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SUBSEMIGROUPS OF FREE PRODUCTS OF SEMIGROUPS

by JAMES RENSHAW
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Given amalgams of semigroups [I/; TJ and [f;Sf] with U^T,£Sb it was proved by Howie in [6] that Y\vTi
need not be embedded in nS^,- We u s e t n e homological techniques developed by Renshaw in [7, 9] and
study three new conditions each of which imply the embeddability of the above free products.

1980 Mathematics subject classification (1985 Revision): 20M10.

Howie [6] showed that, unlike the case for groups, if [C/; SJ is an amalgam and if 7]
are subsemigroups of S, such that [[/; 7]] is an amalgam, then f\u Th the free product of
the amalgam [t/; 7]], need not be embeddable in n*^» t n e free product of the amalgam
[[/; S(]. He proved, among other things, that if U and 7] are unitary in S,, then the free
products are embeddable. We extended these results in Renshaw [8] to show that the
same conclusion holds if the inclusion maps t/-»Tf and 7]->S, are pure. We provide here
three more conditions for the free products to be embeddable, one related to Hall and
Howie's perfect subsemigroups, one connected with flatness of [/-sets and one concern-
ing right generalised inverse semigroups.

1. The "homological" machinery

For definitions of l/-sets, l/-maps etc. see for example Renshaw [7]. The category of
left (/-sets will be denoted by (/-ENS. For convenience, we shall mainly work from now
on with monoids. It is an easy matter in any case to extend these results to semigroups
(see for example Renshaw [8, 9]).

Suppose that [l/;S,:ie/] is an amalgam of monoids and that there exists a family of
monoids {7J:ie/} with the property that 1/sTJsS,- for all i in /. We shall call the
amalgam [I/; 7J] an amalgam of submonoids of the amalgam [l/;SJ. Our main problem
is to determine some conditions under which Y[* Th the free product of the amalgam
[[/; 7J], is embeddable in n*^» t n e ^ree product of the amalgam [C/;Sf]. It was shown
in Renshaw [8] that we need only consider amalgams over a finite index set.

Let X G ENS- U. From now on, all tensor products are over U unless otherwise stated.
We say that X is (right) flat if for all left {/-monomorphisms X:A—*B the induced map
\®k:X®A-*X®B is one to one. We shall say that X is (right) quasi-flat if for all left
(/-monomorphisms k:A-*B with B flat, the map \®k:X®A-*X®B is one to one
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(clearly flat implies quasi-flat). A right [/-monomorphism f:X-*Y is said to be (right)
pure if for all left [/-sets A, the induced map /®l :A r ®/ l -»-y®/l is one to one. A right
[/-monomorphism /:X-> Y is said to be perfect if / is right pure and Y is right flat.
(This is a generalisation of Howie's left perfect subsemigroups in Howie [5]. See also
Hall [2] and Renshaw [9].) Let f.X^Y be a right [/-map and k.A^B a left [/-map
and consider the commutative diagram

X®A > Y®A

Y®\ (1)

X®B > Y®B

We say that the pair (f,k) is stable if im( /® A) = im(ly® A)nim(/® 1B). If f:X^Y is
a right [/-monomorphism and if (/, A) is stable for all left [/-monomorphisms k:A->B
then we say that / is stable. We shall say that a right [/-monomorphism is quasi-stable
if (/, A) is stable for all left [/-monomorphisms X:A-*B with B flat.

A monoid U is said to be left (right) reversible if any two principal right (left) ideals of
U intersect. Let X e [/-ENS and consider the left [/-congruence = on X defined by
x = y if a n d o n l y if e i t h e r x = y o r t h e r e ex i s t s xu...,xneX, uu...,un, vu...,vneU s u c h
that

x = ulx1, v1x1=u2x2, v2x2 = u3x3,..., vnxn = y.

There is clearly a dual definition for right [/-sets. It is easy to demonstrate that if
x®y = x'®y' in X®Y then x = x' in X and y = y' in Y. Let f:X-*Y be a U-
monomorphism and consider the right [/-congruence on Y defined by

p{ = im / x im / u 1y.

We shall denote the quotient Y/pf by Y/X and an element ypf by y. The following
results are easy to establish, see Renshaw [7].

Lemma 1.1. Let f:X-*Y be a right U-monomorphism and let AeU-ENS. Then

(ii) if Y/X is quasi-flat then U is right reversible,

(Hi) if y®a = f(x)®a' in Y®A then y®a = f(x)®a in Y/X® A,

(iv) if X and Y/X are quasi-flat then Y is quasi-flat,

(v) if Y is (quasi-)flat then Y/X is (quasi-)flat if and only if U is right reversible and
f is (quasi-)stable.

