NOTE ON GENERALIZED WITT ALGEBRAS

RIMHAK REE

Introduction. Throughout this note K will denote a field of characteristic p > 0. Let I be the set $\{1, 2, \ldots, m\}$, and \mathfrak{G} a finite additive group of functions on I with values in K. We assume that \mathfrak{G} is total in the sense that, for any $\lambda_1, \ldots, \lambda_m$ in $K, \sum_{i=1}^{m} \lambda_i \sigma(i) = 0$ for all σ in G implies all $\lambda_i = 0$. It is clear that \mathfrak{G} is an elementary p-group. Let p^n be the order of \mathfrak{G} . A generalized Witt algebra \mathfrak{L} is defined as an algebra over K with basis elements $\{e(\sigma, i) \mid \sigma \in \mathfrak{G}, i \in I\}$ and the multiplication table

$$(0.0.1) \qquad e(\sigma, i)e(\tau, j) = \tau(i)e(\sigma + \tau, j) - \sigma(j)e(\sigma + \tau, i).$$

 \mathfrak{X} is a simple Lie algebra except when p = 2, m = 1.

In the first section of this note we shall prove that the outer derivation algebra of a generalized Witt algebra is abelian, assuming that K is infinite. We shall see that actually a result of Jacobson (3) is generalized.

It was shown in (5) that any generalized Witt algebra \mathfrak{L} can be reformulated as follows: Let \mathfrak{A} be a commutative associative algebra over K with a unity element, and D_1, \ldots, D_m be derivations of \mathfrak{A} such that:

(1) $[D_i, D_j] = D_i D_j - D_j D_i = 0$ for all *i* and *j*;

(2) If $f \in \mathfrak{A}$ and $\lambda_1, \ldots, \lambda_k$ in K are such that $D_i f = \lambda_i f$ for all *i* then f = 0 or f is a unit in \mathfrak{A} ;

(3) $\sum_{i=1}^{m} f_i D_i = 0$, where $f_i \in \mathfrak{A}$, implies $f_i = 0$ for all *i*.

Now any generalized Witt algebra can be regarded as the subalgebra $\mathfrak{L}(\mathfrak{A}; D_1, \ldots, D_m)$ of the derivation algebra of \mathfrak{A} consisting of all derivations of the form $f_1D_1 + \ldots + f_mD_m$. In the second section of this note we shall consider $\mathfrak{L}(\mathfrak{A}; D_1, \ldots, D_m)$ under the conditions (1) and (2) above only, and extend some results proved in (5).

1. The derivation algebra of a generalized Witt algebra. We prove the following

THEOREM 1.1. Let \mathfrak{L} be a generalized Witt algebra over an infinite field K of characteristic p > 2. Let $\{e(\sigma, i) | \sigma \in G, i \in I\}$ be a basis of \mathfrak{L} . Then any derivation of \mathfrak{L} is the sum of an inner derivation and a derivation δ_1 given by

(1.1.1)
$$\delta_1(e(\sigma, i)) = \phi(\sigma)e(\sigma, i)$$

where ϕ is a linear map of \mathfrak{G} into K.

Received May 12, 1958. This research was supported by the United States Air Force through the Air Research and Development Command under Contract No. AF 49(638)-152.

Proof. First of all we show that we may assume (1.1.2): for any $i, 1 \le i \le m$, $\sigma(i) = 0$ implies $\sigma = 0$. Suppose (1.1.2) is not satisfied. Since K is infinite and \mathfrak{G} total, we may proceed as in the proof of Lemma 9.1 of (5, p. 533) to obtain an $m \times m$ non-singular matrix (β_{ij}) such that if we define $\sigma[i]$ by

$$\sigma[i] = \sum_{j=1}^{m} \beta_{ij} \sigma(j), \qquad (i = 1, \ldots, m),$$

then, for any $i, \sigma[i] = 0$ implies $\sigma = 0$. Define a new basis $\{e[\sigma, i] | \sigma \in \mathfrak{G}, i \in I\}$ of \mathfrak{E} by

$$e[\sigma, i] = \sum_{j=1}^{m} \beta_{ij} e(\sigma, i).$$

Then by (0.0.1) we have

$$e[\sigma, i] e[\tau, j] = \sum_{s, t} \beta_{is} \beta_{jt} e(\sigma, s) e(\tau, t)$$

