
3

O(n) models

In this chapter we study scalar field models with O(n) symmetry de-
scribed by the Euclidean action

S = −
∫

d4x
[
1
2∂µϕ

α∂µϕ
α + 1

2µ
2ϕαϕα + 1

4λ(ϕαϕα)2
]
, (3.1)

where ϕα(x) = α = 0, . . ., n − 1 is an n-vector in ‘internal space’. The
action is invariant under O(n), the group of orthogonal transformations
in n dimensions. For n = 4 this action describes the scalar Higgs sector of
the Standard Model. It can also be used as an effective low-energy action
for pions. Since the models are relatively simple they serve as a good
arena for illustrating scaling and universality, concepts of fundamental
importance in quantum field theory.

It turns out that scalar field models (in four dimensions) become
‘trivial’ in the sense that the interactions disappear very slowly when
the lattice distance is taken to zero. The interpretation and implication
of this interesting phenomenon will be also be discussed.

3.1 Goldstone bosons

We have seen in section 1.2 that the one-component classical scalar field
(i.e. n = 1) can be in two different phases, depending on the sign of
µ2, namely a ‘broken phase’ in which the ground-state value ϕg �= 0,
and a ‘symmetric phase’ in which ϕg = 0. For n > 1 there are also two
phases and we shall see that in the case of continuous internal symmetry
the consequence of spontaneous symmetry breaking is the appearance
of massless particles, called Goldstone bosons.†

† Actually, this is true in space–time dimensions ≥ 3. In one and two space–
time dimensions spontaneous breaking of a continuous symmetry is not possible
(Merwin–Wagner theorem, Coleman’s theorem).
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3.1 Goldstone bosons 33

Fig. 3.1. Shape of U for n = 2 for µ2 < 0.

The potential

U = 1
2µ

2ϕ2 + 1
4λ(ϕ2)2 (3.2)

has a ‘wine-bottle-bottom’ shape, also called ‘Mexican-hat’ shape, if
µ2 < 0 (figure 3.1). It is clear that for µ2 > 0 the ground state is unique
(ϕg = 0) but that for µ2 < 0 it is infinitely degenerate. The equation
∂U/∂ϕk = 0 for the minima, (µ2 + λϕ2)ϕα = 0, has the solution

ϕα
g = vδα,0, v2 = −µ2/λ (µ2 < 0), (3.3)

or any O(n) rotation of this vector. To force the system into a definite
ground state we add a symmetry-breaking term to the action (the same
could be done in the one-component ϕ4 model),

∆S =
∫

dx εϕ0(x), ε > 0. (3.4)

The constant ε has the dimension of (mass)3. The equation for the
stationary points now reads

(µ2 + λϕ2)ϕα = εδα0. (3.5)

With the symmetry breaking (3.4) the ground state has ϕα
g pointing in

the α = 0 direction,

ϕα
g = vδα0, (µ2 + λv2)v = ε. (3.6)

Consider now small fluctuations about ϕg. The equations of motion
(field equations) read

(−∂2 + µ2 + λϕ2)ϕα = εδα0, ∂2 ≡ ∇2 − ∂2t . (3.7)
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34 O(n)models

Linearizing around ϕ = ϕg, writing

ϕ0 = v + σ, ϕk = πk, k = 1, . . ., n− 1, (3.8)

we find

(−∂2 +m2
σ)σ = 0, (−∂2 +m2

π)πk = 0, (3.9)

with

m2
σ = µ2 + 3λv2 = 2λv2 + ε/v, (3.10)

m2
π = µ2 + λv2 = ε/v. (3.11)

For µ2 > 0, v = 0 and m2
σ = m2

π = µ2, whereas for µ2 < 0, v > 0 and
the σ particle is heavier than the π particles. For ε → 0 the π particles
become massless,

m2
π ≈ ε/v0 → 0, v0 = v|ε=0. (3.12)

The simple effective O(n) model reproduces the important features
of Goldstone’s theorem: spontaneous symmetry breaking of a contin-
uous symmetry leads to massless particles, the Goldstone bosons. For
small explicit symmetry breaking the Goldstone bosons get a squared
mass proportional to the strength of the breaking. The massless modes
correspond to oscillations along the vacuum valley of the ‘Mexican hat’.

