NOTE ON GENERALIZED WITT ALGEBRAS

RIMHAK REE

Introduction. Throughout this note K will denote a field of characteristic $p>0$. Let I be the set $\{1,2, \ldots, m\}$, and (\$) a finite additive group of functions on I with values in K. We assume that \mathbb{B} is total in the sense that, for any $\lambda_{1}, \ldots, \lambda_{m}$ in $K, \sum_{i=1}{ }^{m} \lambda_{i} \sigma(i)=0$ for all σ in G implies all $\lambda_{i}=0$. It is clear that (5) is an elementary p-group. Let p^{n} be the order of (5). A generalized Witt algebra \mathbb{R} is defined as an algebra over K with basis elements $\{e(\sigma, i) \mid$ $\sigma \in \mathbb{G}, i \in I\}$ and the multiplication table

$$
\begin{equation*}
e(\sigma, i) e(\tau, j)=\tau(i) e(\sigma+\tau, j)-\sigma(j) e(\sigma+\tau, i) . \tag{0.0.1}
\end{equation*}
$$

\mathfrak{Z} is a simple Lie algebra except when $p=2, m=1$.
In the first section of this note we shall prove that the outer derivation algebra of a generalized Witt algebra is abelian, assuming that K is infinite. We shall see that actually a result of Jacobson (3) is generalized.

It was shown in (5) that any generalized Witt algebra $\{$ can be reformulated as follows: Let \mathfrak{A} be a commutative associative algebra over K with a unity element, and D_{1}, \ldots, D_{m} be derivations of \mathfrak{N} such that:
(1) $\left[D_{i}, D_{j}\right]=D_{i} D_{j}-D_{\rho} D_{i}=0$ for all i and j;
(2) If $f \in \mathfrak{A}$ and $\lambda_{1}, \ldots, \lambda_{k}$ in K are such that $D_{i} f=\lambda_{i} f$ for all i then $f=0$ or f is a unit in \mathfrak{U};
(3) $\sum_{i=1}{ }^{m} f_{i} D_{i}=0$, where $f_{i} \in \mathfrak{Q}$, implies $f_{i}=0$ for all i.

Now any generalized Witt algebra can be regarded as the subalgebra $\mathfrak{R}\left(\mathfrak{A} ; D_{1}, \ldots, D_{m}\right)$ of the derivation algebra of \mathfrak{N} consisting of all derivations of the form $f_{1} D_{1}+\ldots+f_{m} D_{m}$. In the second section of this note we shall consider $\mathfrak{R}\left(\mathfrak{H} ; D_{1}, \ldots, D_{m}\right)$ under the conditions (1) and (2) above only, and extend some results proved in (5).

1. The derivation algebra of a generalized Witt algebra. We prove the following

Theorem 1.1. Let \mathbb{R} be a generalized Witt algebra over an infinite field K of characteristic $p>2$. Let $\{e(\sigma, i) \mid \sigma \in G, i \in I\}$ be a basis of R. Then any derivation of \mathfrak{R} is the sum of an inner derivation and a derivation δ_{1} given by

$$
\begin{equation*}
\delta_{1}(e(\sigma, i))=\phi(\sigma) e(\sigma, i) \tag{1.1.1}
\end{equation*}
$$

where ϕ is a linear map of $\$ 5$ into K.

[^0]Proof. First of all we show that we may assume (1.1.2): for any $i, 1 \leqslant i \leqslant m$, $\sigma(i)=0$ implies $\sigma=0$. Suppose (1.1.2) is not satisfied. Since K is infinite and (5) total, we may proceed as in the proof of Lemma 9.1 of ($5, \mathrm{p} .533$) to obtain an $m \times m$ non-singular matrix ($\beta_{i j}$) such that if we define $\sigma[i]$ by

$$
\sigma[i]=\sum_{j=1}^{m} \beta_{i j} \sigma(j), \quad(i=1, \ldots, m)
$$

then, for any $i, \sigma[i]=0$ implies $\sigma=0$. Define a new basis $\{e[\sigma, i] \mid \sigma \in \mathbb{G}, i \in I\}$ of $\&$ by

$$
e[\sigma, i]=\sum_{j=1}^{m} \beta_{i j} e(\sigma, i) .
$$

Then by (0.0.1) we have

$$
\begin{aligned}
e[\sigma, i] e[\tau, j] & =\sum_{s, t} \beta_{i s} \beta_{j t} e(\sigma, s) e(\tau, t) \\
& =\sum_{s, t} \beta_{i s} \beta_{j t}(\tau(s) e(\sigma+\tau, t)-\sigma(t) e(\sigma+\tau, s)) \\
& =\tau[s] e[\sigma+\tau, t]-\sigma[t] e[\sigma+\tau, s] .
\end{aligned}
$$