=
$$\sum_{s, t} \beta_{is} \beta_{jt} (\tau(s) e(\sigma + \tau, t) - \sigma(t) e(\sigma + \tau, s))$$

=
$$\tau[s] e[\sigma + \tau, t] - \sigma[t] e[\sigma + \tau, s].$$

Thus $\{e[\sigma, i]\}$ satisfies the same multiplication table as $\{e(\sigma, i)\}$ with $\sigma(i)$ replaced by $\sigma[i]$. But here $\sigma[i] = 0$ implies $\sigma = 0$. Suppose that the given derivation is the sum of an inner derivation and a derivation δ_1 given by $\delta_1(e[\sigma, i]) = \phi(\sigma)e[\sigma, i]$, where ϕ is an additive map of \mathfrak{G} into K. Then clearly we have $\delta_1(e(\sigma, i)) = \phi(\sigma)e(\sigma, i)$ also. This shows that we can assume (1.1.2) from the beginning.

Now let δ be the given derivation, and let

$$\delta(e(\sigma, i)) = \sum_{\tau, j} \gamma(\sigma, i; \tau, j) e(\sigma + \tau, j)$$

with coefficients $\gamma(\sigma, i; \tau, j)$ in K. Then from

$$\delta(e(0, 1))e(\sigma, i) + e(0, 1)\delta(e(\sigma, i)) = \sigma(1)\delta(e(\sigma, i))$$

we obtain

(1.1.3)
$$\gamma(\sigma, i; \tau, j) = \gamma(0, 1; \tau, j)\tau(i)\tau(1)^{-1}$$

for $i \neq j$ and $\tau \neq 0$, and

(1.1.4)
$$\sum_{j} \gamma(0,1;\tau,j)\sigma(j) + \gamma(\sigma,i;\tau,i)\tau(1) = \gamma(0,1;\tau,i)\tau(i).$$

By (1.1.3) and (1.1.4) we see easily that

$$\begin{split} \delta(e(\sigma,i)) &= \sum_{j} \gamma(\sigma,i;0,j) e(\sigma,j) \\ &+ e(\sigma,i) \sum_{\tau \neq 0} \sum_{j} \gamma(0,1;\tau,j) \tau(1)^{-1} e(\tau,j). \end{split}$$

Hence δ is the sum of an inner derivation and a derivation δ_1 of the form (1.1.5) $\delta_1(e(\sigma, i)) = \sum_{i=1}^{n} \gamma_i(\sigma, i, i) e(\sigma, i)$

(1.1.5)
$$\delta_1(e(\sigma, i)) = \sum_j \gamma(\sigma, i, j) e(\sigma, j)$$

with coefficients $\gamma(\sigma, i, j)$ in K.

We shall show that $\gamma(\sigma, i, j) = 0$ if $i \neq j$, that $\gamma(\sigma, 1, 1) = \ldots = \gamma(\sigma, m, m)$, and that $\gamma(\sigma, 1, 1)$ is additive with respect to σ . If m = 1, then the additivity of $\gamma(\sigma, 1, 1)$ follows immediately from

$$\delta_1(\boldsymbol{e}(\sigma,1))\boldsymbol{e}(\tau,1) + \boldsymbol{e}(\sigma,1)\delta_1(\boldsymbol{e}(\tau,1)) = \delta_1(\boldsymbol{e}(\sigma,1)\boldsymbol{e}(\tau,1)).$$

