin+lR) = (/zn/?//zn+1/?)G and this is a free abelian
group of rank dn.

(ii) For n > 1, /xnR/(fj,nR, F)/An+lR has torsion-free rank dn.

In [14] Hannebauer and Stohr studied the factors /j,nR/(iinR, F)/j.n+1R in
the general case where F/R is not necessarily finite. They showed in [14,
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Theorem 7.1] that, for n > 2, fi,nR/(fi,nR, F)^n+lR decomposes as the direct
sum of a free abelian group Dn and a torsion group Tn which has exponent
dividing n if n is odd and In if n is even. Theorem D (ii) above shows that, in
the case where F/R is finite, Dn has rank dn.

The organisation of the paper is as follows. Section 2 contains background
information on Lie algebras and related topics. Theorems A and B will be
proved in Section 3, and Theorems C and D in Section 4.

2. Central series of subgroups and Lie algebras

In this section we shall collect together information about the Lie algebras
associated with certain descending series of subgroups of a group. Much of
the material is well known, but we have re-cast it in a form suitable for our
purposes. We have not attempted the difficult task of attributing individual
results to their original sources. Suffice it to say that a major contribution was
made by Lazard [16] and our account is greatly influenced by the account in
Chapter VIII of Huppert and Blackburn's book [15].

Throughout this section p will denote a fixed prime number. For any group
H and any positive integer m, Hm denotes the subgroup of H generated by all
the m\h powers hm, h <s H. For any Lie algebra L, L' denotes the derived
algebra [ I , L] and L" = [L\ L'].

Let H be any group. We regard me lower central factors ynH/yn+lH as
Z-modules and form the (restricted) direct sum

As is well known, y H can be given the structure of a Lie ring (Lie algebra over
Z) by defining

[uym+lH, vyn+1H] = (u, v)ym+n+lH

for all M € ymH, v e ynH aad all m,n>\. (See, for example, [15, VIII.9.3].)
Similarly, the direct sum

can be given the structure of a Lie algebra over ¥p by defining

[u(ymH)pym+lH, v(ynH)pyn+lH] = (u, v)(ym+nH)»ym+n+lH
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for all u € ymH, v e ynH and all m, n > 1. In fact yH = Fp <S>i yH.
Furthermore we write

9'H =

Thus y'H is a subalgebra of y H.
For all « > 1 let

xnH = (/,//)"""' (y2//)"""2... (y«//).

Then (see [15, VIII.1.5]) H = XXH > X2H > ..., and, for all m, n > 1,

(XmH, XnH) < Xm+nH and Xn+lH = (XnH)p (XnH, H).

Thus XnH/Xn+iH is the largest factor group of XnH which is an elementary
abelian /7-group centralized by H. The direct sum

can be given the structure of a Lie algebra over Fp by denning

[uXm+lH, vXn+lH] = (u, v)Xm+n+lH

for ailu € XmH,v e XnH and all m, n > 1. Furthermore we write

X'H = 0 (//' n Xn//) Xn+1 H/Xn+lH.
n>2

Thus X'// is a subalgebra of XH.
Let Fp[<w] be the ring of polynomials in an indeterminate co over Fp.

PROPOSITION 2.1. Let H be any group.
(i) For p ^ 2, XH has the structure of an frp[co]-Lie algebra in which

co(uXn+lH) = upXn+2H for all u eXnH,n > 1.
(ii) For all primes p, X'H has the structure of an $p[co]-Lie algebra in

which co{uXn+xH) = upXn+2H for all u G H' n XnH, n > 2.

PROOF. It is easy to verify that, for all n > 1, there is a well defined map
con : XnH/Xn+iH - • Xn+lH/Xn+2H given by con{uXn+lH) = upXn+2H for
all u G XnH. If p ^ 2 or « ^ 1 then (uv)pXn+2H = upvpXn+2H for all M,
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v e XnH: this follows from the congruence (uv)p = upvp mod (y2A)p(ypA),
where A = {u, v) (see [15, VIII. 1.1a]). Thus, if p # 2 or n ^ 1, con is an
Fp-module homomorphism. Let u> : XH —• XH be defined by a>( J2na") —
£]B con(an), where an e XnH/Xn+lH,n > 1. Then, if p ^ 2, a) is an Fp-module
homomorphism and, for all p, the restriction of a> to A.'// gives an Fp-module
homomorphism a>' : X'H -> X'H.

If /? # 2orm ^ 1, (MP, v)Xm+n+2H = («, v)pXm+n+2H for all u € Am//, u G
An//: this follows from the congruence (MP, U) = (M, D)*7 mod (y2B)p(ypB),
where B = (M, (M, U)) (see [15, VIII. 1.1b]). Thus, in this case,

[6b (uXm+lH), vXn+iH] = ib ([uXm+1H, vXn+lH]).