Thus $\{e[\sigma, i]\}$ satisfies the same multiplication table as $\{e(\sigma, i)\}$ with $\sigma(i)$ replaced by $\sigma[i]$. But here $\sigma[i]=0$ implies $\sigma=0$. Suppose that the given derivation is the sum of an inner derivation and a derivation δ_{1} given by $\delta_{1}(e[\sigma, i])=\phi(\sigma) e[\sigma, i]$, where ϕ is an additive map of \mathbb{H} into K. Then clearly we have $\delta_{1}(e(\sigma, i))=\phi(\sigma) e(\sigma, i)$ also. This shows that we can assume (1.1.2) from the beginning.

Now let δ be the given derivation, and let

$$
\delta(e(\sigma, i))=\sum_{\tau, j} \gamma(\sigma, i ; \tau, j) e(\sigma+\tau, j)
$$

with coefficients $\gamma(\sigma, i ; \tau, j)$ in K. Then from

$$
\delta(e(0,1)) e(\sigma, i)+e(0,1) \delta(e(\sigma, i))=\sigma(1) \delta(e(\sigma, i))
$$

we obtain

$$
\begin{equation*}
\gamma(\sigma, i ; \tau, j)=\gamma(0,1 ; \tau, j) \tau(i) \tau(1)^{-1} \tag{1.1.3}
\end{equation*}
$$

for $i \neq j$ and $\tau \neq 0$, and

$$
\begin{equation*}
\sum_{j} \gamma(0,1 ; \tau, j) \sigma(j)+\gamma(\sigma, i ; \tau, i) \tau(1)=\gamma(0,1 ; \tau, i) \tau(i) \tag{1.1.4}
\end{equation*}
$$

By (1.1.3) and (1.1.4) we see easily that

$$
\begin{aligned}
\delta(e(\sigma, i))= & \sum_{j} \gamma(\sigma, i ; 0, j) e(\sigma, j) \\
& +e(\sigma, i) \sum_{\tau \neq 0} \sum_{j} \gamma(0,1 ; \tau, j) \tau(1)^{-1} e(\tau, j) .
\end{aligned}
$$

Hence δ is the sum of an inner derivation and a derivation δ_{1} of the form

$$
\begin{equation*}
\delta_{1}(e(\sigma, i))=\sum_{j} \gamma(\sigma, i, j) e(\sigma, j) \tag{1.1.5}
\end{equation*}
$$

with coefficients $\gamma(\sigma, i, j)$ in K.

We shall show that $\gamma(\sigma, i, j)=0$ if $i \neq j$, that $\gamma(\sigma, 1,1)=\ldots=\gamma(\sigma, m, m)$, and that $\gamma(\sigma, 1,1)$ is additive with respect to σ. If $m=1$, then the additivity of $\gamma(\sigma, 1,1)$ follows immediately from

$$
\delta_{1}(e(\sigma, 1)) e(\tau, 1)+e(\sigma, 1) \delta_{1}(e(\tau, 1))=\delta_{1}(e(\sigma, 1) e(\tau, 1)) .
$$

Hence we shall assume that $m>1$. Then from

$$
\delta_{1}(e(\sigma, 1)) e(\tau, j)+e(\sigma, i) \delta_{1}(e(\tau, j))=\delta_{1}(e(\sigma, i) e(\tau, j))
$$

we have, for $i \neq j$,

$$
\begin{align*}
& \gamma(\sigma, i, j) \sigma(i)-\gamma(\tau, i, j) \tau(i)=\gamma(\sigma+\tau, i, j)(\sigma(i)-\tau(i)) \tag{1.1.6}\\
& \begin{aligned}
& \sum_{k} \gamma(\sigma, i, k) \tau(k)=\gamma(\sigma, i, j) \sigma(j)-\gamma(\tau, j, j) \tau(i) \\
&+\gamma(\sigma+\tau, j, j) \tau(i)-\gamma(\sigma+\tau, i, j) \sigma(j)
\end{aligned} \tag{1.1.7}
\end{align*}
$$