Hence we shall assume that m > 1. Then from

$$\delta_1(e(\sigma, 1))e(\tau, j) + e(\sigma, i)\delta_1(e(\tau, j)) = \delta_1(e(\sigma, i)e(\tau, j))$$

we have, for $i \neq j$,

(1.1.6)
$$\gamma(\sigma, i, j)\sigma(i) - \gamma(\tau, i, j)\tau(i) = \gamma(\sigma + \tau, i, j)(\sigma(i) - \tau(i));$$

(1.1.7)
$$\sum_{k} \gamma(\sigma, i, k)\tau(k) = \gamma(\sigma, i, j)\sigma(j) - \gamma(\tau, j, j)\tau(i)$$

+
$$\gamma(\sigma + \tau, j, j)\tau(i) - \gamma(\sigma + \tau, i, j)\sigma(j)$$
.

Setting $\sigma = 0$ in (1.1.7) and using the fact that G is total, we have

$$(1.1.8) \qquad \qquad \gamma(0, i, k) = 0$$

for all i and k. Set $\tau = -\sigma$, in (1.1.6) and use (1.1.8). Then we have, for any σ and $i \neq j$,

(1.1.9)
$$\gamma(\sigma, i, j) + \gamma(-\sigma, i, j) = 0.$$

Replace τ in (1.1.6) by $-\tau$, and use (1.1.9). Then we have

$$\gamma(\sigma, i, j)\sigma(i) - \gamma(\tau, i, j)\tau(i) = \gamma(\sigma - \tau, i, j)(\sigma(i) + \tau(i)).$$

Combining this with (1.1.6) yields

$$(1.1.10) \quad \gamma(\sigma-\tau, i, j)(\sigma(i)+\tau(i)) = \gamma(\sigma+\tau, i, j)(\sigma(i)-\tau(i)).$$

Since \emptyset is an elementary *p*-group and $p \neq 2$, $\sigma - \tau$ and $\sigma + \tau$ may be regarded as two arbitrary elements in \emptyset . Hence by (1.1.10) it follows that, for $i \neq j$,

(1.1.11)
$$\gamma(\sigma, i, j) = \alpha_{ij}\sigma(i),$$

where α_{ij} are in K and independent of σ . Substituting this in (1.1.7) we obtain

(1.1.12)
$$\gamma(\sigma, i, i)\tau(i) + \sum_{k \neq i} \alpha_{ik}\sigma(i)\tau(k)$$

= $\gamma(\sigma + \tau, j, j)\tau(i) - \gamma(\tau, j, j)\tau(i) - \alpha_{ij}\tau(i)\sigma(j),$

which shows that $(\gamma(\sigma + \tau, j, j) - \gamma(\tau, j, j))\tau(i)$ is additive with respect to τ . Hence

$$(1.1.13) \quad \gamma(\sigma+\tau,j,j) - \gamma(\tau,j,j) = \gamma(\sigma-\tau,j,j) - \gamma(-\tau,j,j)$$

for all σ and τ . Let $\sigma = \tau$ in the above and use (1.1.8). Then

(1.1.14)
$$\gamma(2\tau, j, j) - \gamma(\tau, j, j) = -\gamma(-\tau, j, j).$$

By (1.1.13) and (1.1.4) we have

$$\gamma(\sigma + \tau, j, j) = \gamma(\sigma - \tau, j, j) + \gamma(2\tau, j, j)$$

which shows that $\gamma(\sigma, j, j)$ is additive with regard to σ , since, as before, $\sigma + \tau$ and $\sigma - \tau$ can be regarded as two arbitrary elements in \mathfrak{G} . Now from (1.1.12) we obtain

$$\gamma(\sigma, i, i)\tau(i) + \sum_{k \neq i} \alpha_{ik}\sigma(i)\tau(k) = \gamma(\sigma, j, j)\tau(i) - \alpha_{ij}\tau(i)\sigma(j)$$

for all σ and τ . Using the fact that G is total, we see from the above that $\alpha_{ik} = 0$ for $k \neq i$ and that $\gamma(\sigma, i, i) = \gamma(\sigma, j, j)$ for any i and j. Set $\gamma(\sigma, i, i) = \phi(\sigma)$. Then ϕ is additive, and we have (1.1.1) as desired. Thus Theorem 1.1 is proved.