Results (i) and (ii) follow by defining a>u = a>{u) for all u e XH.

PROPOSITION 2.2. Let H be a group such that H /yn+\H is torsion-free for
all n > 1. Then there is a bijective map

satisfyinga(co' ®u(ynH)pyn+lH) = up'Xn+i+xHforallu e ynH,i > 0,n > 1,
such that (i)for p ^ 2, a is an ¥p[co]-Lie algebra isomorphism, and (n)for all
p, a restricts to an ¥p[co]-Lie algebra isomorphism a' : ¥p[co] ® y'H -*• X'H.

PROOF. Note firstly that ¥p[a>] (8) yH is a direct sum of Fp-submodules
a* ® (ynH/(ynHVyn+iH), i > 0, n > 1. For s > 1 let

s

As = 0 6 / - " <8> (ynH/ {YnHY Yn+iH).
n=\

Thus F P M ® y / / = 0 J 2 l A,. By [15, VIII.1.9b], for each s > I, there is a
bijective map as : As ->• XSH/XS+XH defined by

where «„ € yn// and un — un{ynH)pyn+xH (1 < n < s). Accordingly, let
a : Fp[&>] ® )///->• A// be defined by a ( ^ as) = ^ ajfe) , where as e As,
5 > 1. Thus a is bijective and

a (a/ (8) u (yn//)p yn+i//) = u"'Xn+i+1H
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for all u e ynH, i > 0, n > 1. By [15, VIII.1.9c], for p # 2, or is an Fp-
module isomorphism, and, for all p, a restricts to an Fp-module isomorphism
a' : Fp[&>] <g> y ' / / -* X'H.

For all M e ynH, n > 1, and all / > 0,

a (a>'+1 ® u (/„//)" n + 1 / / ) = up'+>Xn+i+2H = co («"X+,+ i

= coa (aj ® M {YnH)p yn+lH).

It follows that, for p ^ 2, a is an Fp[<y]-module isomorphism, and, for all p , a'
is an Fp[a>]-module isomorphism. Now a ( l <S> u(ynH)pyn+\H) = uXn+lH for
all M e ynH, n > 1. Thus it is easily verified that a restricted to 1 ® yH is a
homomorphism of Fp-Lie algebras. Results (i) and (ii) follow because 1 <g> yH
spans Fpto)] <8> y / / as FP[GJ]-module and \ ® y'H spans Fp[cu] ®y'H.

For any group / / we write End(//) for the set of endomorphisms of H. If
^ eEnd(//) then, since the subgroups ynH and >.„// are fully invariant, fi
induces endomorphisms of ynH/yn+lH, ynH/(ynH)pyn+\H and XnH/Xn+lH,
which we denote by ynfi, yn/3 and Xnfi, respectively. Recall that H is 'relatively
free' if H = F/V(F) for some free group F and some fully invariant subgroup
V(F)of F.

LEMMA 2.3. (i) Lef / / t e a group and let 0, ft e End(//). Ify\P = Y\P'
then ynp = ynp'foralln > 1. //X,/3 = X ^ ' fAen yn^ = K,£ ' a n d X ^ = Xn/3'
for all n > 1.

(ii) //" N w a normal subgroup of a relatively free group H and 0 e
End(///A0 then there exists 0 €End(//) such that 0{N) c Â  a«rf 0(h)N =
6(hN)forallh e H.

(iii) Let H be a relatively free group and let 0 eEnd(//) . If Y\fi is an
automorphism then so is ynfi for all n > 1. IfX^isan automorphism then so
are yn0 andXnfiforalln > 1.

PROOF. The proofs of Vm. 1.7a, VDI.13.3a and VDI.13.3b of [15] apply with
only minor modifications.

PROPOSITION 2.4. Let H be a relatively free group and write U — H/H' —
H/y2H. The action ofGLz(U) on U extends toyH so that yH is a ZGL(f/)-
module on which every element ofGL(U) acts as a Lie ring automorphism.
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PROOF. Let g G G L ( { / ) . By Lemma 2.3 (ii) there exists fig eEnd(H) such
that f}g induces g on U. Lemma 2.3 (i), (iii) show that, for all n > 1, ynfig is an
automorphism of yn H/yn+i H depending only on g and not on the choice of ftg.
The action of g on ynH/yn+lH is defined by g{uyn+xH) = /3g(u)yn+lH for all
u € yn H, and the rest of the proof is straightforward.

A similar proof gives the analogous results for y H and XH.