Setting $\sigma=0$ in (1.1.7) and using the fact that G is total, we have

$$
\begin{equation*}
\gamma(0, i, k)=0 \tag{1.1.8}
\end{equation*}
$$

for all i and k. Set $\tau=-\sigma$, in (1.1.6) and use (1.1.8). Then we have, for any σ and $i \neq j$,

$$
\begin{equation*}
\gamma(\sigma, i, j)+\gamma(-\sigma, i, j)=0 . \tag{1.1.9}
\end{equation*}
$$

Replace τ in (1.1.6) by $-\tau$, and use (1.1.9). Then we have

$$
\gamma(\sigma, i, j) \sigma(i)-\gamma(\tau, i, j) \tau(i)=\gamma(\sigma-\tau, i, j)(\sigma(i)+\tau(i)) .
$$

Combining this with (1.1.6) yields

$$
\begin{equation*}
\gamma(\sigma-\tau, i, j)(\sigma(i)+\tau(i))=\gamma(\sigma+\tau, i, j)(\sigma(i)-\tau(i)) . \tag{1.1.10}
\end{equation*}
$$

Since (5) is an elementary p-group and $p \neq 2, \sigma-\tau$ and $\sigma+\tau$ may be regarded as two arbitrary elements in (B). Hence by (1.1.10) it follows that, for $i \neq j$,

$$
\begin{equation*}
\gamma(\sigma, i, j)=\alpha_{i j} \sigma(i) \tag{1.1.11}
\end{equation*}
$$

where $\alpha_{i j}$ are in K and independent of σ. Substituting this in (1.1.7) we obtain
(1.1.12) $\quad \gamma(\sigma, i, i) \tau(i)+\sum_{k \neq i} \alpha_{i k} \sigma(i) \tau(k)$

$$
=\gamma(\sigma+\tau, j, j) \tau(i)-\gamma(\tau, j, j) \tau(i)-\alpha_{i j} \tau(i) \sigma(j),
$$

which shows that $(\gamma(\sigma+\tau, j, j)-\gamma(\tau, j, j)) \tau(i)$ is additive with respect to τ. Hence

$$
\begin{equation*}
\gamma(\sigma+\tau, j, j)-\gamma(\tau, j, j)=\gamma(\sigma-\tau, j, j)-\gamma(-\tau, j, j) \tag{1.1.13}
\end{equation*}
$$

for all σ and τ. Let $\sigma=\tau$ in the above and use (1.1.8). Then

$$
\begin{equation*}
\gamma(2 \tau, j, j)-\gamma(\tau, j, j)=-\gamma(-\tau, j, j) \tag{1.1.14}
\end{equation*}
$$

By (1.1.13) and (1.1.4) we have

$$
\gamma(\sigma+\tau, j, j)=\gamma(\sigma-\tau, j, j)+\gamma(2 \tau, j, j)
$$

which shows that $\gamma(\sigma, j, j)$ is additive with regard to σ, since, as before, $\sigma+\tau$ and $\sigma-\tau$ can be regarded as two arbitrary elements in (5). Now from (1.1.12) we obtain

$$
\gamma(\sigma, i, i) \tau(i)+\sum_{k \neq i} \alpha_{i k} \sigma(i) \tau(k)=\gamma(\sigma, j, j) \tau(i)-\alpha_{i j} \tau(i) \sigma(j)
$$

for all σ and τ. Using the fact that G is total, we see from the above that $\alpha_{i k}=0$ for $k \neq i$ and that $\gamma(\sigma, i, i)=\gamma(\sigma, j, j)$ for any i and j. Set $\gamma(\sigma, i, i)$ $=\phi(\sigma)$. Then ϕ is additive, and we have (1.1.1) as desired. Thus Theorem 1.1 is proved.