When is the derivation δ defined by $\delta(e(\sigma, i)) = \phi(\sigma)e(\sigma, i)$, where ϕ is an additive function on G, inner? Let

$$\delta(e(\sigma, i)) = e(\sigma, i) \sum_{\tau, j} \alpha_{\tau, j} e(\tau, j)$$

with $\alpha_{\tau, t} \in K$. Then

$$0 = e(0, i) = \sum_{\tau, j} \alpha_{\tau, j} \tau(i) e(\tau, j).$$

Hence $\tau(i) = 0$, $\tau = 0$, whenever $\alpha_{\tau,j} \neq 0$. From this it follows that δ is inner if, and only if, $\phi(\sigma) = \sum_{j} \alpha_{j} \sigma(j)$ with $\alpha_{j} \in K$. Such additive functions ϕ form clearly an *m*-dimensional vector space over *K*. On the other hand, if \mathfrak{G} is an elementary group of order p^{n} , then all the additive functions on \mathfrak{G} with values in *K* form an *n*-dimensional vector space over *K*. Hence we have

COROLLARY 1.2. Let \mathfrak{L} be a generalized Witt algebra with basis $\{e(\sigma, i) | \sigma \in \mathfrak{G}, i \in I\}$, where \mathfrak{G} is an elementary p-group of order p^n , and $I = \{1, 2, \ldots, m\}$. Let \mathfrak{D} and \mathfrak{F} be the derivation algebra and the algebra of inner derivations of \mathfrak{L} , respectively. Then $\mathfrak{D}/\mathfrak{F}$ is an abelian algebra of dimension n - m, provided that the characteristic of K is greater than 2.

From the above corollary it follows immediately that the number m is uniquely determined by \mathcal{X} . This is, however, proved in (5, p. 546). Also, if m = n, then every derivation of \mathcal{X} is inner. This is a result of Jacobson (3).

2. Generalized orthogonal systems. Let \mathfrak{A} be a finite-dimensional commutative associative algebra over the algebraically closed ground field K. We assume that \mathfrak{A} has a unity element.

An ordered set (D_1, \ldots, D_m) of derivations of \mathfrak{A} will be called a *generalized* orthogonal (g.o.) system if the following conditions (2.1.1.)-(2.1.2) are satisfied:

$$(2.1.1.) \quad [D_i, D_j] = D_i D_j - D_j D_i = 0 \text{ for all } i \text{ and } j;$$

(2.1.2) If $f \in \mathfrak{A}$ and $\lambda_1, \ldots, \lambda_m \in K$ are such that $D_i f = \lambda_i f$ for all *i*, then f = 0 or *f* is a unit of \mathfrak{A} .

A g.o. system (D_1, \ldots, D_m) will be called an *o. system* if it satisfies the following condition:

(2.1.3.) $\sum_{i=1}^{m} f_i D_i = 0$, where $f_i \in \mathfrak{A}$, implies $f_i = 0$ for all i.

LEMMA 2.1. The conditions (2.1.1.)-(2.1.2) imply the following:

(2.1.4) $D_i f = 0$ for all $i = 1, \ldots, m$ implies $f \in K$.

Proof. The set \mathfrak{B} of all $f \in \mathfrak{A}$ such that $D_i f = 0$ for all i is clearly a subalgebra of \mathfrak{A} , and, moreover, if $0 \neq f \in \mathfrak{B}$ then by (2.1.2) f^{-1} exists and belongs to \mathfrak{B} , since $D_i f^{-1} = -f^{-2} D_i f = 0$. Therefore, \mathfrak{B} is a finite extension field of K. Since K is algebraically closed, we have $\mathfrak{B} = K$.