The following result will be required later.

https://doi.org/10.1017/S0013091500005137 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005137


SUBSEMIGROUPS OF FREE PRODUCTS OF SEMIGROUPS 339

Lemma 1.2. / / f:X-*Y and g:Y-*Z are right U-monomorphisms and X:A-*B is a left
U-monomorphism then

(i) if g®l:Y®B-*Z®B is one to one then (gf, A) is stable if both {g, X) and (/, A) are
stable,

(ii) if we let g:Y/X-*Z/X be given by g(y)=g(y), then {§,)) is stable whenever (g,X) is
stable,

(iii) if g®l:Y®B-tZ®B is one to one and (gf,A) is stable then (/,A) is stable,
(iv) if (gf, A) and (g, A) are stable then (g, A) is stable.

In particular, g and f are quasi-stable if and only if gf and g are quasi-stable.

Proof, (i) Suppose gf(x) ® b = z ® ?{a) in Z®B. Then since (g, A) is stable, there
exists yi®ax in Y®A such that gf(x)(S)b=g(y1)®X(al). So f(x)®b=yl®X(al) in
Y(g>B and since (/,A) is stable, there exists x2®a2 in X®A such that f(x)®b =
/(x2)®A(a2). Hence, gf(x)®b=gf(x2)®k(a2) and (g/,A) is stable.

(ii) Suppose that g(y)®b = z®A(a) in Z/X®B. Then from Lemma 1.1 (i), we see that
either

(a) g(y)®b = z®k(a) in Z®B, from which we deduce that there exists yl®al in
y®<4 such that g(y)®b=g(yi)®k(a1) and consequently g(y)®b=g(yl)®X(al)
and so (g, A) is stable; or

(b) g(y)®b=gf(xl)®bu z®k(a)=gf(x2)®b2 with bl=b2. By Lemma l.l(iii) f®
^a)=«/"(x2)®A(a)=K/(x2))®A(a) and so (g,X) is stable.

(iii) If f(x)®b = y®X(a) in Y®B then gO>)® A(a)=g/(x)®b and so ^)®A(a) =
gf(x')®k(a') for some x' in .Y, a' in A, since (#/, A) is stable. Hence
y® A(a)=/(x')®A(a') as required.

(iv) Suppose z®l(a)=g(y)®b in Z®B. Then z®X(d)=g(y)®b in Z/X®B and
since (£, A) is stable, we deduce that z® A(a)=^(/)® A(a') for some / in Y, a' in /(. From
Lemma l.l(i) we see that either

(a) z ® X(a) = g(y') ® A(a') as required, or
(b) z®A(a)=g/(x,)®bl, g(y')®X(a')=gf(x2)®b2 with bi=b2. Hence, since [gf,X) is

stable, we see that z®X(a)=gf(x3)®X(a3) and so (g, A) is stable.

The following lemma generalises Lemma 1.1 (i) and (iii) and the proofs are similar.

Lemma 1.3. Let AeE-NS-U, BeU-ENS,X,YeU-ENS-U and f:X-*Y a (U,U)-
monomorphism. Then

(ii) if a®y®b = a'®f(x')®b' in A®Y®B then a®y®b=a'®f(x')®b in
A®(Y/X)®B.
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Lemma 1.4. Let f:A-*B be a right V-monomorphism, g:C-*D be a (U,U)-
monomorphism. Then

(i) if D, D/C are flat (both right and left flat) and A is {quasi-)flat then
A®C->A®D is (quasi-)stable,

(ii) if D is flat and B/A is (quasi-)flat than A®D->B®D is (quasi-)stable,
(iii) if D, D/C are flat and A, B/A are quasi-flat then A®C-*B®D is a quasi-stable

monomorphism and hence (B®D)/(A®C) is quasi-flat.

Proof, (i) and (ii) are generalisations of Renshaw [7, Theorem 4.10] and the proofs
are similar. In (iii), A®C^A®D is one to one since A is quasi-flat and A®D->B®D
is one to one since D is flat. Now A®C-*A®D is quasi-stable by (i) and A®D-*B®D
is quasi-stable by (ii) and so the composite A®C-*B®D is quasi-stable by Lemma 1.2.
Finally, B®D is quasi-flat since B is quasi-flat (Lemma l.l(iv)) and D is flat. Hence by
Lemma l.l(v) we see that (B®D)/(A®C) is quasi-flat.