When is the derivation δ defined by $\delta(e(\sigma, i))=\phi(\sigma) e(\sigma, i)$, where ϕ is an additive function on G, inner? Let

$$
\delta(e(\sigma, i))=e(\sigma, i) \sum_{\tau, j} \alpha_{\tau, j} e(\tau, j)
$$

with $\alpha_{\tau, j} \in K$. Then

$$
0=e(0, i)=\sum_{\tau, j} \alpha_{\tau, j} \tau(i) e(\tau, j)
$$

Hence $\tau(i)=0, \tau=0$, whenever $\alpha_{\tau, j} \neq 0$. From this it follows that δ is inner if, and only if, $\phi(\sigma)=\sum_{j} \alpha_{j} \sigma(j)$ with $\alpha_{j} \in K$. Such additive functions ϕ form clearly an m-dimensional vector space over K. On the other hand, if $\mathbb{J j}$ is an elementary group of order p^{n}, then all the additive functions on ${ }^{(5)}$ with values in K form an n-dimensional vector space over K. Hence we have

Corollary 1.2. Let Ω be a generalized Witt algebra with basis $\{e(\sigma, i) \mid \sigma \in(\mathbb{F})$, $i \in I\}$, where (5) is an elementary p-group of order p^{n}, and $I=\{1,2, \ldots, m\}$. Let \mathfrak{D} and \mathfrak{F} be the derivation algebra and the algebra of inner derivations of \mathfrak{R}, respectively. Then $\mathfrak{D} / \mathfrak{F}$ is an abelian algebra of dimension $n-m$, provided that the characteristic of K is greater than 2.

From the above corollary it follows immediately that the number m is uniquely determined by Ω. This is, however, proved in (5, p. 546). Also, if $m=n$, then every derivation of \mathbb{R} is inner. This is a result of Jacobson (3).
2. Generalized orthogonal systems. Let \mathfrak{H} be a finite-dimensional commutative associative algebra over the algebraically closed ground field K. We assume that \mathfrak{A} has a unity element.
An ordered set $\left(D_{1}, \ldots, D_{m}\right)$ of derivations of \mathfrak{A} will be called a generalized orthogonal (g.o.) system if the following conditions (2.1.1.)-(2.1.2) are satisfied:
(2.1.1.) $\left[D_{i}, D_{j}\right]=D_{i} D_{j}-D_{j} D_{i}=0$ for all i and j;
(2.1.2) If $f \in \mathfrak{N}$ and $\lambda_{1}, \ldots, \lambda_{m} \in K$ are such that $D_{i} f=\lambda_{i} f$ for all i, then $f=0$ or f is a unit of \mathfrak{N}.

A g.o. system $\left(D_{1}, \ldots, D_{m}\right)$ will be called an o. system if it satisfies the following condition:
(2.1.3.) $\quad \sum_{i=1}^{m} f_{i} D_{i}=0$, where $f_{i} \in \mathfrak{N}$, implies $f_{i}=0$ for all i.

Lemma 2.1. The conditions (2.1.1.)-(2.1.2) imply the following:
(2.1.4) $D_{i} f=0$ for all $i=1, \ldots, m$ implies $f \in K$.

Proof. The set \mathfrak{B} of all $f \in \mathfrak{A}$ such that $D_{i} f=0$ for all i is clearly a subalgebra of \mathfrak{M}, and, moreover, if $0 \neq f \in \mathfrak{B}$ then by (2.1.2) f^{-1} exists and belongs to \mathfrak{B}, since $D_{i} f^{-1}=-f^{-2} D_{i} f=0$. Therefore, \mathfrak{B} is a finite extension field of K. Since K is algebraically closed, we have $\mathfrak{B}=K$.

Theorem 2.2. For any g.o. system $\left(D_{1}, \ldots, D_{m}\right)$ there exists a non-void subset $S=\left\{i_{1}, \ldots, i_{r}\right\}$ of indices $1, \ldots, m$ such that (2.2.1)-(2.2.2), below, hold:
(2.2.1) $\quad\left(D_{i_{1}}, \ldots, D_{i_{r}}\right)$ is an o. system;
(2.2.2) There exists $\alpha_{i s} \in K$ such that

$$
D_{i}=\sum_{s \in S} \alpha_{i s} D_{s}, \quad(i=1, \ldots, m)
$$

Proof. Let S be a minimal subset of the indices $1, \ldots, m$ with respect to the property: there exist $a_{i s} \in \mathfrak{N}$ such that

$$
\begin{equation*}
D_{i}=\sum_{s \in S} a_{i s} D_{s} \quad(i=1, \ldots, m) \tag{2.2.3}
\end{equation*}
$$