THEOREM 2.2. For any g.o. system (D_1, \ldots, D_m) there exists a non-void subset $S = \{i_1, \ldots, i_r\}$ of indices $1, \ldots, m$ such that (2.2.1)-(2.2.2), below, hold:

(2.2.1) $(D_{i_1}, \ldots, D_{i_r})$ is an o. system;

(2.2.2) There exists $\alpha_{is} \in K$ such that

$$D_i = \sum_{s \in S} \alpha_{is} D_s, \qquad (i = 1, \ldots, m).$$

Proof. Let S be a minimal subset of the indices $1, \ldots, m$ with respect to the property: there exist $a_{is} \in \mathfrak{A}$ such that

(2.2.3)
$$D_i = \sum_{s \in S} a_{is} D_s$$
 $(i = 1, ..., m).$

We may assume without loss of generality that $S = \{1, \ldots, r\}$. Let V be the set of all r-tuples (f_1, \ldots, f_r) of elements $f_s \in \mathfrak{A}$ such that $\sum_s f_s D_s = 0$. Define addition in V componentwise, scalar multiplication by $\alpha(f_1, \ldots, f_r) =$ $(\alpha f_1, \ldots, \alpha f_r), \alpha \in K$. Then V is a finite-dimensional vector space over K. We shall prove (2.1.3) for (D_1, \ldots, D_r) by showing that V = 0. Suppose $V \neq 0$. Since $\sum f_s D_s = 0$ implies $\sum_s (D_i f_s) D_s = 0$, the mapping $(f_1, \ldots, f_r) \rightarrow$ $(D_i f_1, \ldots, D_i f_r)$ is a linear transformation of V. Since $D_i(D_j f) = D_j(D_i f)$ for all $f \in \mathfrak{A}$, *i*, and *j*, and since K is algebraically closed, there exists a non-zero $(f_1, \ldots, f_r) \in V$ and $\lambda_1, \ldots, \lambda_m \in K$ such that

$$(D_i f_1, \ldots, D_i f_r) = \lambda_i (f_1, \ldots, f_r)$$

for i = 1, ..., m. Then $D_i f_s = \lambda_i f_s$ for all i and s. Then from (2.1.2) it follows that f_s is either 0 or a unit in \mathfrak{A} . Since not all f_s are zero, we may assume $f_1 \neq 0$; f_1 is a unit. Then $D_1 = -f_1^{-1}f_2D_2 - \ldots - f_1^{-1}f_rD_r$. Then every D_i can be written as a linear combination of D_2, \ldots, D_r with coefficients in \mathfrak{A} . This contradicts the minimality of S. Thus V = 0, and hence (2.1.3) is proved for (D_1, \ldots, D_r) .

Now, from (2.1.1) and (2.2.3) it follows that $\sum_{s} (D_k a_{is}) D_s = 0$ for all $i, k = 1, \ldots, m$. Therefore by (2.2.1), we have $D_k a_{is} = 0$ and hence, by Lemma 2.1, $a_{is} = \alpha_{is} \in K$ for all i and s. This proves (2.2.2).

In order to show that (D_1, \ldots, D_r) is an *o*. system, it remains to be shown that $D_s f = \lambda_s f$, $\lambda_s \in K$, for $s = 1, \ldots, r$ implies that f = 0 or f is a unit. This, however, follows easily from (2.2.2) and (2.1.2). Thus the proof of Theorem 2.2 is complete.

COROLLARY 2.3. A g.o. system (D_1, \ldots, D_m) is an o. system if, and only if, D_1, \ldots, D_m are linearly independent over K.

COROLLARY 2.4. If there exists a g.o. system of derivations of \mathfrak{A} , then \mathfrak{A} is isomorphic to the group algebra over K of an abelian p-group of type (p, p, \ldots, p) .

Proof. By Theorem 2.2, there exists an o. system of derivations of \mathfrak{A} . Then Corollary 2.3 follows from Lemma 2.1 above and Theorem 6.10 of (5).

COROLLARY 2.5. The conditions (2.1.1)-(2.1.2) imply the following: If $f, a_1, \ldots, a_m \in \mathfrak{A}$ are such that $D_i f = a_i f$ for all i, then f = 0 or f is a unit in \mathfrak{A} .