Consider the following commutative diagram of CZ-monomorphisms

Define y:B/A->D/C by y(B) = y(b). Then y is well-defined and it is straightforward to
show that y is one to one if and only if the above diagram is a pullback.

Lemma 1.5. Suppose that the above diagram is a pullback (so that y and g are one to
one). Then (D/C)/(B/A)~(D/B)/(C/A).

Proof. Consider the following commutative diagram

-» € > BlA

Y

> DIC (A)

CIA > > D/B
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Let a:D/C^(D/Q/(B/A) and fi:D/B->(D/B)/(C/A) be the canonical maps and define
h:(D/Q/(B/A)-*(D/B)/{C/A) by h{ix(3)) = P(3). Then h is well defined, since, if a(3) = a(3')
then either

(i) 3=3' in D/C, in which case either

(a) d=d' giving /?(J) =/?(J'), or
(b) d=g(c), d'=g(c\ for some c,d in C. In this case 3=g{c)=g(c) and d' = g(c').

Hence p(3) = P(d'); or

(ii) J=y(£) = y(£>) and rf' = y(fc')=^(b7) in D/C. Now either
(c) d = y(b) and so 3=y(b) = yf(a)=gd(a) in £>/B (any aeA), or
(d) d=g(c), y(b)=g(c') for some c,c' in C.

Either way, 3=g(c) in D/B for some c in C. Similarly, 3'=g(c') in D/B. Hence

A similar argument shows that h is one to one and it is easy to see that h is onto and
is a [/-map.

Lemma 1.6. With the notation and conditions as in Lemma 1.5, suppose that k:X-*Y
is a left U-monomorphism and that (y, A) is stable and DjC®X-*D/C®Y is one to one.
Then (g, 1) is stable. In particular, if D, D/B and D/C are (quasi)-flat then so is (D/B)/(C/
A) (and hence (D/C)/(B/A) by Lemma 1.5).

Proof. Suppose §(c) ®y = 3® X(x) in D/B®Y. Then from Lemma l.l(i), we deduce
that either

(i) g{c)®y=d®X{x) in D®Y, or
(») g(c)®y=y(bl)®y1, d(g)A(x) = y(b2)<8>y2 with yt=y2.

In case (i), <?<S>A(x)=g(c)<g)k(x) in D/C®Y by Lemma l.l(iii) and so 3®x=g(c)<S)x in
D/C®X. Hence, by Lemma l.l(i) we have either

(a) d®x=g(c)®x in D®X, giving 3®A(x)=g(c)(g)k(x) as required, or
(b) d®x=g{ct)®Xi, g(c)®x=g(c2)®x2 which again means that 3®X(x) =

) as required.

In case (ii), since (y, X) is stable than d®k(x) = y(b3)® A(x3) for some b3 in B and x3 in
X. Hence, in D/B® Y we have, for any a in A, 3® k(x) = y(b3) ® A(x3) = yf(a)® A(x3) =
g<5(a)(g>A(x3)=g(<5(a))®A(x3) as required.

Lemma 1.7. Let f:X-*Y be a right U-monomorphism and k:A-*B a left U-
monomorphism and suppose that all the maps in diagram (1), above, are one to one. Then
diagram (1) is a pullback if and only if (f,k) is stable. In particular, if

(i) / is perfect, or
(ii) X and Y/X are quasi-flat and B is flat,

then diagram (1) is a pullback.
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Proof. That (/, k) is stable if and only if diagram (1) is a pullback follows from the
note before Theorem 4.8 in Renshaw [7]. Also, if X and Y/X are quasi-flat then by
Lemma l.l(iv), Y is quasi-flat and so all the maps in (1) are one to one. Hence by
Lemma l.l(v) diagram (1) is a pullback. I f / is (right) perfect then again all the maps in
(1) are one to one. To show that (/, X) is stable, we generalise (Renshaw [9, Lemma
4.15]). Consider the following pushout diagram (in C/-ENS):

X
A > B

x[
B > P

P
Since tensor products preserve pushouts, then

» X ® B

B > X <g> P

is also a pushout (and hence, since 1 ® X is one to one, also a pullback). It is a pushout
in ENS. Now if y®X(a)=f(x)®b in Y®B then

f{x) ® x(b) = y ® aA(a) = y ® /JA(a) = f(x) ® p(b) in Y® P.

Since / is (right) pure then x®a.(b) = x®fi{b) in X®P and so (since pushouts of
monomorphisms along monmorphisms are also pullbacks in ENS) there exists x'®a' in
X®A with x®b = x'®X(a') in X®B which means y®X(a)=f{x')®X(a') in Y®B as
required.

