
NOTE ON GENERALIZED WITT ALGEBRAS 

RIMHAK R E E 

Introduction. Throughout this note K will denote a field of characteristic 
p > 0. Let / be the set {1,2, . . . , m\, and @ a finite additive group of functions 
on 7" with values in K. We assume that @ is total in the sense that, for any 
Xi, . . . , \m in K, Si=iwXjO-(i) = 0 for all a in G implies all X* = 0. It is clear 
that © is an elementary ^-group. Let pn be the order of ©. A generalized 
Witt algebra 8 is defined as an algebra over K with basis elements {e(a, i)\ 
<r € ®, i G /} and the multiplication table 

(0.0.1) e(cr, i)e(rj) = r{i)e{<r + rj) - <r(j)e(a + r, i). 

S is a simple Lie algebra except when p = 2, m = 1. 
In the first section of this note we shall prove that the outer derivation 

algebra of a generalized Witt algebra is abelian, assuming that K is infinite. 
We shall see that actually a result of Jacobson (3) is generalized. 

It was shown in (5) that any generalized Witt algebra 8 can be reformu
lated as follows: Let 21 be a commutative associative algebra over K with a 
unity element, and D\, . . . , Dm be derivations of 21 such that: 

(1) [Du Dj] = DiDj - D3Di = 0 for all i and j ; 

(2) If / G 21 and Xi, . . . , X* in K are such that D{f = \{f for all i then 
/ == 0 or / is a unit in 21; 

(3) T,i-imfiDi = 0, where / , G 21, implies /< = 0 for all i. 
Now any generalized Witt algebra can be regarded as the subalgebra 

2 (21; D\, . . . , Dm) of the derivation algebra of 21 consisting of all derivations 
of the form fiDi + . . . + fmDm. In the second section of this note we shall 
consider 8(21; D\, . . . , Dm) under the conditions (1) and (2) above only, and 
extend some results proved in (5). 

1. The derivation algebra of a generalized Witt algebra. We prove 
the following 

THEOREM 1.1. Let 8 be a generalized Witt algebra over an infinite field K of 
characteristic p > 2. Let {e(a, i)\a Ç G, i Ç /} be a basis of 8. Then any deriva
tion of 8 is the sum of an inner derivation and a derivation 5± given by 

(1.1.1) SM<r,i)) = <t>(<r)e(<T,i) 

where <t> is a linear map of ® into K. 
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Proof. First of all we show that we may assume (1.1.2) : for any i, 1 < i < w, 
<r(i) = 0 implies a = 0. Suppose (1.1.2) is not satisfied. Since K is infinite 
and © total, we may proceed as in the proof of Lemma 9.1 of (5, p. 533) 
to obtain an m X m non-singular matrix (0^) such that if we define a[i] by 

m 

<r[ï\ = E Pa °"(i)> (i = 1, . . . , w), 
.7 = 1 

then, for any i, a[i] = 0 implies <r = 0. Define a new basis {$[<r, i]\<r G ®, i Ç /( 
of 8 bv 

m 

e[<r, i] = XI fiue{<r, i). 
; = 1 

Then by (0.0.1) we have 

e[cr, i] e[r,j] = E PisPjte(<r, s)e(r,t) 
s, t 

= Z 0«.&i (T(S)C(O- + T, 0 - ff(0e(<r + T- 5)) 
s, t 

= T[S] e[a + r, /] — <r[t] e[<r + T, 5]. 

Thus {e[o-, i]} satisfies the same multiplication table as {e(cr, i)} with <r(i) 
replaced by o-[i]. But here a[i] = 0 implies <r = 0. Suppose that the given 
derivation is the sum of an inner derivation and a derivation di given by 
5i(e[<7, i]) = <t>(a)e[<r, i], where <t> is an additive map of © into K. Then clearly 
we have di(e(a, i)) = <t>(ar)e(<T, i) also. This shows that we can assume (1.1.2) 
from the beginning. 

Now let 5 be the given derivation, and let 

ô(e(a, i)) = E y(c,i\T,j)e(<r + r,j) 

with coefficients 7(0-, i; r,j) in K. Then from 

5(e{0, l))e(cr, {) + e(0, l)ô(e(a, i)) = er(l)«(«(er, i)) 

we obtain 
(1.1.3) y(<T,i;r,j) = 7 (0 , l j r j l r W r l l ) - 1 

for i 7e j and r ^ 0, and 

(1.1.4) E 7(0, l;r,jf)cr(i) 4 - 7 ( ^ i ; r , i ) r ( l ) = 7 (0 , 1 ; T, i)r(i) . 