Proof. Corollary 2.5 follows immediately from Theorem 2.2 above, and Lemma 6.3 of (5).

The following theorem, which also follows immediately from Theorem 2.2, above, and Theorem 6.10 of (5), is a partial generalization of Theorem 6.10 of (5).

THEOREM 2.6. If (D_1, \ldots, D_m) is a g.o. system, then the subalgebra of the derivation algebra of \mathfrak{A} , consisting of all derivations of the form $\sum f_i D_i$, where $f_i \in \mathfrak{A}$, is isomorphic to a generalized Witt algebra.

Now let (D_0, \ldots, D_m) be a set of derivations of \mathfrak{A} , satisfying (2.1.1), and let $a_0, \ldots, a_m \in \mathfrak{A}$ be such that $D_i a_j = D_j a_i$ for all i and j. Then the set $\mathfrak{A} = \mathfrak{L}(D_0, \ldots, D_m; a_0, \ldots, a_m)$ of all derivations of the form $\sum f_i D_i$, where $f_i \in \mathfrak{A}$ satisfy $\sum_i (D_i f_i - a_i f_i) = 0$, forms a subalgebra of the derivation algebra of \mathfrak{A} . A special case of such algebras was considered for the first time by Frank (2), and another by Albert and Frank (1). The general case where (D_0, \ldots, D_m) is an o. system was considered by Jennings and Ree (4). Here we consider the case where (D_0, \ldots, D_m) is an arbitrary g.o. system.

THEOREM 2.7. If (D_0, \ldots, D_m) is a g.o. system, then the algebra $L(D_0, \ldots, D_m; a_0, \ldots, a_m)$ is isomorphic either to a generalized Witt algebra or to an algebra of the form $L(D_0', \ldots, D_\tau'; a_0', \ldots, a_\tau')$, where (D_0', \ldots, D_τ') is an o. system.

Proof. If m = 0, then (D_0, \ldots, D_m) is an o. system, and so our theorem is clear. We shall proceed by induction on m. Assume that Theorem 2.7 is true for m - 1. If (D_0, \ldots, D_m) is an o. system then our theorem is clear. If (D_0, \ldots, D_m) is not an o. system, then, by Theorem 2.2, we may assume without loss of generality that $D_m = \alpha_0 D_0 + \ldots + \alpha_{m-1} D_{m-1}$ with $\alpha_i \in K$. We have

$$D_{k}\left(a_{m} - \sum_{i=0}^{m-1} \alpha_{i}a_{i}\right) = D_{m}a_{k} - \sum_{i=0}^{m-1} \alpha_{i}D_{i}a_{k} = 0$$

for k = 0, 1, ..., m. Hence

$$a_m - \sum_{i=0}^{m-1} \alpha_i a_i = \alpha$$

belongs to K by Lemma 2.1.

If $\alpha = 0$ then $\Re = \Re(D_0, \ldots, D_m; a_0, \ldots, a_m)$ and $\Re_1 = \Re(D_0, \ldots, D_{m-1}; a_0, \ldots, a_{m-1})$ coincide. This is seen as follows: Let $\sum_0 {}^m f_i D_i \in L$. Then by definition, $\sum_0 {}^m (D_i f_i - a_i f_i) = 0$, and hence

$$\sum_{i=0}^{m-1} (D_i(f_i + \alpha_i f_m) - a_i(f_i + \alpha_i f_m)) = 0.$$

On the other hand,

$$\sum_{i=0}^{m} f_{i} D_{i} = \sum_{i=0}^{m-1} (f_{i} + \alpha_{i} f_{m}) D_{i}.$$

Therefore, $\sum_{0} {}^{m} f_{i} D_{i} \in \mathfrak{L}_{1}$ and hence $\mathfrak{L} \leq \mathfrak{L}_{1}$ is proved. Since $\mathfrak{L}_{1} \leq \mathfrak{L}$ is clear, we have $\mathfrak{L} = \mathfrak{L}_{1}$.