As mentioned earlier, the O(4) model is a reasonable model for the
effective low-energy interactions of pions amongst themselves. The par-
ticles π± and π0 are described by the fields πk(x). The σ field (after
which the model is named the σ model) corresponds to the very broad σ

resonance around 900 MeV. The model loses its validity at such energies,
for example the ρ mesons with mass 770 MeV are completely neglected.

3.2 O(n) models as spin models

We continue in the quantum theory. The lattice regularized action will
be taken as

S = −
∑
x

[
1
2∂µϕ

α
x∂µϕ

α
x + 1

2m
2
0ϕ

α
xϕ

α
x + 1

4λ0(ϕ
α
xϕ

α
x)2
]
. (3.13)

We have changed the notation for the parameters: µ2 → m2
0, λ → λ0.

The subscript 0 indicates that these are ‘bare’ or ‘unrenormalized’ pa-
rameters that differ from the physical ‘dressed’ or ‘renormalized’ values
which are measured in experiments.
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3.2 O(n) models as spin models 35

We shall mostly use lattice units, a = 1. Using ∂µϕ
α
x = ϕα

x+µ̂ − ϕα
x ,

the action can be rewritten in the form

S =
∑
xµ

ϕα
xϕ

α
x+µ̂ −

∑
x

[
1
2 (2d+m2

0)ϕ
2 + 1

4λ0(ϕ
2)2
]
, (3.14)

where d is the number of space–time dimensions. Another standard
choice of parameters is obtained by writing

ϕα =
√

2κφα, m2
0 =

1− 2λ
κ

− 2d, λ0 =
λ

κ2
, (3.15)

which brings S into the form

S = 2κ
∑
xµ

φαxφ
α
x+µ̂ −

∑
x

[
φαxφ

α
x + λ(φαxφ

α
x − 1)2

]
. (3.16)

The partition function is given by

Z =

(∏
xα

∫ ∞

−∞
dφαx

)
expS ≡

∫
Dµ(φ) exp

(
2κ
∑
xµ

φxφx+µ̂

)
, (3.17)

where we have introduced an integration measure Dµ(φ), which is the
product of probability measures dµ(φ) for a single site,

Dµ(φ) =
∏
x

dµ(φx), dµ(φ) = dnφ exp[−φ2 − λ(φ2 − 1)2 ]. (3.18)

Note that λ has to be positive in order that the integrations
∫
dµ(φ)

make sense.
The second form in (3.17) shows Z as the partition function of a

generalized Ising model, a typical model studied in statistical physics.
For λ→∞ the distribution dµ(φ) peaks at φ2 = 1,∫

dµ(φ) f(φ)∫
dµ(φ)

→
∫
dΩn f(φ)∫
dΩn

, (3.19)

where
∫
dΩn is the integral over the unit sphere Sn in n dimensions. In

particular, for n = 1,∫
dµ(φ) f(φ)∫
dµ(φ)

→ 1
2
[f(1) + f(−1)]. (3.20)

Hence, for n = 1 and λ → ∞ we get precisely the Ising model in d

dimensions. For n = 3, d = 3 the model is called the Heisenberg model
for a ferromagnet. The O(n) models on the lattice are therefore also
called (generalized) spin models.
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36 O(n)models

3.3 Phase diagram and critical line

The spin model aspect makes it plausible that the models can be in a
broken (ferromagnetic) or in a symmetric (paramagnetic) phase, such
that in the thermodynamic limit and for zero temperature

〈φαx〉 ≡ vα �= 0, κ > κc(λ), (3.21)

= 0, κ < κc(λ). (3.22)

Here κc(λ) is the boundary line between the two phases in the λ–κ plane.
We can give a mean-field estimate of κc as follows. Consider a site x.