The following rather technical result, which was proved in Renshaw [8, Lemmas 2.2
and 2.3], forms the backbone of the machinery we need.

Lemma 1.8. Consider the following commutative diagrams

A ! > B E > F

C >D G » H

' k 4 2 k
>P

https://doi.org/10.1017/S0013091500005137 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005137


SUBSEMIGROUPS OF FREE PRODUCTS OF SEMIGROUPS 343

where the top squares are pullbacks and the bottom squares are pushouts and where
ViẐ i = 1-4) V202 = If and fuSufi and gs are all one to one. Suppose we have "connecting"
monomorphisms q>:A->E, $:C-*G, e:B-*F and tl/:D->H such that the completed diagram

A > B

> ;

E > Q

commutes and such that

g. e
C > D B > F

are pullbacks. Then there exists a unique monomorphism h:P->Q such that the bottom
"cube" in (*) commutes and such that

e
B > F

V2
is also a pullback.

Recall that if U is a submonoid of a monoid S and if XeENS-S, YeENS-U and
f:X-*Y is a l/-map then the free S-extension of X and Y consists of a right S-set,
F(S;X,Y), together with a right [/-map g: Y^F(S; X, Y) such that the composite
gof:X->F(S;X, Y) is a right S-map and such that the pair (F{S;X, Y),g) is universal
with respect to this property. It was shown in Renshaw [9, Theorem 4.19] that
F(S; X, Y) is the pushout in the category ENS-S of the diagram

> Y®S
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The idea behind the next two theorems is to take a diagram of the form

A > B > F(T;A,B)

F(S;CJD)

and show that for some monoids C/£T£S, if the first square has a particular property,
P, say, then so does the second square. This will form the basis for an inductive process
in Section 2.

Theorem 1.9. Let U^T^S with U->T and U->S perfect as right U-monomorphisms.
Then T->S is perfect if and only if the following condition holds:

Whenever AeENS-T, B,DeENS-U and CeENS-S and whenever OL^.A^B, <X2:C-+D,
5:A-*C and e:B-*D are perfect U-monomorphisms such that for all left U-sets X the
commutative diagram

a <S>1
A®X ! i U

is a pullback, then the canonical maps Pi.B^FiT^A,B) and P2'D->F(S;C,D) are perfect
U-monomorphisms and there exists a unique perfect U-monomorphism
il/:F(T;A,B)-*F(S;C,D) such that the commutative diagram

B®X ! ±+ F(T;A ,B)®X

>F(S;C,D)®X

is also a pullback for all left U-sets X.

(In other words the property P mentioned above is: "all maps in the square are
perfect and 'tensoring' on the right by any X gives a pullback".)

Proof. For the sake of brevity let P={T;A,B) and Q = F(S;C,D). Suppose that the
inclusion T-*S is perfect. From Renshaw [10, Theorem V.1.3] (the proof is similar to
Theorem 4.20 in Renshaw [9]) we can deduce immediately that the canonical maps
B-*P and D-*Q are perfect monomorphisms. In particular, P and Q are right flat. We
apply Lemma 1.8 to the diagram:
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A®X > B®X

C®X j — » D®X

/\®7;®X > B®T®X

C®S®X ^ D®S®X

> P®X I
\ ,

This is reasonably straightforward. The only part that requires special mention is that
the commutative diagrams

(a) A®X > B®X (b) C®X > D®X

A®T®X > B®T®X C®5®X

(c)/4®r®X »£®r®X (d) fi®X > D®X

C®5®X >D®5®X S®T®X » D®5®X

are all pullbacks. In fact diagrams (a) and (b) are pullbacks by Lemma 1.7; we can
"redraw" diagram (c)

1 i
C®T®X » D®T®X

I 1
C®S®X > D®5®X;

the top square is a pullback, by assumption and the bottom square is a pullback by
Lemma 1.7; diagram (d) can be "redrawn"

B®X ) D®X

B®T®X

https://doi.org/10.1017/S0013091500005137 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005137


346 J. RENSHAW

the square is a pullback by Lemma 1.7 and the map D® T®X-*D<g>S<3)X is one to
one since T->S is right pure and D is right flat. Hence, by Lemma 1.8, we deduce that
P®X->Q®X is one to one and so P->Q is perfect and the commutative diagram

B®X > P®X

D®X » Q®X

is a pullback.
Conversely, let A = T, B= TvU, C = T®S and D=T®SwU in the statement of the

theorem. Then it is a straightforward matter to check that the given conditions hold.
Now it is easy to establish that F{T;A, B) = T u T a n d F(S; C, D) = T® SuS and so we
can deduce that T<CJT-*T®SWS is perfect and so in particular the inclusion T->S is
perfect.