If $\alpha \neq 0$ then $\mathfrak{L} = \mathfrak{L}(D_0, \ldots, D_m; a_0, \ldots, a_m)$ coincides with the set \mathfrak{L}_2 of all derivations of the form $\sum_0 {}^{m-1}g_i D_i$, where g_i runs over \mathfrak{A} . This is seen as follows: Clearly we have $L \leq L_2$. Now, for an arbitrary element $\sum_0 {}^{m-1}g_i D_i$ in \mathfrak{L}_2 , define f_0, f_1, \ldots, f_m by the formulae:

$$f_{m} = \alpha^{-1} \sum_{i=0}^{m-1} (D_{i}g_{i} - a_{i}g_{i});$$

$$f_{i} = g_{i} - \alpha_{i}f_{m}, \qquad (0 \le i < m).$$

Then it is easily seen that $\sum_{0} {}^{m-1}g_i D_i = \sum_{0} {}^{m}f_i D_i$, and that

$$\sum_{i=0}^{m} (D_{i}f_{i} - a_{i}f_{i}) = 0.$$

Therefore $\sum_{0} {}^{m-1}g_i D_i \in \mathfrak{X}$, and hence $\mathfrak{X}_2 \leq \mathfrak{X}$ is proved. Thus we have $\mathfrak{X} = \mathfrak{X}_2$. Since \mathfrak{X}_2 is a generalized Witt algebra, this completes the proof of Theorem 2.7.

Consider now a set of derivations (D_1, \ldots, D_m) of \mathfrak{A} satisfying only the condition (2.1.1) and denote by \mathfrak{A} the subalgebra of the derivation algebra of \mathfrak{A} consisting of all derivations of the form f_iD_i , where $f_i \in \mathfrak{A}$. Let \mathfrak{A} be the radical of \mathfrak{A} , and let \mathfrak{D} be the set of all $f \in \mathfrak{N}$ such that $D_k(D_j(\ldots, (D_if) \ldots))$ $\in \mathfrak{N}$ for any i, j, \ldots, k (the number of indices i, j, \ldots, k is arbitrary). It is easily seen that \mathfrak{D} is an ideal of \mathfrak{A} and that $f \in \mathfrak{D}$ implies $D_i f \in \mathfrak{D}$ for all i. Therefore every D_i induces a derivation \overline{D}_i of the algebra $\overline{\mathfrak{A}} = \mathfrak{A}/\mathfrak{D}$. Since $[\overline{D}_i, \overline{D}_j] = 0$ follows from $[D_i, D_j] = 0$, we can consider the subalgebra \mathfrak{L} of the derivation algebra of $\overline{\mathfrak{A}}$ consisting of all derivations of the form $\sum \overline{f}_i \overline{D}_i$, where $\overline{f}_i \in \overline{\mathfrak{A}}$. Denote by \overline{f} the image of $f \in \mathfrak{A}$ under the natural homomorphism: $\mathfrak{A} \to \overline{\mathfrak{A}}$. Since $\sum f_i D_i = 0$ implies $\sum \overline{f}_i \overline{D}_i = 0$, a mapping ϕ is uniquely

defined by $\phi(\sum f_i D_i) = \sum \overline{f}_i \overline{D}i$. It is easily seen that ϕ is a homomorphism of \mathfrak{L} onto \mathfrak{L} . The kernel \mathfrak{F} of ϕ consists of elements $\sum f_i D_i$ such that $\sum \overline{f}_i \overline{D}_i = 0$. Note that $\sum \overline{f}_i \overline{D}_i = 0$ if and only if $\sum f_i (D_i g) \in \mathfrak{D}$ for all $g \in \mathfrak{A}$. From this it follows immediately that the ideal $[\mathfrak{F}, \mathfrak{F}]$ of \mathfrak{L} is contained in the algebra \mathfrak{L}_1 consisting of all derivations of the form $\sum f_i D_i$, where $f_i \in \mathfrak{D}$. For a positive integer k, denote by \mathfrak{L}_k the algebra of all derivations of the form $\sum f_i D_i$, where $f_i \in \mathfrak{D}^k$. It is easily seen that $[\mathfrak{L}_k, \mathfrak{L}_1] \leq \mathfrak{L}_{k+1}$ for any k. Since $\mathfrak{D} \leq \mathfrak{N}$, it follows that \mathfrak{D} is nilpotent, say, $\mathfrak{D}^i = 0$. Then $\mathfrak{L}_i = 0$, and hence \mathfrak{L}_1 is nilpotent, and \mathfrak{F} is solvable.