The probability for φαx is proportional to dµ(φx) exp[ 2κφαx
∑

µ(φαx+µ̂ +
φαx−µ̂) ]. Assume that we may approximate φα at the 2d neighbors of x
by their average value,

∑
µ(φαx+µ̂ + φαx−µ̂) → 2dvα. Then the average

value of φαx can be written as

〈φαx〉 =
∫
dµ(φ)φα exp(4κdφβvβ)∫
dµ(φ) exp(4κdφβvβ)

. (3.23)

By consistency we should have 〈φαx〉 = vα, or

vα =
1

z(J)
∂

∂Jα
z(J)|J=4κdv, (3.24)

z(J) =
∫

dµ(φ) exp(Jαφα). (3.25)

The integral z(J) can be calculated analytically in various limits, nu-
merically otherwise. The basics are already illustrated by the Ising case
n = 1, λ =∞,

z(J) = z(0) cosh(J), (3.26)

v = tanh(4κdv), n = 1, λ =∞. (3.27)

The equation for v can be analyzed graphically, see figure 3.2. As κ↘ κc,
evidently v → 0. Then we can expand

v = tanh(4κdv) = 4κdv − 1
3 (4κdv)

3 + · · ·, (3.28)

κc =
1
4d
, (3.29)

v2 ∝ (κ− κc), κ↘ κc. (3.30)

Analysis for arbitrary n and λ leads to similar conclusions,

z(J) = z(0)〈1 + φαJα + 1
2φ

αφβJαJβ + · · ·〉1 (3.31)

= z(0)
[
1 +

1
2
〈φ2〉1
n

JαJα + · · ·
]
, (3.32)
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3.3 Phase diagram and critical line 37

Fig. 3.2. Mean-field equation u/4dκ = tanhu, u = 4dκv, for n = 1, λ = ∞.

Fig. 3.3. Critical lines in the λ–κ plane and the m2
0–λ0 plane (qualitative).

where we used the notation

〈F 〉1 =
∫
dµ(φ)F (φ)∫

dµ(φ)
, (3.33)

and

〈φαφβ〉1 = δαβ
〈φ2〉1
n

, (3.34)

for the one-site averages. So we find

κc(λ) =
n

4d〈φ2〉1
=

n

4d
, λ =∞, (3.35)

=
1
2d
, λ = 0. (3.36)

The behavior v2 ∝ (κ − κc) is typical for a second-order phase
transition in the mean-field approximation. The line κ = κc(λ) is a
critical line in parameter space where a second-order phase transition
takes place. Note that in general m2

0 is negative at the phase boundary
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38 O(n)models

(cf. (3.15) and figure 3.3). The critical exponent β in

v ∝ (κ− κc)β (3.37)

differs in general from the mean-field value β = 1
2 . This is the subject of

the theory of critical phenomena, and indeed, that theory is crucial for
quantum fields. In four dimensions, however, it turns out that there are
only small corrections to mean-field behavior.

We have restricted ourselves here to the region κ > 0. For κ < 0
the story more or less repeats itself, we then get an antiferromag-
netic phase for κ < −κc(λ). The region with negative κ can be
mapped onto the region of positive κ by the transformation φαx →
(−1)x1+x2+···+xdφαx .

It is important that the phase transition is of second order rather than,
for example, of first order. In a second-order transition the correlation
length diverges as a critical point is approached. The correlation length ξ

can then be interpreted as the physical length scale and, when physical
quantities are expressed in terms of ξ, the details on the scale of the
lattice distance become irrelevant. The correlation length is defined in
terms of the long-distance behavior of the correlation function,

Gαβ
xy ≡ 〈φαxφβy 〉 − 〈φαx〉〈φβy 〉 (3.38)

∝ |x− y|2−d−ηe−|x−y|/ξ, |x− y| → ∞. (3.39)

Here ξ may in principle depend on the direction we take |x−y| to infinity,
but the point is that it becomes independent of that direction (a lattice
detail) as ξ →∞. In the symmetric phase ξ is independent of α and β.
The exponent η is another critical exponent.