PROPOSITION 2.5. Let H be a relatively free group and write V — H/Hpy2H
- H/X2H. The action of GLFj>(V) on V extends toyH and XH so that yH
and XH are ¥PGL{V)-modules on which every element of GL{V) acts as a Lie
algebra automorphism.

In the case of XH we can do rather better.

PROPOSITION 2.6. Let H be a relatively free group and write V = H/X2H.
Regard XH as a GL{V)-module as in Proposition 2.5. Then (i)for p ^2,XH is
an ¥p[(o]GL(V)-module in which every element of'GL(V) acts as an $p[co]-Lie
algebra automorphism, and (ii)/or all p, a similar statement holds for X'H.

PROOF. It is easily verified that X'H is an FPGL( V)-submodule of XH. Let
g e GL( V) and let fig be an endomorphism of H which induces g on V. Let u>
be as in the proof of Proposition 2.1. Then for all u e XnH,n > 1,

cb(g(uXn+lH)) = cb(pg(u)Xn+lH) = pg(u)pXn+1H

= pg(u»)Xn+2H=ga)(uXn+lH).

Results (i) and (ii) now follow easily.

PROPOSITION 2.7. Let H be a relatively free group such that H/yn+xH is
torsion-free for all n > 1, and write V = H/Hpy2H = H/X2H. Then the
¥p[co]-Lie algebra isomorphisms

a : Fp[<u] ®yH -> XH (p # 2), a' : ¥p[co] <g> y'H -+ X'H,

of Proposition 2.2 are ¥ p[a)\GL{V)-module isomorphisms.

PROOF. Let g e GL(V) and let fig be an endomorphism of H which induces
g on V. Let u e ynH, n > 1, and write M = u(ynH)pyn+iH. Then

a (g (1 ® «)) = a (1 ® 0g(u) (ynH)p yn+iH) = Pg(u)Xn+1H
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The results follow because 1 ® yH spans Fp[<y] <g> yH as Fp[<y]-module and
1 <g> y'H spans Fp[&>] ® y ' / / .

Let E be the free metabelian group on a set X and let MJ(X) be the free
metabelian Lie ring on X (as in Section 1). By Theorem 3.2 of Shmel'kin [19]
there is an isomorphism of Lie rings £0 : MZ{X) ->• y E such that t-0(x) — xy2E
for all x e X. LetU = E/E' — E/y2E. Then we can use £0 ' to identify £/with
the Z-submodule of MZ(X) spanned by X. Thus MZ(X) = MU. It is easily
verified that %0(MnU) = ynE/yn+\E for all n > 1. As explained in Section 1,
MU has the structure of a ZGL(t/)-module. Also (see Proposition 2.4), y E has
the structure of a ZGL(U)-module. For all u e U and all g € GL(£/) we have
£o(g") = Su = g£o(") because of the identification of U. Since U generates
MU as a Lie ring, and GL(U) acts by Lie ring automorphisms on MU and y E,
it follows that £o(gw) = gto(w) for all M e Mf/. Thus | 0 is a n isomorphism of
ZGL({/)-modules and we have proved the following result.

PROPOSITION 2.8. Let E be a free metabelian group and write U = E/E' =
E/y2E. There is a bijective map £0 : MU -+ yE which is an isomorphism
of Lie rings and ofZGL(U)-modules such that i-(MnU) = ynE/yn+iE for all
n > 1.

Now A/F"(X) = Fp ®z M2(X) and yE = Fp ®z y £ . Thus ?0 gives an
Fp-Lie algebra isomorphism ^ : Mfp(X) —>• yE. We can repeat the proof of
Proposition 2.8 to obtain an analogous result for yE.

PROPOSITION 2.9. Let E be a free metabelian group and write V = E/Epy2E
— E/X2E. There is a bijective map | : MV -> yE which is an iso-
morphism of ^P-Lie algebras and of FpGL(V)-modules such that t-(MnV) —
YnE/{ynEYyn+xEforalln> 1.

We can now prove the main result of this section.

PROPOSITION 2.10. Let E be a free metabelian group and write V — E/k2E.
(i) For p ^ 2 , and s > 1, there is an \fpGh(V)-module isomorphism

n = l

(ii) For all p, and s > 2, there is an \fpGh(V)-module isomorphism
s

n=2
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PROOF. Note first that Proposition 2.7 is applicable with H — E: the fact
that E/yn+lE is torsion-free for all n > 1 is contained in the work of Chen [9]
although probably proved earlier by Magnus (see [18, 36.32]).