The next result is of a similar nature.

Theorem 1.10. Let U^TzS and suppose that S, T, S/U, T/U and S/T are all flat.
Whenever AeENS-T, B,DeENS-U and CeENS-S and whenever u.x:A-*B, tx2:C^>D,
b:A-*C and e:B->D are U-monomorphisms such that A, B/A, C, D/C, C/A and D/B are
all quasi-flat and for all flat left U-sets X, the commutative diagram

A®X > B®X

(3)

is a pullback, then there exists a unique U-monomorphism il/:F(T; A, B)-*F(S; C, D) such
that B,F(T;A,B)/B, D,F(S;C,D)/D and F(S;C,D)/F(T;A,B) are all quasi-flat and the
commutative diagram

F(T;A,B)®X

(4)

D®X > F(S;CJ))®X

is also a pullback for all flat left U-sets X.

Proof. Again we let P = F(T;A,B) and Q = F(S;C,D). It follows immediately from
Renshaw [7, Theorem 4.15] that the canonical maps B-*P and D-*Q are one to one
and that B, P/B, D, Q/D (and hence by Lemma l.l(iv) P and Q) are all quasi-flat. If we
apply Lemma 1.8 to diagram (2) as before we can deduce that there is a unique
monomorphism P-*Q such that (4) is a pullback. Finally, we need to show that Q/P is
quasi-flat. To this end, notice that (D/B) is quasi-flat (by assumption) and so from
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Lemma l.l(iv) Q/P will be quasi-flat if we can show that (Q/P)/(D/B) is quasi-flat. Now
from Lemma 1.5 {Q/P)/(D/B)~{Q/D)/(P/B). Also, from Renshaw [7, Lemma 3.10] (see
also Renshaw [7, the proof of Theorem 4.15]), Q/D^D<g>S/L and P/B~B® T/K where
L and K are, respectively, the pushouts of the following diagrams

a
D -> B

(5)

C®S A®T K
2 1

With Lemma 1.6 in mind, consider the commutative diagram

K 2 > L

l

-» D®SB®T

It is straightforward to show that >>!, y2
 a n ^ <P are defined by

fc =
a2(c)®s; / =

We need to show that this diagram is a pullback, that all the maps in the diagram are
one to one and that D®S, (D®S)/L and (D® S)/(B® T) are all quasi-flat. That y, and
y2 are one to one follows from Renshaw [7, Lemma 3.9] and the fact that (al,U^T)
and (<x2, U-*S) are stable and e® i is one to one since it is the composite of the one to
one maps B® T-*D®T and D<S>T-*D<g>S. To show that q> is one to one, suppose that
cp(k) = (p(k'). There are essentially three cases to consider

and

In cases (a) and (b), we can easily deduce that k = k' when we note that T2, 92) £ and
<5®1 are all one to one. In case (c) we have 92e(b) = T2(<5(a')®t') and so, since the
diagrams in (5) are also pullback diagrams, there exists c in C with e(b) = a2(c) in D and
5(a')®t' = c®\ in C®S (and so in C®T). Since (3) is a pullback when X = l/, we see

(a) k = l
(b) fc = i

(c) k = l

?j(fe) and k' = 9l(
• i(a®0 and k' =
}i(b) a n d /C' = T , (
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that b = al(a1) and c = <5(at) for some ax in A. Hence a'®t' = ai®l in A®T and so
k = 9l(b) = 9lix1(al) = xl(al® l) = Xi(a'®t') = k' as required. Now D®S is quasi-flat since
D is quasi-flat and S is flat, (D®S)/L is quasi-flat since it is isomorphic to Q/D and
from Lemma 1.4(iii) we see that (D®S)/(B(8)T) is quasi-flat since S and S/T are flat and
B and D/B are quasi-flat. Finally, we show that the above diagram is a pullback.
Suppose then that y2{l) = e{b)®t in D®S. Then either

(a) d®l=e(b)®t if l = 92(d), or
(b) a2(c) ® s = e(b) ® t if / = T2(C®S).

In case (a), d ® 1 = a(fc) ® £ in D®T since Z) is quasi-flat and so since e is quasi-stable
(and so (E, U->T) is stable) then s(6)® £ = e(fc')® 1 in D®T for some b' in B. Hence
b®t = b'®l=y1{91(b')) and / = 52(d) = 32(£(b')) = <P(51(fc')) as required.