We may assume without loss of generality that $S=\{1, \ldots, r\}$. Let V be the set of all r-tuples $\left(f_{1}, \ldots, f_{r}\right)$ of elements $f_{s} \in \mathfrak{A}$ such that $\sum_{s} f_{s} D_{s}=0$. Define addition in V componentwise, scalar multiplication by $\alpha\left(f_{1}, \ldots, f_{\tau}\right)=$ $\left(\alpha f_{1}, \ldots, \alpha f_{r}\right), \alpha \in K$. Then V is a finite-dimensional vector space over K. We shall prove (2.1.3) for $\left(D_{1}, \ldots, D_{r}\right)$ by showing that $V=0$. Suppose $V \neq 0$. Since $\sum f_{s} D_{s}=0$ implies $\sum_{s}\left(D_{i} f_{s}\right) D_{s}=0$, the mapping $\left(f_{1}, \ldots, f_{r}\right) \rightarrow$ $\left(D_{i} f_{1}, \ldots, D_{i} f_{\tau}\right)$ is a linear transformation of V. Since $D_{i}\left(D_{j} f\right)=D_{j}\left(D_{i} f\right)$ for all $\mathrm{f} \in \mathfrak{A}, i$, and j, and since K is algebraically closed, there exists a non-zero $\left(f_{1}, \ldots, f_{r}\right) \in V$ and $\lambda_{1}, \ldots, \lambda_{m} \in K$ such that

$$
\left(D_{i} f_{1}, \ldots, D_{i} f_{r}\right)=\lambda_{i}\left(f_{1}, \ldots, f_{\tau}\right)
$$

for $i=1, \ldots, m$. Then $D_{i} f_{s}=\lambda_{i} f_{s}$ for all i and s. Then from (2.1.2) it follows that f_{s} is either 0 or a unit in \mathfrak{A}. Since not all f_{s} are zero, we may assume $f_{1} \neq 0 ; f_{1}$ is a unit. Then $D_{1}=-f_{1}^{-1} f_{2} D_{2}-\ldots-f_{1}{ }^{-1} f_{r} D_{r}$. Then every D_{i} can be written as a linear combination of D_{2}, \ldots, D_{r} with coefficients in \mathfrak{H}. This contradicts the minimality of S. Thus $V=0$, and hence (2.1.3) is proved for (D_{1}, \ldots, D_{r}).

Now, from (2.1.1) and (2.2.3) it follows that $\sum_{s}\left(D_{k} a_{i s}\right) D_{s}=0$ for all $i, k=1, \ldots, m$. Therefore by (2.2.1), we have $D_{k} a_{i s}=0$ and hence, by Lemma 2.1, $a_{i s}=\alpha_{i s} \in K$ for all i and s. This proves (2.2.2).

In order to show that $\left(D_{1}, \ldots, D_{r}\right)$ is an o. system, it remains to be shown that $D_{s} f=\lambda_{s} f, \lambda_{s} \in K$, for $s=1, \ldots, r$ implies that $f=0$ or f is a unit. This, however, follows easily from (2.2.2) and (2.1.2). Thus the proof of Theorem 2.2 is complete.

Corollary 2.3. A g.o. system $\left(D_{1}, \ldots, D_{m}\right)$ is an o. system if, and only if, D_{1}, \ldots, D_{m} are linearly independent over K.

Corollary 2.4. If there exists a g.o. system of derivations of \mathfrak{A}, then \mathfrak{H} is isomorphic to the group algebra over K of an abelian p-group of type $(p, p, \ldots, p$).

Proof. By Theorem 2.2, there exists an o. system of derivations of \mathfrak{A}. Then Corollary 2.3 follows from Lemma 2.1 above and Theorem 6.10 of (5).

Corollary 2.5. The conditions (2.1.1)-(2.1.2) imply the following: If $f, a_{1}, \ldots, a_{m} \in \mathfrak{A}$ are such that $D_{i} f=a_{i} f$ for all i, then $f=0$ or f is a unit in \mathfrak{A}.

Proof. Corollary 2.5 follows immediately from Theorem 2.2 above, and Lemma 6.3 of (5).

The following theorem, which also follows immediately from Theorem 2.2, above, and Theorem 6.10 of (5), is a partial generalization of Theorem 6.10 of (5).