(i) By Proposition 2.7 the map ot"1 : XE -*• Fp[a;]<g>y£isanFp[a/|GL(VO-
module isomorphism, hence an FpGL(V)-module isomorphism. But

s

a"1 (XsE/Xs+lE) = 0 a / - " ® (yn£/ (ynE)p
 Yn+1E)

n=\

as FpGL(V)-module. The result follows by Proposition 2.9.
(ii) Similarly, using a', we obtain FpGL(V)-module isomorphisms

n=2

n=2

The result follows by Proposition 2.9.

REMARK. Similar proofs give analogues of Propositions 2.8, 2.9 and 2.10 for
a free group F, describing yF,yF and XF in terms of the free Lie algebras
L(F/y2F) and L(F/X2F). Similarly (using results from [19]) we can obtain
analogues for any free polynilpotent group H, describing yH,yH and XH in
terms of associated free polynilpotent Lie algebras P(H/y2H) and P(H/X2H).

We conclude this section by recording a fact which will be used repeatedly :
in the applications K' will either be an extension ring of K or a factor ring of K.

PROPOSITION 2.11. Let K —> K' be a homomorphism of non-zero commutat-
ive rings with identity (so that K' can be regarded as a (K'', K)-bimodule). Let H
be any group and let V be a KH-module which is free as a K-module. Let D de-
note S, L or M. Then there is an isomorphism K'®KDV ^>- D(AT' ®K V) which
is an isomorphism of K'-algebras and of K'H-modules such that 1 (g> v i->- 1 <g> v
for all v € V.

PROOF. The result essentially follows from the universal properties of free
algebras and tensor products. We omit the details (cf. [5, §2, 5.3]).
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3. Regular modules and automorphisms

In this section we shall prove Theorems A and B. We begin with an analogue
of Theorem A for SV. Although this result is essentially well known (see, for
example, the proof of Theorem 7.1 of [1]), the simple proof given here seems
worthy of note.

PROPOSITION 3.1. Let V be a non-zero finite dimensional vector space over
a field K and let G be a finite subgroup of GL(V), where \G\ —c. Then,for all
n > 0, Sn V © • • • © Sn+C_i V has a regular KG-submodule.

PROOF. Let G - {g\,..., gc}. By Proposition 2.11 and [15, VII.7.23], we
may assume that K is infinite (by passing to an infinite extension field of K if
necessary). For each g e G\{1}, {v € V : gv = v} is a proper subspace of
V. Hence, since K is infinite, there exists a non-zero element v of V such that
gv ^ v for all g G G\{1}; thus the elements g\V,..., gcv are distinct. Hence,
in the integral domain SV, the van der Monde determinant

8lv)" . . . {gcv)n

glv)"+c-1 . . . (gcv)n+c-x

is non-zero. Hence the columns of the van der Monde matrix are linearly
independent regarded as vectors over the field of fractions of S V. Therefore they
are linearly independent over K. By comparing the homogeneous components,
it follows that the elements (g,u)"+(g,i;)"+1 + - • • + (giv)n+c-1 of SV (1 < i < c)
are linearly independent over A". LetM = v"+vn+l-\ \-vn+c~x. Then, for each
/, gtu = (giv)" -\ h (giV)n+c~l. Hence the elements gtu,..., gcu are linearly
independent over K. It follows that u generates a regular ^G-submodule of

REMARK. From Proposition 3.1 we can easily deduce the corresponding result
for A V, the free associative algebra or tensor algebra on V. This is because S V
is isomorphic to a factor algebra A V// , and if u + I is an element of A V/I which
generates a regular A"G-module then u generates a regular A"G-submodule of
A V. Thus we obtain a simple proof of a generalisation of the well known result
of Burnside concerned with the occurrence of irreducible modules in tensor
powers. (For further background see [7].)
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Let V be a vector space over a field K with finite dimension d > 2 and
basis X — [xu ..., xd). We temporarily use the notation Sw = 0 7 > 1 SjV and
A/(2) = ©;>2 M7 V. Every element of Sm can be written uniquely in the form

where the sum is over all ordered d-tuples (n i , . . . , nd) of non-negative integers
not all equal to 0 and where the p(n, n<j) are elements of K all but finitely many
of which are 0. If u e M(2) and w is as given by (1) we write [u; w] for the
element of Mi2) given by

[M; W] =

where, in the term corresponding to ( n i , . . . , nd), there are «, occurrences of x,
for each /. Since MV is metabelian,

(2) [u, xt, x ] = [M, x , Xj]

for all u G M(2) and all i, y e {1, . . . , <i). Hence, for all u e M(2) and W\,
w2 e 5(D,

(3) [i.

Also

(4) [II ; w

For all g e GL( V), M e M(2), u € V = S, V, we have

g[u; v] - g[u, v] = [gu, gv] = [gu; gv].