In case (b), since a2 is quasi-stable, then e(b)®t = oc2(c1)®t1 in D®S (and so in
D®T). Notice also that c®s = cl®tl in C®S. Now, putting X = T in diagram (3) we
deduce that fe®t = a1(a2)®(2 = y1(T1(a2®t2)) and c : ® t t =<5(a2)®t2 for some a2 in A,
t2 in T. Consequently (p(,t1(a2®t2)) = i:2(6{a2)®t2) = X2licl®tl) = X2{c®s) = l.

Hence, by Lemma 1.6, (D®S/L)/(B®T/K)^{Q/D)/(P/B)~(Q/P)/(D/B) is quasi-flat
and the theorem is proved.

2. Subsemigroups of free products

Let [U;SUS2~] be an amalgam of monoids. Define W1 = S1, W2 = S1®S2 and
f}:Wy^W2 by / 1(s1)=s1®l. Now define, inductively, WH = F(St; Wn_2, Wn_J
(i = n(mod2)) and let /„_i'-Wn_l-*Wn be the canonical map. It was shown in Renshaw
[9] that there exist maps <pn'-Wn-*S1*uS2 forn = l,2,. . . such that q>nofn_l = (pn_l (n^2)
and such that the system {S1*US2, <pn) is the direct limit in the category of [/-sets of
(Wn,fn). It is clear that if [£/; Ty, T2] is an amalgam of submonoids then a similar
construction, say (Zn,gn), can be made. So we can construct a commutative diagram
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where zx:Z^^W^ is the inclusion, s2:Z2-+W2 is given by £2(ti®t2) = ti®t2> a nd in
general en:Zn->Wn is the unique 7]-map (isn(mod2)) which makes the diagram

n-2

commute.
If we denote the canonical map T1*uT2-*Si*DS2 by i//, it is easy to show (see

Renshaw [8]) that if each e, is one to one then so is ip. Our aim therefore is to show
that under certain conditions imposed on U, S, and 7], each £, is a (7-monomorphism.

Theorem 2.1. Let [C/; 7\, T2] be an amalgam of submonoids of an amalgam \U,SUS2~]
such that the inclusions U—•7) and 7J-+S,- are perfect right U-monomorphisms, j = l , 2.
Then the canonical map Tl*uT2-*Sl*vS2 is also a perfect U-monomorphism.

Proof. Consider the commutative diagram

1 8,

W

2 « ,

w W

We see that we need only establish the conditions of Theorem 1.9 for the first square
and it will then follow by induction that each e, is perfect. It is easy to establish that / t

and gi are perfect monomorphisms. For example, since S{ is flat then fl is one to one;
since Sr and S2 are both flat then W2 = S1®S2 is flat and since the inclusion U-*S2 is
right pure and Sx is right flat then fl is right pure. Now et is perfect by assumption. It
is easy to check that the tensor product of two perfect monomorphisms is another
perfect monomorphism and so e2 is perfect. Finally, if X e [/-ENS, then the commutative
diagram
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is a pullback, since it can be "redrawn" as

T ®X > T®T®X
1 1 , 2

The square is a pullback, by Lemma 1.7 and since T2->S2 is right pure and Sx is right
flat then the map Sl(g)T2<g)X->Sl<g)S2<g)X is one to one. So the conditions of
Theorem 1.9 hold and therefore each et is a perfect (7-monomorphism. It now follows
that the map Tl*uT2-*Sl*uS2 is pure and since it is known that Sj*[,S2 is also flat
(Renshaw [10, V.1.4] and Bulman-Fleming and McDowell [1, Theorem 4]) the result
then follows. (Note that direct limits of flat [/-sets are flat.)

Using the well-known fact that amalgamated free products are associative, it is then
an easy matter to extend this result to amalgams with a finite index set and then to an
arbitrary index set using Renshaw [8, Theorem 1.2].

The next theorem can be proved in a similar way using Theorem 1.10 in place of
Theorem 1.9. The details have been omitted.

Theorem 2.2. Let [[/; 7\, T2] be an amalgam of submonoids of an amalgam [_U;St,S2~\
such that Th TJU, Sh SJU and S;/7] are all flat for i=l ,2. Then the canonical map
T1*UT2-*S1*US2 is a U-monomorphism.

Say that a monoid U is a perfect amalgamation base if

(1) U is an amalgamation base, and

(2) whenever [I/; 7]] is an amalgam of submonoids of [t/; S,] then n j ^ ^ n j j S , is one
to one.