Theorem 2.6. If $\left(D_{1}, \ldots, D_{m}\right)$ is a g.o. system, then the subalgebra of the derivation algebra of \mathfrak{A}, consisting of all derivations of the form $\sum f_{i} D_{i}$, where $f_{i} \in \mathfrak{N}$, is isomorphic to a generalized Witt algebra.

Now let $\left(D_{0}, \ldots, D_{m}\right)$ be a set of derivations of \mathfrak{A}, satisfying (2.1.1), and let $a_{0}, \ldots, a_{m} \in \mathfrak{A}$ be such that $D_{i} a_{j}=D_{j} a_{i}$ for all i and j. Then the set $\mathfrak{Z}=\mathfrak{Z}\left(D_{0}, \ldots, D_{m} ; a_{0}, \ldots, a_{m}\right)$ of all derivations of the form $\sum f_{i} D_{i}$, where $f_{i} \in \mathfrak{H}$ satisfy $\sum_{i}\left(D_{i} f_{i}-a_{i} f_{i}\right)=0$, forms a subalgebra of the derivation algebra of \mathfrak{H}. A special case of such algebras was considered for the first time by Frank (2), and another by Albert and Frank (1). The general case where $\left(D_{0}, \ldots, D_{m}\right)$ is an o. system was considered by Jennings and Ree (4). Here we consider the case where $\left(D_{0}, \ldots, D_{m}\right)$ is an arbitrary g.o. system.

Theorem 2.7. If $\left(D_{0}, \ldots, D_{m}\right)$ is a g.o. system, then the algebra $L\left(D_{0}, \ldots, D_{m}\right.$; a_{0}, \ldots, a_{m}) is isomorphic either to a generalized Witt algebra or to an algebra of the form $L\left(D_{0}{ }^{\prime}, \ldots, D_{r}{ }^{\prime} ; a_{0}{ }^{\prime}, \ldots, a_{r}^{\prime}\right)$, where $\left(D_{0}{ }^{\prime}, \ldots, D_{r}{ }^{\prime}\right)$ is an o. system.

Proof. If $m=0$, then $\left(D_{0}, \ldots, D_{m}\right)$ is an o. system, and so our theorem is clear. We shall proceed by induction on m. Assume that Theorem 2.7 is true for $m-1$. If $\left(D_{0}, \ldots, D_{m}\right)$ is an o. system then our theorem is clear. If $\left(D_{0}, \ldots, D_{m}\right)$ is not an o. system, then, by Theorem 2.2 , we may assume without loss of generality that $D_{m}=\alpha_{0} D_{0}+\ldots+\alpha_{m-1} D_{m-1}$ with $\alpha_{i} \in K$. We have

$$
D_{k}\left(a_{m}-\sum_{i=0}^{m-1} \alpha_{i} a_{i}\right)=D_{m} a_{k}-\sum_{i=0}^{m-1} \alpha_{i} D_{i} a_{k}=0
$$

for $k=0,1, \ldots, m$. Hence

$$
a_{m}-\sum_{i=0}^{m-1} \alpha_{i} a_{i}=\alpha
$$

belongs to K by Lemma 2.1.
If $\alpha=0$ then $\mathfrak{R}=\mathfrak{R}\left(D_{0}, \ldots, D_{m} ; a_{0}, \ldots, a_{m}\right)$ and $\mathfrak{R}_{1}=\mathfrak{R}\left(D_{0}, \ldots, D_{m-1}\right.$; a_{0}, \ldots, a_{m-1}) coincide. This is seen as follows: Let $\sum_{0}{ }^{m} f_{i} D_{i} \in L$. Then by definition, $\sum_{0}{ }^{n}\left(D_{i} f_{i}-a_{i} f_{i}\right)=0$, and hence

$$
\sum_{i=0}^{m-1}\left(D_{i}\left(f_{i}+\alpha_{i} f_{m}\right)-a_{i}\left(f_{i}+\alpha_{i} f_{m}\right)\right)=0
$$

On the other hand,

$$
\sum_{i=0}^{m} f_{i} D_{i}=\sum_{i=0}^{m-1}\left(f_{i}+\alpha_{i} f_{m}\right) D_{i}
$$

Therefore, $\sum_{0}{ }^{m} f_{i} D_{i} \in \mathcal{R}_{1}$ and hence $\mathbb{R} \leqslant \mathcal{R}_{1}$ is proved. Since $\mathbb{R}_{1} \leqslant \mathbb{R}$ is clear, we have $\mathbb{R}=\mathfrak{R}_{1}$.