Consider now the algebra $\overline{\mathbb{Q}}$, assuming that every non-unit element in \mathfrak{A} is . contained in the radical \mathfrak{N} . We shall prove that $(\overline{D}_1, \ldots, \overline{D}_m)$ is a g.o. system of $\overline{\mathfrak{A}}$. Suppose that $\overline{D}_i \overline{f} = \lambda_i \overline{f}$ for all *i*, and that \overline{f} is a non-unit in $\overline{\mathfrak{A}}$. Then $D_i f = \lambda_i f + g_i$, where $g_i \in \mathfrak{D}$. Since \overline{f} is not a unit *f* is also not a unit, and hence by our assumption $f \in \mathfrak{N}$. Then from $D_i f - \lambda_i f \in \mathfrak{D}$ it follows easily that $f \in \mathfrak{D}$. Therefore $\overline{f} = 0$, and hence $(\overline{D}_1, \ldots, \overline{D}_m)$ is proved to be a g.o. system. Then, by Theorem 1.6, $\overline{\mathfrak{Q}}$ is isomorphic to a generalized Witt algebra.

An associative algebra \mathfrak{A} is called *completely primary* if the set of non-unit elements coincide with the radical of \mathfrak{A} . Summarizing the above, we have

THEOREM 2.8. Suppose that the commutative associative algebra \mathfrak{A} is completely primary. Then for any set of derivatives (D_1, \ldots, D_m) of \mathfrak{A} , which satisfies the condition (2.1.1.), the algebra \mathfrak{A} consisting of all derivations of the form $\sum f_i D_i$, where $f_i \in \mathfrak{A}$, has a solvable ideal \mathfrak{F} such that $\mathfrak{A}/\mathfrak{F}$ is isomorphic to a generalized Witt algebra.

Similarly we may obtain the following

THEOREM 2.9. Suppose that the commutative associative algebra \mathfrak{A} is completely primary. Then for any set of derivations (D_1, \ldots, D_m) of \mathfrak{A} , which satisfies the condition (2.1.1), an algebra \mathfrak{A} of the form $\mathfrak{A}(D_0, \ldots, D_m; a_0, \ldots, a_m)$ has a solvable ideal \mathfrak{A} such that $\mathfrak{A}/\mathfrak{A}$ is isomorphic either to a generalized Witt algebra or to an algebra of the form $\mathfrak{A}(E_0, \ldots, E_r; b_0, \ldots, b_r)$, where (E_0, \ldots, E_r) is an o. system of derivations of the group algebra over K of an abelian group of type (p, \ldots, p) .

References

- A. A. Albert and M. S. Frank, Simple Lie algebras of characteristic p, Rendiconti del Sem. Mat., Univ. e Politech di Torino, 14 (1955), 117-39.
- 2. M. S. Frank, A new class of simple Lie algebras, Proc. Nat. Acad. Sci., 40 (1954), 713-18.
- N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc., 42 (1937), 206-24.
- S. A. Jennings and Rimhak Ree, On a class of Lie algebras of characteristic p, Trans. Amer. Math. Soc., 84 (1957), 192-207.
- 5. Rimhak Ree, On generalized Witt algebras, Trans. Amer. Math. Soc., 83 (1956), 510-46.

The University of British Columbia

352