It is now clear that if U is absolutely flat (in other words, every [/-set is flat) then U
is a perfect amalgamation base. Since it is known that inverse semigroups are absolutely
flat we can deduce:

Corollary 2.3. Inverse semigroups are perfect amalgamation bases.

It is easy to show that U is absolutely flat if and only if U is absolutely perfect (i.e.
the inclusion U-*S is perfect as a right and left U-map, for every containing monoid, S)
(see also, for example, Renshaw [9 or 10]). Hence absolutely perfect monoids are perfect
amalgamation bases. The converse of this result was established in Renshaw [8]. Note,
however, that we need the inclusions to be perfect both as left [/-maps and right U-
maps. For example the two element right zero semigroup, U, is such that U-*S is
always perfect as a left U-map but not always as a right U-map (see Hall [2]). Since
perfect amalgamation bases need have both these properties, we deduce that the two
element right zero semigroup is not a perfect amalgamation base. Other examples of
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amalgamation bases that are not perfect amalgamation bases can be found among the
cyclic semigroups. Hall [2] has shown that every finite cyclic semigroup is an
amalgamation base and that the only cyclic semigroups that are absolutely perfect are
the groups. Hence the only cyclic, perfect amalgamation bases are the cyclic groups.

Since inverse semigroups are perfect amalgamation bases, it is natural to ask: if
[I/; 7]] is an amalgam of subsemigroups of the amalgam [U; SJ and if U, 7] and S; are
all inverse, is it true that S'*vTi the free inverse product of the amalgam [C/; 7]], is
embeddable in ^"*[/SI the free inverse product of the amalgam [(/; SJ? The answer is in
the affirmative. To see this we note that in any class of semigroups with amalgamated
free products, it is straightforward to check the following,

(i) (A*aB)*sC^A*v{B*sQ,

(ii) U*VD^D,

whenever U, S, A, B, C and D are semigroups such that U^A,B,D and S^B,C. Now
suppose that # is a class of semigroups with amalgamated free products (e.g. inverse
semigroups) and suppose that [U;Tit T2] is an amalgam of subsemigroups of [I/; S1; S2]
where all the semigroups belong to c€. Then using the above isomorphisms we can
deduce that S1*uS2^((Tl*uT2)*T2S2)*TlS1 and so if, in <&, U, 7\ and T2 are all
amalgamation bases (e.g. if they are all inverse) it follows that TX*VT2 can be embedded
in S^ySi.

3. Right generalised inverse semigroups

Lemma 3.1 (Bulman-Fleming and McDowell [1, Lemma 1.2]). x®y = x'®y' in
X®Y if and only if there exists xx,...,xn in X, y 2 , . . . , y n in Y, uu..., un and vu...,vn in
U such that

x = x1u1

xlvl=x2u2

"ny«=y

A set of equations such as those above is called a U-scheme over X and Y joining
(x,y) to {x',y').

In what follows we will denote by lU the monoid obtained from the semigroup U by
adjoining an identity, 1, regardless of whether U already has an identity. See Renshaw
[9] for results concerning amalgams of this type of monoid. A semigroup, S, is called
right generalised inverse if it is regular and efg=feg for all idempotents e, f and g. Hall
[3, Theorem 4] proved that if U is a regular subsemigroup of a semigroup S such that
efs=fes for all idempotents e,feS and for all seS, then ' [ / - • ' S is perfect as a left
1 t/-map. In particular, this will be true if U is an inverse semigroup or if both U and S
are right generalised inverse semigroups. We extend this result as follows:
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Theorem 3.2. Let U be a regular subsemigroup of a semigroup T and T a
subsemigroup of a semigroup S and suppose that efs=fes for all seS, and all e,feE(T).
Then the inclusion 1T-*lS is a left pure lU-monomorphism.

Proof. Let ZeENS-lU and suppose that z®t-z'®t' in Z®i,/S. Then we can
construct a ^-scheme of the form

Z = ZiUi Ult = V1S2,

Z1V1=Z2U2

where zteZ, uhvie
1U, Si€lS and t,t'elT. We can assume, without loss of generality,

that each uh vt e U (otherwise a smaller * (/-scheme could be formed). We therefore need
to consider three cases:

Case I, t,t'eT and each s, 6 S.
Let us define

xo=l,xl =Vi \ Xi = uf

where uf"' and vf1 are fixed inverses (in U) of u, and v{. So in other words,

y, = u~}t+!vn_,+iu"i,-+2... tv.1!un_!un"J.

Define

X o 1 = l , Xi1=vi, xrl = vlu2
i ...urlvh

We shall

Lemma.