Hence, by (3), (4) and induction,

(5) g[u; w] = [gu; gw]

for all g G G L ( V ) , U e M(2), w e 5(i). The tensor product M2V <g>K Sw has
the structure of a A'GL(V)-module under the 'diagonal' action of GL(V) :
g(u <g> w) = gu <8> gw for all g eGL(VO, u e M2V, w e 5 a ) . From (5) we
obtain the following result.
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LEMMA 3.2. There is a KGL(V)-module homomorphism

such that r){u <S> w) = [u; w] for all u e M2V, w € 0 y > 1 Sy V.

We shall first prove Theorem A in the case where K has non-zero character-
istic.

PROPOSITION 3.3. Let V be a finite dimensional vector space of dimension at
least 2 over afield K of characteristic p > 0 and let G be a finite subgroup of
GL(V). For all n > 1 there exists t > n such that Mn V © • • • © M, V has a
regular KG-submodule.

PROOF. AS before, let {xu ..., xd] be a basis of V and let G — {g\,..., gc}
where \G\ — c. As in the proof of Proposition 3.1 we may assume that K is
infinite and take v e V so that the elements gi v,..., gcv are distinct. Let n > 1
and take a positive integer m so that pm > n. Since S V has characteristic p,

(giV)pm-(gjvym = (giv-gjV)»m ^ 0

for all /, j (i ^ j). Thus the argument used in the proof of Proposition 3.1
shows that the element

generates a regular /fG-submodule W of S V.
Let Z be the subalgebra of SV generated by xf, . . . , xp

d. Clearly Z is a
/TG-submodule of SV and W c Z c 0 ^ , Sy V. Let rj be the A"G-module
homomorphism given by Lemma 3.2. Then

r)(M2V ® W) c
n<j<t

for some t, and M2V (8) W is a free /CG-module by [15, VII.7.19a]. Thus to
prove the proposition it is sufficient to prove that r\ restricted to M2 V (8) W is
injective. We do this by showing that r] restricted to M2 V <8> Z is injective.

Now

k>\
p\k
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and, for each k,

Thus it is sufficient to prove that r\ restricted to M2V <8> (Z n SkV) is injective
for each k.

Let A be the set of all elements of S V of the form xf' . . . xd
d where fi\ +

(- f}d — k and all of Bx, ..., 6d are divisible by p. Then A is a JT-basis of
Z n S,t V. Furthermore, the sets

B2 = {[x,,,xi2] : ii > i2}

and
B k + 2 = {[x,,,..., xit+2] : ii > i2 < h < • • • < ik+2}

are AT-bases of M2V and Mk+2V, respectively (see [2,15.3.2]). For each d-tuple
a = ( a i , . . . , ad) of non-negative integers satisfying c*i -I \-ad = k+2 let Na

be the K -subspace of Mi +2 V spanned by all those basis elements [*,-,,..., xik+1\
of Bk+2 for which there are exactly ar; of the subscripts ilt..., ik+2 equal to j
(j = 1 , . . . , d). Thus Mk+2V is the direct sum of the subspaces Na.

The elements b<8)a (b e B2,a e A) form a basis for M2V <g> (Z n SkV). It
is sufficient to show that the elements r\(b ® a) are linearly independent. Thus
it is sufficient to show that, for each b ® a, r)(b ® a) is & non-zero element of
Na for some a = a(b <g> a) depending on b (8) a, and that a(b (8) a) ^ a(b' <g> a')
for distinct basis elements b <g> a and b' (8) a'.

Let b = [x(l, xh] and a = xf1 . . . x ^ . Write a = ( a i , . . . , ad) where a,, =
# , + 1, a,2 = )3,2 -I- 1 and a7 = )8y (_/ ^ i{, i2). Let 5 be the least integer for
which ft ^ 0. Thus

r}(b ®a) = [[x,,, x,2]; x f . . . x ^ ] = [x,, ,xh,xs,... ,xs,... ,xd,..., xd].

If i2 < s then rj(b <S> a) is an element of 5 i + 2 and so r]{b ® a) 7̂  0. Clearly
r)(b <g> a) G No in this case. If i2 > 5 then, by the Jacobi identity and (2), we can
write r){b®a) in the form

L^2' s» • • • 1 X j , . . . , X/ j , . . . J -p j^Xj!, X^, . . . , Xs, . . . , X,2, . . . J ,

the difference of two distinct elements of Bk+2. Thus r](b <g> a) ^ 0 and
r)(b ® a) e Na in this case also.