By (1.1.3) and (1.1.4) we see easily that 

ô(e(<r,i)) = E 7(<r, i;0,j)e(cr,j) 

+ *(*,*) E E 7 ( 0 , l ; r , j ) r ( i r 1 e ( r , j ) . 

Hence 5 is the sum of an inner derivation and a derivation d\ of the form 

(1.1.5) 3i(e(er,*)) = E 7(cr, i, j)e(cr, j ) 

with coefficients 7(0-, i , j ) in K. 
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We shall show that y(<r, i,j) = Oif i 7* j , that y (o-, 1, 1) = . . . = y(<r, m,m), 
and that y (a, 1, 1) is additive with respect to a. If m = 1, then the additivity 
of y (a, 1, 1) follows immediately from 

Si(«((rf l))e(r, 1) + e(<r, l)8i(«(r, 1)) = 8i(*(er, l)*(r, 1)). 

Hence we shall assume that m > 1. Then from 

5i0(cr, l))e(rj) + e(cr, i)ài(e(r,j)) = ôi(tf(<r, i)e(rj)) 

we have, for i ^ j , 

(1.1.6) y(<r, i,j)<r(i) - y(r, i,j)r(i) = 7(or + r, i,j)(a(i) - T(*)) ; 

(1.1.7) X 7(0-, i, *)r(fc) = 7(0", i,j)<r(j) - y(T,j,j)r(i) 
k 

+ y(<r + rJJ)r(i) - 7(0- + r, i,j)cr(j). 

Setting o- = 0 in (1.1.7) and using the fact that G is total, we have 
(1.1.8) 7(0,*,*) = 0 

for all i and k. Set r = — 0-, in (1.1.6) and use (1.1.8). Then we have, for 
any a and i 7^ j , 

(1.1.9) 7(0-, i,j) + y(-*,i,j) = 0. 

Replace r in (1.1.6) by — r, and use (1.1.9). Then we have 

7(0-, i,j)<r(i) - y(r, ij)r(i) = y (a - r, i,j)(a(i) + r(i)). 

Combining this with (1.1.6) yields 

(1.1.10) 7(0- - r, ij)(a(i) + r(i)) = 7(0- + r, *, j)(<r« - r(i)). 

Since © is an elementary p-group and p 9^ 2, 0- — r and 0- + r may be regarded 
as two arbitrary elements in ®. Hence by (1.1.10) it follows that, for i ^ j , 

(1.1.11) y(<r,i,j) = aij<r(i), 

where otij are in K and independent of o\ Substituting this in (1.1.7) we 
obtain 

(1.1.12) y(*,i,i)r(i) + £ aika(i)r(k) 
k^i 

= 7(0- + T,j,j)r(i) - y(T,j,j)r(i) - cLifr(t)<r{j), 

which shows that (7(0- + r,j,j) — 7(7, j , j))r(i) is additive with respect to 
r. Hence 

(1.1.13) y (a + r,j,j) - y(rJJ) = y(cr - rJJ) - y(— r,j,j) 

for all <T and r. Let a = r in the above and use (1.1.8). Then 

(1.1.14) y@T,jJ) - y(rJJ) = - 7 ( - r , i , i ) . 

By (1.1.13) and (1.1.4) we have 
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TO + TJJ) = y (a - r,j,j) + Y(2T, j , j ) 

which shows that y(<r,j,j) is additive with regard to <r, since, as before, 
a + T and a — r can be regarded as two arbitrary elements in @. Now from 
(1.1.12) we obtain 

7(0-, i, i)r{i) + Y, aik(j{i)r{k) = 7(0-, j,j)r(i) - atfr(i)(r(j) 
k^-i 

for all a- and r. Using the fact that G is total, we see from the above that 
aik = 0 for k 9e i and that 7(0-, i, i) = y(a,j,j) for any i and j . Set 7(0-, i, f) 
= </>((r). Then 0 is additive, and we have (1.1.1) as desired. Thus Theorem 
1.1 is proved. 

When is the derivation ô defined by d(e(a, i)) = </>(o-)e(o-, i), where (/> is an 
additive function on G, inner? Let 

8(e(<r,i)) = e(<r,i) ]C ocTje(Tj) 

with aTj Ç i£. Then 

0 = g(0, i) = ]C <xTtfr(i)e(j,j). 