If $\alpha \neq 0$ then $\mathfrak{R}=\mathfrak{R}\left(D_{0}, \ldots, D_{m} ; a_{0}, \ldots, a_{m}\right)$ coincides with the set Ω_{2} of all derivations of the form $\sum_{0}{ }^{m-1} g_{i} D_{i}$, where g_{i} runs over \mathfrak{N}. This is seen as follows: Clearly we have $L \leqslant L_{2}$. Now, for an arbitrary element $\sum_{0}{ }^{m-1} g_{i} D_{i}$ in ℓ_{2}, define $f_{0}, f_{1}, \ldots, f_{m}$ by the formulae:

$$
\begin{array}{ll}
f_{m}=\alpha^{-1} \sum_{i=0}^{m-1}\left(D_{i} g_{i}-a_{i} g_{i}\right) ; & \\
f_{i}=g_{i}-\alpha_{i} f_{m}, & (0 \leqslant i<m)
\end{array}
$$

Then it is easily seen that $\sum_{0}{ }^{m-1} g_{i} D_{i}=\sum_{0}{ }^{m} f_{i} D_{i}$, and that

$$
\sum_{i=0}^{m}\left(D_{i} f_{i}-a_{i} f_{i}\right)=0
$$

Therefore $\sum_{0^{m-1}} g_{i} D_{i} \in \mathbb{R}$, and hence $\mathbb{R}_{2} \leqslant \mathbb{R}$ is proved. Thus we have $\mathbb{R}=\mathbb{R}_{2}$. Since Ω_{2} is a generalized Witt algebra, this completes the proof of Theorem 2.7.

Consider now a set of derivations (D_{1}, \ldots, D_{m}) of \mathfrak{H} satisfying only the condition (2.1.1) and denote by \mathfrak{R} the subalgebra of the derivation algebra of \mathfrak{N} consisting of all derivations of the form $f_{i} D_{i}$, where $f_{i} \in \mathfrak{N}$. Let \mathfrak{R} be the radical of \mathfrak{N}, and let \mathfrak{D} be the set of all $f \in \mathfrak{N}$ such that $D_{k}\left(D_{j}\left(\ldots\left(D_{i} f\right) \ldots\right)\right)$ $\in \mathfrak{R}$ for any i, j, \ldots, k (the number of indices i, j, \ldots, k is arbitrary). It is easily seen that \mathfrak{D} is an ideal of \mathfrak{H} and that $f \in \mathfrak{O}$ implies $D_{i} f \in \mathfrak{D}$ for all i. Therefore every D_{i} induces a derivation $\bar{D}_{\mathfrak{i}}$ of the algebra $\overline{\mathfrak{A}}=\mathfrak{M} / \mathfrak{O}$. Since $\left[\bar{D}_{i}, \bar{D}_{j}\right]=0$ follows from $\left[D_{i}, D_{j}\right]=0$, we can consider the subalgebra \mathfrak{R} of the derivation algebra of $\overline{\mathfrak{N}}$ consisting of all derivations of the form $\sum \bar{f}_{i} \bar{D}_{i}$, where $\bar{f}_{i} \in \overline{\mathfrak{N}}$. Denote by \bar{f} the image of $f \in \mathfrak{A}$ under the natural homomorphism: $\mathfrak{H} \rightarrow \overline{\mathfrak{A}}$. Since $\sum f_{i} D_{i}=0$ implies $\sum \bar{f}_{i} \bar{D}_{i}=0$, a mapping ϕ is uniquely
defined by $\phi\left(\sum f_{i} D_{i}\right)=\sum \bar{f}_{i} \bar{D} i$. It is easily seen that ϕ is a homomorphism of \mathfrak{R} onto \mathfrak{R}. The kernel \mathfrak{Y} of ϕ consists of elements $\sum f_{i} D_{i}$ such that $\sum \bar{f}_{i} \bar{D}_{i}=0$. Note that $\sum \bar{f}_{i} \bar{D}_{i}=0$ if and only if $\sum f_{i}\left(D_{i} g\right) \in \mathfrak{O}$ for all $g \in \mathfrak{N}$. From this it follows immediately that the ideal $[\Im, \Im]$ of \mathbb{R} is contained in the algebra \mathbb{R}_{1} consisting of all derivations of the form $\sum f_{i} D_{i}$, where $f_{i} \in \mathfrak{O}$. For a positive integer k, denote by Ω_{k} the algebra of all derivations of the form $\sum f_{i} D_{i}$, where $f_{i} \in \mathfrak{S}^{k}$. It is easily seen that $\left[\Omega_{k}, \Omega_{1}\right] \leqslant \Omega_{k+1}$ for any k. Since $\mathfrak{D} \leqslant \mathfrak{R}$, it follows that \mathfrak{D} is nilpotent, say, $\mathfrak{D}^{t}=0$. Then $R_{t}=0$, and hence R_{1} is nilpotent, and \Im is solvable.