It remains to prove that if b <g> a and b' <8> a' are basis elements such that
a(b<S>a) = a(b'<S>a') then b <3)a = b' <S>a'. In other words we have to show that
a(b (g> a) determines b <g) a uniquely. Suppose that b = [x,,, x,2], a = xf' . . . xd

d
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and a(b <g> a) — (au ..., ad), as before. Then a,-, = fa + 1, ah = fa + 1 and
otj = fy (j ^ iu i2). Since each j8, is divisible by p, (a{,..., ad) determines /]
and i2. Thus (<*!,..., ad) determines (fl\,..., fid). Hence a and b are uniquely
determined by a(b ® a).

We can now deal with the characteristic 0 case of Theorem A. This is obtained
from the prime characteristic case by the standard process of modular reduction.

PROPOSITION 3.4. Let V be a finite dimensional vector space of dimension
at least 2 over a field K of characteristic 0 and let G be a finite subgroup of
GL(V> For all n > 1 there exists t > n such that MnV © • • • © M,V has a
regular KG-submodule.

PROOF. By Proposition 2.11 and [15, VII.7.23] we may assume that K is
an algebraically closed extension field of the rational field Q. By [10, (1.11)]
there exists a subfield & of K such that & is finite dimensional over Q and
& is a splitting field for G. Hence there is a basis of V such that the matrices
representing G with respect to this basis have their entries in &. Since KG =
K <8>̂r &G it is enough to prove the result with K replaced by &.

Let p b e a prime such that p\\G\ and let J)o be a prime ideal in the ring of
algebraic integers of & such that p € Jj0. Let ^ be the subring of & consisting
of all elements a /b where a and b are integers of & such that b g p0. As shown
in [10, pp. 24-25], Qi has a unique maximal ideal and the factor ring by this ideal
is a finite field $> of characteristic p. Let us say that ^G-modules / and / are
&G-equivalent if the ^"G-modules & <g)g» / and & ®cg J are isomorphic. For
any ^G-module / , let / denote the corresponding ^G-module: I — Ql ®® I.
By [10, (4.4)] the mapping / i-> / yields a bijective mapping from the set of
&G -equivalence classes of finitely generated ^G-modules which are free as
^-modules to the set of isomorphism classes of finitely generated QG -modules.
It follows (by considering the same correspondence for a proper factor group
of G) that if / is faithful as a G-module then so is / . Clearly ~9G = ~
Thus if / has a regular submodule we can write / = &G © J = 3>G © J for
some ^G-module / which is free as ^-module, and so / is &G-equivalent to

By [ 10, (4.1)] there is an ^"-basis Y of V such that the matrices representing G
with respect to Y have their entries in $). Let Vo be the (free) ^-module spanned
by Y. Thus MV = & ®Q MVO- By the remarks above Vo is faithful as a G-
module. Thus we may regard G as a subgroup of GL(Vb). By Proposition 2.11,
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MV0 = MVo and, by Proposition 3.3, there exists t > n such that
Mn Vo © • • • © M, Vo has a regular ^G-submodule. Let / = Mn Vo © • • • © M, Vo

and regard / as a ^G-module. Then / = MnVo ® • • • (& M.,V0, so I has a
regular ^G-submodule. By the remarks above it follows that & 0 ^ / has
a regular ^G-submodule. In other words, MnV © • • • © M,V has a regular
^"G-submodule, as required.

PROOF OF THEOREM B. Let p be a prime number and let G be a linear group
of finite dimension d > 2 over Fp. Let F be a free group of rank d and let
£ = F/F", a free metabelian group of rank d. Then G can be identified as a
linear group with a subgroup of G =GL(V/), where V = E/k2E. Note that G is
a finite group. By Theorem A there exists t > 2 such that M2 V © • • • © M, V has
a regular FpG-submodule. By Proposition 2.10, k,E/kt+\E has a submodule
isomorphic to M2V © • • • © M, V and so has a regular FpG-submodule. Let
P* — E/kl+lE: thus P* is a finite metabelian p-group. Take w to be an
element of k,E/k,+iE which generates a regular FpG-submodule and let WG

be the FPG-submodule generated by vo. Then WG is a central subgroup of P*
since k, E/kl+lE is central in P*. Take F = P*/WG. Then the method of proof
of [8, Theorem 1] shows that P has the required properties.

4. Characters and higher relation modules

Let K be a field of characteristic 0 and let V be a vector space over K of finite
dimension d. We shall consider the characters xsnv and XM,V of GL(V). Let y
be an indeterminate over K and let A"[[y]] be the ring of formal power series in
v with coefficients from K. For g eGL(V) we define Hg = J2n>o Xsnv(g)y"
and Mg = 5Zn>1 XMnv(g)y"- (In other words, Hg and M? are the 'generating
functions' of Xsnv<g) and XM,V(«)-) We write x(g) instead of Xv(g)- Theorems C
and D will be derived using the following result, at least part of which is well
known (see, for example, the closely related formulae in [17, Ch. I, Section 2]).