Hence r{i) = 0, r = 0, whenever aT);- 3̂  0. From this it follows that <5 is inner 
if, and only if, <f>(a) = J2jOCja(j) with a y G JK\ Such additive functions 0 form 
clearly an m-dimensional vector space over K. On the other hand, if @ is an 
elementary group of order pn, then all the additive functions on ® with values 
in K form an w-dimensional vector space over K. Hence we have 

COROLLARY 1.2. Let 2 be a generalized Witt algebra with basis {e(ay i)\a 6 ®, 
i G / } , where © is an elementary p-group of order pn, and I = {1, 2, . . . , m). 
Let 3) awd 3 be the derivation algebra and the algebra of inner derivations of 8, 
respectively. Then S / S ^ ÛW abelian algebra of dimension n — m, provided 
that the characteristic of K is greater than 2. 

From the above corollary it follows immediately that the number m is 
uniquely determined by ?. This is, however, proved in (5, p. 546). Also, if 
m = n, then every derivation of 2 is inner. This is a result of Jacobson (3). 

2. Generalized orthogonal systems. Let SI be a finite-dimensional 
commutative associative algebra over the algebraically closed ground field 
K. We assume that 21 has a unity element. 

An ordered set (Di, . . . , Dm) of derivations of SI will be called a generalized 
orthogonal (g.o.) system if the following conditions (2.1.1.)-(2.1.2) are satisfied: 

(2.1.1.) [Du Dj] = DtDj - DjDi = 0 for all i and j ; 

(2.1.2) If f (: SI and Xi, . . . , Xm £ K are such that Dtf = Xif for all i, then 
f = 0 or f is a unit of SI. 
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A g.o. system (Di, . . . , Dm) will be called an o. system if it satisfies the 
following condition: 

(2.1.3.) E i - W i = 0, where / , G 21, implies ft = 0 /or a« i. 

LEMMA 2.1. 77^ conditions (2.1.1.)—(2.1.2) imply the following: 

(2.1.4) Dif = Ofor all i = I, . . . ,m implies f £ K. 

Proof. The set 33 of all / Ç 21 such that Df = 0 for all i is clearly a sub-
algebra of 21, and, moreover, if 0 ^ / G 33 then by (2.1.2) / _ 1 exists and 
belongs to 33, since Dif~l — — f~2Dtf = 0. Therefore, S3 is a finite extension 
field of K. Since K is algebraically closed, we have 93 = K. 

THEOREM 2.2. For any g.o. system (D±t . . . , Dm) there exists a non-void 
subset S = {ii, . . . , ir] of indices 1, . . . , m such that (2.2.1)-(2.2.2), below, 
hold: 

(2.2.1) (Dh, . . . , Dir) is an o. system) 

(2.2.2) There exists ais £ K such that 

Di = ]C «is^s, (i = 1, • • . , W). 

Proof. Let 5 be a minimal subset of the indices 1, . . . , m with respect to 
the property: there exist ais £ SI such that 

(2.2.3) Dt = X) a ^ s (i = 1, . . . , w). 

We may assume without loss of generality that S = {1, . . . , r). Let V be the 
set of all r-tuples (/i, . . . , / r) of elements fs 6 21 such that ^2sfsDs = 0. Define 
addition in V componentwise, scalar multiplication by a( / i , . . . ,fr) = 
(afi, . . . , afT), a (z K. Then F is a finite-dimensional vector space over K. We 
shall prove (2.1.3) for (Dh . . . , Dr) by showing that 7 = 0 . Suppose 7 ^ 0 . 
Since T,fsDs = 0 implies Y,s(Difs)Ds = 0, the mapping (/i, . . . , / r) —> 
(D/ i , . . . , Difr) is a linear transformation of V. Since Dt(Djf) = Dj{Dtf) for 
all f 6 21, i, and j , and since X is algebraically closed, there exists a non-zero 
(/i, • • • ifr) € ^ and Xi, . . . , XOT € i£ such that 

(Difu...,D1fr) = X i ( / 1 , . . . , / r ) 

for i = 1, . . . , m. Then Difs = X*/s for all i and 5. Then from (2.1.2) it 
follows t h a t / is either 0 or a unit in 21. Since not all/ s are zero, we may assume 
fx ^ 0 ; / i is a unit. Then Dx = - / f 1 / ^ - . . . - frlfrDr. Then every £>< 
can be written as a linear combination of D2, . . . , DT with coefficients in 21. 
This contradicts the minimality of S. Thus V = 0, and hence (2.1.3) is proved 
lor {Du..., Dr). 

Now, from (2.1.1) and (2.2.3) it follows that T,s(Dkais)Ds = 0 for all 
i, k = 1, . . . , w. Therefore by (2.2.1), we have Dkais = 0 and hence, by 
Lemma 2.1, ais = ais £ i£ for all i and 5. This proves (2.2.2). 
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In order to show that (D\, . . . , DT) is an o. system, it remains to be shown 
that DJ =s \sf, \s 6 K, for s = 1, . . . , r implies that / = 0 or / is a unit. 
This, however, follows easily from (2.2.2) and (2.1.2). Thus the proof of 
Theorem 2.2 is complete. 