Consider now the algebra \bar{R}, assuming that every non-unit element in \mathfrak{A} is contained in the radical \mathfrak{N}. We shall prove that $\left(\bar{D}_{1}, \ldots, \bar{D}_{m}\right)$ is a g.o. system of $\overline{\mathfrak{n}}$. Suppose that $\bar{D}_{i} \bar{f}=\lambda_{i} \bar{f}$ for all i, and that \bar{f} is a non-unit in $\overline{\mathfrak{A}}$. Then $D_{i} f=\lambda_{i} f+g_{i}$, where $g_{i} \in \mathfrak{D}$. Since \bar{f} is not a unit f is also not a unit, and hence by our assumption $f \in \mathfrak{R}$. Then from $D_{i} f-\lambda_{i} f \in \mathfrak{D}$ it follows easily that $f \in \mathfrak{O}$. Therefore $\bar{f}=0$, and hence $\left(\bar{D}_{1}, \ldots, \bar{D}_{m}\right)$ is proved to be a g.o. system. Then, by Theorem 1.6, $\overline{\mathfrak{R}}$ is isomorphic to a generalized Witt algebra.

An associative algebra \mathfrak{A} is called completely primary if the set of non-unit elements coincide with the radical of \mathfrak{N}. Summarizing the above, we have

Theorem 2.8. Suppose that the commutative associative algebra \mathfrak{A} is completely primary. Then for any set of derivatives $\left(D_{1}, \ldots, D_{m}\right)$ of \mathfrak{N}, which satisfies the condition (2.1.1.), the algebra \mathbb{R} consisting of all derivations of the form $\sum f_{i} D_{i}$, where $f_{i} \in \mathfrak{N}$, has a solvable ideal \mathfrak{F} such that $\mathfrak{Z} / \mathfrak{F}$ is isomorphic to a generalized Witt algebra.

Similarly we may obtain the following
Theorem 2.9. Suppose that the commutative associative algebra \mathfrak{A} is completely primary. Then for any set of derivations $\left(D_{1}, \ldots, D_{m}\right)$ of \mathfrak{Y}, which satisfies the condition (2.1.1), an algebra \mathfrak{R} of the form $\mathfrak{R}\left(D_{0}, \ldots, D_{m} ; a_{0}, \ldots, a_{m}\right)$ has a solvable ideal \Im such that $\mathbb{Z} / \mathfrak{\Im}$ is isomorphic either to a generalized Witt algebra or to an algebra of the form $\Omega\left(E_{0}, \ldots, E_{r} ; b_{0}, \ldots, b_{r}\right)$, where $\left(E_{0}, \ldots, E_{r}\right)$ is an o. system of derivations of the group algebra over K of an abelian group of type (p, \ldots, p).

References

1. A. A. Albert and M. S. Frank, Simple Lie algebras of characteristic p, Rendiconti del Sem. Mat., Univ. e Politech di Torino, 14 (1955), 117-39.
2. M. S. Frank, A new class of simple Lie algebras, Proc. Nat. Acad. Sci., 40 (1954), 713-18.
3. N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc., 42 (1937), 206-24.
4. S. A. Jennings and Rimhak Ree, On a class of Lie algebras of characteristic p, Trans. Amer. Math. Soc., 84 (1957), 192-207.
5. Rimhak Ree, On generalized Witt algebras, Trans. Amer. Math. Soc., 83 (1956), 510-46.

The University of British Columbia

[^0]: Received May 12, 1958. This research was supported by the United States Air Force through the Air Research and Development Command under Contract No. AF 49(638)-152.