The correlation length is the inverse mass gap, the Compton wave
length of the lightest particle, in lattice units,

ξ = 1/am. (3.40)

This can be understood from the spectral representation

Gαβ
xy =

∑
p,γ 	=0

〈0|φα0 |pγ〉〈pγ|φ
β
0 |0〉eip(x−y)−ωpγ |x4−y4|, (3.41)

where |0〉 is the ground state (vacuum), |pγ〉 are states with total
momentum p, distinguished by other quantum numbers γ, and ωpγ =
Ep,γ − E0 is the difference in energy from the ground state. This
representation is obtained by writing the path integral in terms of the
transfer operator and its eigenstates in the limit of zero temperature,
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3.4 Weak-coupling expansion 39

using translation invariance (cf. problem (viii) in chapter 2). Expres-
sion (3.41) is a sum of exponentials exp(−ωt), t = |x4 − y4|. For
large t the exponential with smallest ω dominates, G ∝ exp(−ωmint),
hence ξ = 1/ωmin, with ωmin = m the minimum energy or mass
gap.

In the broken phase we expect Goldstone bosons (section 3.1). If these
are made sufficiently heavy by adding an explicit symmetry-breaking
term

∑
x εϕ

n
x to the action (cf. equation (3.11)), we can expect two

mass gaps: mσ for the components of Gαβ parallel to vα and mπ for the
components perpendicular to vα. When the explicit symmetry breaking
is diminished, 2mπ becomes less than mσ and the σ particle becomes
unstable, σ → 2π. Then the large-distance behavior for the σ correlation
function is controlled by 2mπ rather than by the mass mσ of the unstable
particle. Since mπ is expected to be zero in absence of explicit symmetry
breaking, the transverse correlation length will be infinite in this case
(for infinite volume).

The region near the phase boundary line where ξ 
 1 is called the
scaling region. In this region, at large distances |x − y|, the correlation
function Gxy is expected to become a universal scaling function (inde-
pendent of lattice details, with 1/m as the only relevant length scale
rather than a).

3.4 Weak-coupling expansion

Expansion of the path-integral expectation value

〈F (ϕ)〉 =
1
Z

∫
DϕeS(ϕ)F (ϕ), (3.42)

S(ϕ) = −
∑
x

[
1
2
∂µϕ

α∂µϕ
α +

1
2
m2
0ϕ

2 +
1
4
λ0(ϕ2)2

]
, (3.43)

in powers of λ0 leads to Feynman diagrams in terms of the free propaga-
tor and vertex functions. For simplicity we shall deal with the symmetric
phase, which starts out with m2

0 > 0 in the weak-coupling expansion.
The free propagator is given by

0Gαβ
xy = δαβ

∑
p

eip(x−y) 1
m2
0 +
∑

µ(2− 2 cos pµ)
, (3.44)
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40 O(n)models

Fig. 3.4. Diagrams for 0G, 0Γ(2) and 0Γ(n). Notice the convention of attaching
a small circle at the end of external lines that represent propagators; without
this ◦ the external line does not represent a propagator.

which is minus the inverse of the free second-order vertex function
δαβSxy (recall (2.99) and (2.108)), which we shall denote here by 0Γ(2).
In momentum space

0Γαβ(p) = −δαβ

[
m2
0 +
∑
µ

(2− 2 cos pµ)

]
. (3.45)

The bare (i.e. lowest-order) vertex functions 0Γ(n) are defined by the
expansion of the action S around the classical minimum ϕα

x = vα,

S(ϕ) =
∑
n

1
n!

0Γx1···xn
α1···αn

(ϕα1
x1
− vα1) · · · (ϕαn

xn
− vαn). (3.46)

Since they correspond to a translationally invariant theory, their Fourier
transform contains a δ̄ function expressing momentum conservation
modulo 2π (cf. (2.90)),

∑
x1···xn

e−ip1x1···−ipnxn 0Γx1···xn
α1···αn

= 0Γα1···αn
(p1 · · · pn) δ̄p1+···+pn,0. (3.47)

In the symmetric phase (vα = 0) there is only one interaction vertex
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3.4 Weak-coupling expansion 41

function, the four-point function

0Γwxyz
αβγδ = −2λ0(δαβδγδ + δαγδβδ + δαδδβγ)δwxδwyδwz,

0Γα1···αn
(p1 · · · pn) = −2λ0 sαβγδ, (3.48)

sαβγδ ≡ δαβδγδ + δαγδβδ + δαδδβγ . (3.49)