COROLLARY 2.3. A g.o. system (Di, . . . , Dm) is an o. system if, and only if, 
D\, . . . , Dm are linearly independent over K. 

COROLLARY 2.4. If there exists a g.o. system of derivations of 21, then 21 is 
isomorphic to the group algebra over K of an abelian p-group of type (p, p, . . . , p). 

Proof. By Theorem 2.2, there exists an o. system of derivations of 21. Then 
Corollary 2.3 follows from Lemma 2.1 above and Theorem 6.10 of (5). 

COROLLARY 2.5. The conditions (2.1.1)—(2.1.2) imply the following: If 
f, au . . . , am G 21 are such that Dtf ~ atf for all i, then f = 0 or f is a unit 
in 21. 

Proof. Corollary 2.5 follows immediately from Theorem 2.2 above, and 
Lemma 6.3 of (5). 

The following theorem, which also follows immediately from Theorem 2.2, 
above, and Theorem 6.10 of (5), is a partial generalization of Theorem 6.10 
of (5). 

THEOREM 2.6. If {Du • . • , Dm) is a g.o. system, then the subalgebra of the 
derivation algebra of 21, consisting of all derivations of the form YlfiDu where 
fi G 2Ï, is isomorphic to a generalized Witt algebra. 

Now let (Z)0, • • . , Dm) be a set of derivations of 2Ï, satisfying (2.1.1), and 
let a0, . . . , am 6 21 be such that Dtaj = Djat for all i and j . Then the set 
2 = 8(Do, . . . , Dm; a0, . • . , am) of all derivations of the form ^fiDt, where 
fi^L% satisfy J2i{Dtfi ~" aifi) — 0» forms a subalgebra of the derivation 
algebra of 21. A special case of such algebras was considered for the first time 
by Frank (2), and another by Albert and Frank (1). The general case where 
{Do, . . . , Dm) is an o. system was considered by Jennings and Ree (4). Here 
we consider the case where {D0, . . . , Dm) is an arbitrary g.o. system. 

THEOREM 2.7. / / {D0, . . . , Dm) is a g.o. system, then the algebra L{D0, . . . , Dm; 
a0, . . . , am) is isomorphic either to a generalized Witt algebra or to an algebra 
of the form L{DQ, . . . , D/; aj, . . . , a / ) , where {Do', . . . , D/) is an o. system. 

Proof. If m == 0, then (Do, . . . , Dm) is an o. system, and so our theorem 
is clear. We shall proceed by induction on m. Assume that Theorem 2.7 is 
true for m — 1. If (D0, . . . , Dm) is an o. system then our theorem is clear. If 
(Do, . . . , Dm) is not an o. system, then, by Theorem 2.2, we may assume 
without loss of generality that Dm == a0D0 + . . . + am_iZ)m_i with a< G K. 
We have 
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/ m—1 \ m—1 

\ i=0 / i=0 

for & = 0, 1, . . . , w. Hence 

m— 1 

i=0 

belongs to i£ by Lemma 2.1. 
If a = 0 then 8 = 8(-Do, . . . , A»; a0, . . . , am) and 8i = 8(A), . . . , A»-iî 

a0, . . . , flm-i) coincide. This is seen as follows: Let £om /«A £ L. Then by 
definition, X ^ C A / i — flf/<) = 0, and hence 

m— 1 

]£ (£><(/, + a ^ ) - a<(/< + aifm)) = 0. 
i=0 

On the other hand, 
m m—I 

E /«Pi = E (/« + aJJDi. 
î=0 i=0 

Therefore, £om /*A £ 8i and hence 8 < 8i is proved. Since 8i < 8 is clear, 
we have 8 = 8i. 

If a 9e 0 then 8 = 8(Do, . . . , Dm\ a0, . . . , am) coincides with the set 82 
of all derivations of the form Y,om~1giDi, where gi runs over 21. This is seen 
as follows: Clearly we have L < L2. Now, for an arbitrary element Som _ 1giA 
in 82, define /0, / 1 , . . . ,fm by the formulae: 

m— 1 

/ro = a - 1 S iPigi — digi); 
i = 0 

fi = gi — Oiifm, (0 < t < W). 

Then it is easily seen that £om - 1g*A = JLomfiDu and that 

E ( p / i - «i/o = 0. 
t=0 

Therefore ]Lom-1giA £ 8, and hence 82 < 8 is proved. Thus we have 8 = 82. 
Since 82 is a generalized Witt algebra, this completes the proof of Theorem 2.7. 