(i) Ult

(ii) M,X,

(iii) u.x

prove:

= vlx1ult,

^ i g n (where sn+1 =£'),
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(iv) vnt' = unylvnt',

(v) viyn.ivnt' = viyn^iy;}i+lsi, l ^ i ^ n - 1 (where sY = t),

(vi) viyn.ivnr = uiyn.i+lvnt:, l^i^n-l,

(vii) vnxnult = unxn-1x;lt',

(viii) vixix~1t' = ui

(ix)

Proof of lemma.
(i) Uit = VlS2=V1ViiViS2 = VlVi 1Ult = V1XlU1t.

(ii) We use induction. When i = 2, we have

lU2S2 =

Now assume the result is true for i = k, say and consider

1x^1sk+i, by induction,

= uk+ lxkxk uk+luk+lsk+l=uk+lxkxk uk + lvk + lSk+ 2

* + Is* + 2-

The result follows by induction,

(iii) uixi.iUit = uixi.ixr

(iv) vnt' = unsn = unu~ ̂ ^ = unu;lvnt' = unyxvnt'.

(v) When i = n—1, we have
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Assume the result is true for i = k and consider

t>*-!?,,-*+ll>Bt' = l>*-lU*~1l>*J'B-*«>B''>

= ffc-i«*~1 vkyn-ky«-k +ih, by induction

= « * - l . V n - * + l3'n~-

'

The result follows by induction.

(vi) vtyn _ ,unt' = vtyH _ .y^i,- + Is , = v,yn _ ,

(vii) vnxnu1t = unxn_1x;1t' by (ii) and (Hi),

(viii) First, notice that x~1=xr1yn-ivn, 1^/gn—1.

fJ^r lvtyn_ ,vnt'

(ix) ^XiX.T't^DiDf'xrVn-iV', since

If we now return to the proof of the theorem and put aI = x,Uit, bi = xlx~1tr and
c,=3'n_I + 1unt', then it is easy to check that the following is a ^-scheme over Z and lT
joining (z, i) and {z',t') and so z®t = z'®t' in Z ® ^ 1 ! as required.

z = z1u1

z1vl=z2u2
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v2b2 = u2b1

z2u2=zlv1 v1b1=v1c2

zlv1=z2u2

Zn-lVn-i=ZnUn

Case II Some of the s,= 1.
Suppose that i is the smallest index with s,= l and that j is the largest index with

Sj=l. Put x = y,_1xI_1xi1
1

1 and y = uJyn^J+1y~lj+i and notice that x,yeU. Then it is
straightforward to check that the following is a ^-scheme over Z and lT:

z = z1u1 u1t = t)1a1

and so we have z®t = zi_1x® 1 in Z®lT. In a similar way it is again easy to check the
following is a i[/-scheme over Z and iT:
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and so z'®t' = ZjV®l in Z®lT. But z<g>t=z'®t' in Z®lS and so z.-^x® l=Zj-y® 1
in Z ® ^ . By Hall [3, Theorem 2] we deduce that z,.1x = zJy and so, in Z®lT we
have z®t = zf_1x® l=z7j;® l=z'(g)t' in Z®lT, as required.

Case / / / t - 1 or t ' = l .
Suppose, without loss of generality that t'=\. If t= 1, then by Hall [3, Theorem 2] it

follows that z = z' and so z® l = z ' ® l in Z®lT. If t # l , and s, = 1 for some i, then by
the above argument, there exists z"eZ with z®f = z"®l in Z®1!". Hence z'®l =
z"®l in Z®1S and so by Hall [3, Theorem 2] again, z' = z" giving z®t = z'®l in
Z®1T as required. Suppose then that f # l and that each s,#l. In this case we see that
the original scheme can be rewritten as:

Z = Z 1 M 1 U1t = V1S2,

= V2S3,

and so using the procedure in Case I, we can deduce that z®t = z'®v~lvn in Z®lT.
But z/®wB"1i;n = z'wn"

1i;I1® 1 =znuni;n~1t)n®l=znun®l=z'® 1 in Z®lT. The proof of
Theorem 3.2 is complete.

Using Hall [3, Theorem 4] and the dual of Theorem 2.1, we can now deduce
immediately:

Theorem 3.3. Let V be a regular semigroup and let [V; 7]] be an amalgam of
subsemigroups of an amalgam [C/;SJ such that e^s,-=/je.s, for all i and for all s^Sj and
all idempotents e,,/,e7j. Then n£7^-»n5S, is one to one. In particular, the conclusion
holds if U is inverse or if U, Tt and S, are all right generalised inverse.
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