PROPOSITION 4.1. (i) For all g e GL(V),

k>\ n>\
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where

(ii) For all g eGL(V),

In the statement of Proposition 4.1, fi denotes the Mobius function and we
have used the notation (1 + u)a — XL>o 0 " ' f°r u e y^ t l j ] ] , a & K, where
(1) =a(a-l)...(a-i + 1)//!, andexp'(u) = E,->o«'7»! for" e yK[[y]].

PROOF. Choose a basis X = {xu ... ,xd}ofV. Thus we regard each element
of GL(V) as a d x d matrix g = (g,7). Choose bases for each Sn V and Mn V.
Then it is easily seen that the entries of the matrices representing j on SnV
and MnV are homogeneous polynomials over K of total degree n in the gy.
In other words, SnV and MnV afford polynomial representations of GL(V) of
degree n (see [12, §2.2]). Thus, by [12, (3.4e)], there are polynomials an and
rn in d indeterminates with integer coefficients such that, for all g eGL(K),
Xs,v(g) = o - n ( « i . • • •. £d) a n d XMnv(g) = r n ( e u ••-, e d ) , w h e r e s u ..., ed a r e
the eigenvalues of g (in some extension field of K).

Equations (i) and (ii) can be interpreted as giving Xsnv(g) and XMnv(g) as
polynomials over K in ex,..., ed (because x(g') = ej + • • • + e'd). These
polynomials will coincide with on and tn if they do so for all e\,..., sd € A"\{0},
since K is infinite. Thus it is sufficient to verify (i) and (ii) in the case where g
is a diagonal matrix,

Note that SnV has the basis {xilxh .. .*,-„ : ix < j 2 < . . . < /„}. Thus
Xsnv(g) = hn(eu ..., sd) where hn is the nth complete symmetric function (see
[17, p. 14]). Thus

d

' •••' e^y" = I T ^ - e'>>~1 •
n>0

By [17, Ch. I, (2.10)] we have

(6) H'g/Hg
n>\
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where pn is the nth power sum and H' is the formal derivative of Hg with respect
to v. For k > 1 define

1 1 *

Mobius inversion gives, for n > 1,

Thus

«>1 k | n i | k

(V) = Y2n(i)x{gk/')yk~l (1 - / )
'i ft

(i) follows by formal integration of (6) and (7).
By [2, 15.3.2], for n > 2, Mn V has the basis

Thus

Clearly, XM,v(g)

and (ii) follows.

= hl(£u.

= hl(su .

= x(g)y H

..,Ed)

• • , Ed)-

-E0

nn-\ (•

Thus

f(g)Xs

ei , .

we

, - , v

..,£d)

obtain

w-

-A,

-Xs,

, ( e i , . . . .

,v(g)/).

A simpler version of the last proof gives the following well known formula
for the dimension of MB V (see [9, Corollary 1] for example).
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PROPOSITION 4.2. For n > 2,

dimM,,V = (n —

PROOF. By the previous proof, the number of basis elements of Mn V is equal
to (dim Si V)(dimSn_i V) — dimS,,^ The result follows using the fact that
dimSnV = {d+"n~

l).

We now turn to the proof of Theorems C and D. Let F be a free group
of finite rank e, where e > 2. Let R be a normal subgroup of F such that
G = F/R is finite and \G\ ^ 1. Let V be the QG-module Q <g> (R/Rr) and
write m = \ + (e — 1)|G|. Note that, by Schreier's formula, m is the rank of
R. By [3, Theorem 1] (or by [11]), R/R' is faithful as G-module. Thus we
can identify G with a subgroup of GL( V). As before we write x(g) instead of
Xv(g)-

PROOF OF THEOREM C. (i) It follows from the work of Gaschutz [11] that

(8) X(g) = { ^ i fgeG\{ l} .

In other words, V is the direct sum of a one-dimensional trivial module and a
free QG-module of rank e — 1. Let g e G and let q = \g\. By (6),

«',/»»= E x (gi y - l = E myn~x + E yn~x

q\n q\n

k>\ k>\

(m - I)y1-1 (I - y«)-1 + (I - y)~l

Since Hg has 1 as its constant term, integration gives

(9) Hg = (l-/r ("-1) /«(l-y)

Thus
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Hence

But

for all j,s > 0, as is easily proved by induction on s. Thus

f((m - \)/q) + [n/q]\
Xs»v(g) = I r . , J.