Consider now a set of derivations ( A , . . . , Dm) of 21 satisfying only the 
condition (2.1.1) and denote by 8 the subalgebra of the derivation algebra 
of 21 consisting of all derivations of the form/fA, where ft 6 21. Let 9Î be the 
radical of 21, and let O be the set of a l l / Ç 5ft such that Dk(Dj(. . . (Dtf) . . . )) 
G 9Î for any i , j , . . . , k (the number of indices i,j, . . . , k is arbitrary). It is 
easily seen that O is an ideal of 21 and that / £ D implies A / Ç £> for all t. 
Therefore every A induces a derivation Â of the algebra 21 = 21/D. Since 
[Â, Â ] = 0 follows from [A, Dj] = 0, we can consider the subalgebra 8 of 
the derivation algebra of 21 consisting of all derivations of the form ]C/iÂ, 
where ft € 21. Denote by / the image of / Ç 21 under the natural homomor-
phism: 21 —> 21. Since Z!/ iA = 0 implies £ / * Â = 0, a mapping 0 is uniquely 
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defined by <£(H/Yt>i) = llfiDi- It is easily seen that </> is a homomorphism 
of 8 onto 8. The kernel 3 of </> consists of elements ^fiDt such that Yllt^i ~ 0. 
Note that £/<Z), = 0 if and only if YJiiPg) € € for all g G 21. From this 
it follows immediately that the ideal [3\ 3 ] of 8 is contained in the algebra 8i 
consisting of all derivations of the form Xjf*£\, where ft Ç D. For a positive 
integer k, denote by 8* the algebra of all derivations of the form ^fiDu where 
fi 6 £)*. It is easily seen that [8*, 8i] < 8*+i for any &. Since O < 9Î, it follows 
that O is nilpotent, say,, O* = 0. Then 8* = 0, and hence 8i is nilpotent, and 
3 is solvable. 

Consider now the algebra 8, assuming that every non-unit element in 21 is , 
contained in the radical 5R. We shall prove that (Si, . . . , Dm) is a g.o. system 
of 2Ï. Suppose that Dj = X J for all i, and that / is a non-unit in %. Then 
Dif = \tf + gi} where gi £ ©. Since / is not a unit / is also not a unit, and 
hence by our assumption / £ $ft. Then from Dif — \{f £ £) it follows easily 
that / C O . Therefore / ;== 0, and hence (Si, . . . , Dm) is proved to be a g.o. 
system. Then, by Theorem 1.6, 8 is isomorphic to a generalized Witt algebra. 

An associative algebra 21 is called completely primary if the set of non-unit 
elements coincide with the radical of SI. Summarizing the above, we have 

THEOREM 2.8. Suppose that the commutative associative algebra 2Ï is completely 
primary. Then for any set of derivatives (D\, . . . , Dm) of 21, which satisfies the 
condition (2.1.1.), the algebra 8 consisting of all derivations of the form YLfi^u 
where fi £ 21, has a solvable ideal 3? such that 8 / 3 is isomorphic to a generalized 
Witt algebra. 

Similarly we may obtain the following 

THEOREM 2.9. Suppose that the commutative associative algebra 21 is completely 
primary. Then for any set of derivations (Dly . . . , Dm) of 21, which satisfies the 
condition (2.1.1), an algebra 8 of the form 2(D0j . . . , Dm; a0, . . . , am) has a 
solvable ideal S such that 8 / 3 is isomorphic either to a generalized Witt algebra 
or to an algebra of the form 8(.Eo, . . . , Er; bo, . . . , br), where (Eo, • • . , ET) is an 
0. system of derivations of the group algebra over K of an abelian group of type 

( / > , . . . , P ) . 

REFERENCES 

1. A. A. Albert and M. S. Frank, Simple Lie algebras of characteristic p, Rendiconti del Sem. 
Mat., Univ. e Politech di Torino, 14 (1955), 117-39. 

2. M. S. Frank, A new class of simple Lie algebras, Proc. Nat . Acad. Sci., 40 (1954), 713-18. 
3. N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc , 42 (1937), 

206-24. 
4. S. A. Jennings and Rimhak Ree, On a class of Lie algebras of characteristic p, Trans. Amer. 

Math. Soc , 84 (1957), 192-207. 
5. Rimhak Ree, On generalized Witt algebras, Trans. Amer. Math. Soc , 83 (1956), 510-46. 

The University of British Columbia 

https://doi.org/10.4153/CJM-1959-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-035-5