V [n/q] )

(ii) Suppose n > 2. If g = 1 then XMnv(g) = (n - l ) ( m + r 2 ) by Proposi-
tion 4.2. Thus we may assume that q — \g\ ^ 1. By Proposition 4.1 (ii)with(8)
and (9) we have

This gives the remaining statements of (ii).
(iii) Suppose n > 2. We may work over the complex field C because, by

[15, VII.1.21], the multiplicities in MnV of the one-dimensional trivial QG-
module and the regular QG-module are respectively equal to the multiplicities
in C ® M« V of the one-dimensional trivial CG-module and the regular CG-
module. Let <\> be a complex irreducible character of G. The multiplicity of the
corresponding irreducible module in C <g> MB V is

dn(4>) = -rrr,

where the bar denotes complex conjugation. Thus, by (ii),

(10)

In particular, if dn denotes the multiplicity of the one-dimensional trivial module,
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where v (q) denotes the number of elements of G of order q. For an arbitrary <f>,
we have |</>(g)| < </>(l) for all g e G (see [10, (6.7)]) and so, from (10),

(12) (n

V n/qE
?l(n,|G|)

Thus, from (11) and (12), dn(<f>) > <t>(l)dn for all <p. But the multiplicity of
the irreducible module corresponding to (/> in the free CG-module of rank dn is
exactly c/)(l)dn. Thus C ®MnV has a free CG-submodule of rank dn. It has no
larger free submodule because it contains the one-dimensional trivial module
with multiplicity dn.

(iv) Suppose that n > 2 and (n, \G\) = 1. Again we may work over
C. By (10) and (11), dn((j)) = (/>(l)dn for every irreducible character <p. Thus
C <g> Mn V is a free CG-module of rank dn. Also, by (11),

m + n — 1

in this case.

PROOF OF THEOREM D. Let d\ = e and for « > 2 let dn be defined as in
Theorem C (iii). Since F is finitely generated and F/R is finite, R is finitely
generated and the groups ynR/yn+iR and finR/fin+iR are finitely generated
abelian groups. Note also that fi2R = R-

(i) We first prove that Z{F/itn+lR) = (finR/fin+lR)G. Clearly we have
(fj.nR/fin+iR)G c Z(F//xn+1/?). For the reverse inclusion let //xn+1/? e
Z{F/ixn+lR). Then, clearly, fR' e Z(F/R'). Since R/R' is a faithful G-
module it follows that / € R, and so fixn+\R e Z(R/(in+lR). Since /? is a
free group of rank greater than 1, R/fin+iR is a free group of rank greater than
1 in the variety of all groups which are both nilpotent of class n and metabelian.
The centre of such a group is equal to the nth term of its lower central series:
see, for example, the remark after 35.22 of [18]. Thus

Z(R/iAn+lR) = yn

It follows that fUn+iR e /xn/?//xn+1/? and so fnn+iR e (nnR/^n+iR)
Therefore Z(F//xn+1R) = (ixnR/ixn+lR)G.
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Let E = R/R". Then iinR/iin+xR = ynE/yn+lE, and ynE/yn+lE has
the structure of a ZG-module defined via conjugation. As noted in the proof of
Proposition 2.10, E/yn+\E is torsion-free. Thus ynE/yn+lE and (ynE/yn+lE)G

are free abelian groups (of finite rank). It remains to calculate the rank of
(YnE/Yn+lE)G.

Let U = E/y2E = R/yiR. Since U is a faithful G-module we can regard G
as a subgroup of GL{U). By Proposition 2.4, y E has the structure of a ZGL(i/)-
module defined via endomorphisms of E, giving a ZG-module structure to
each ynE/yn+iE. It is easily verified that this is identical to the ZG-module
structure of ynE/yn+\E defined via conjugation (because inner automorphisms
of F yield endomorphisms, indeed automorphisms, of E). By Proposition 2.8,
yn E/yn+l E = Mn U. Thus it suffices to find the rank of (M„ U)G. By a standard
argument (see [13, Section 2]), this rank is equal to dim(Q <g>z MnU)G. Let
V = Q®z£/ : thenQ<g>2Mn£/ = MnV, so it suffices to find dim(M«V)G. This
is equal to the multiplicity of the one-dimensional trivial module in M^ V. Hence,
if n > 2, dim(Mn V)G = dn by Theorem C (iii), and, if n = 1, dim(Mn V)G = e
by (8).

(ii) Let W = nnR/ixn+xR. Then

linRI (finR, F)iin+{R = W/[W, G],

where [W, G] denotes the subgroup of W generated by {(g — l)u> : g e G, we
W}. By a standard argument (see [13, Lemma 2.1]), W/[W, G] has the same
torsion-free rank as WG. Thus the result follows from (i).
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