The free propagators and vertex functions are illustrated in figure 3.4.
It can be shown that disconnected subdiagrams without external

lines (‘vacuum bubbles’) cancel out between the numerator and the
denominator in the above expectation values. The expectation values
can be rewritten in terms of vertex functions, which are simpler to study
because they have fewer diagrams in a given order in λ0. The two- and
four-point functions can be expressed as

〈ϕα1
x1
ϕα2
x2
〉 = Gα1α2

x1x2
≡ G12, (3.50)

〈ϕα1
x1
ϕα2
x2
ϕα3
x3
ϕα4
x4
〉 = G12G34 +G13G24 +G14G23 +G1234, (3.51)

and the vertex functions Γ(2) and Γ(4) can be identified by writing

G12 = −Γ−1
12 , (3.52)

G1234 = G11′G22′G33′G44′Γ1′2′3′4′ , (3.53)

where as usual repeated indices are summed. Notice that Γ123 is zero in
the symmetric phase.

To one-loop order Γ12 and Γ1234 are given by the connected diagrams
in figure 3.5,

Γ12 = 0Γ12 + 1
2
0Γ1234 0G34, (3.54)

Γ1234 = 0Γ1234 + 1
2
0Γ1256 0G55′ 0G66′ 0Γ5′6′34

+ two permutations. (3.55)

In momentum space, we have conservation of momentum modulo 2π at
each vertex. This may be replaced by ordinary momentum conservation
because all functions in momentum space have period 2π anyway. We
find for the two-point vertex function

Γα1α2(p) = −(m2
0 + p̂2)δα1α2

+
1
2
(−2λ0)sα1α2α3α4 δα3α4

∑
l

1

m2
0 + l̂2

(3.56)

≡ −δα1α2 [m
2
0 + p̂2 + λ0(n+ 2)I(m0) ], (3.57)
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Fig. 3.5. Diagrams for Γ12 and Γ1234 to one-loop order.

and for the four-point vertex function

Γα1α2α3α4(p1p2p3p4) = −2λ0sα1α2α3α4

+
1
2
(2λ0)2sα1α2α5α6sα3α4α5α6

∑
l

1

m2
0 + l̂2

× 1
m2
0 + 2

∑
µ(1− cos(l + p1 + p2)µ)

+ two permutations (3.58)

≡ −2λ0sα1α2α3α4 + 2λ20tα1α2α3α4J(m0, p1 + p2)

+ two permutations.

Here

l̂2 = 2
∑
µ

(1− cos lµ), (3.59)

and similarly for p̂2, and (using the condensed notation δ12 = δα1α2 etc.)

s1234 = δ12δ34 + δ13δ24 + δ14δ23, (3.60)

t1234 = s1256s3456 = δ12δ34(n+ 4) + 2δ13δ24 + 2δ14δ23. (3.61)
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Fig. 3.6. Momentum flow.

The functions I and J are given by

I(m0) =
∫ π

−π

d4l

(2π)4
1

m2
0 + l̂2

, (3.62)

J(m0, p) =
∫ π

−π

d4l

(2π)4
1

{m2
0 + l̂2}{m2

0 + 2
∑

µ(1− cos(l + p)µ)}
.

We assumed an infinite lattice,
∑

l →
∫
d4l/(2π)4. The momentum flow

in the second term in (3.58) is illustrated in figure 3.6
We are interested in the scaling forms of I and J . Let us therefore

restore the lattice distance a. The functions I and J have dimensions a−2

and a0, respectively. We are interested in a−2I(am0) and J(am0, ap), for
a → 0. This suggests expanding in powers of a and keeping only terms
nonvanishing as a → 0. For I we need terms of order a0 and a2, for
J only terms of order a0. Consider first I. A straightforward expansion
1/(a2m2

0 + l̂2) =
∑

n(−a2m2
0)

n/(l̂2)n+1 leads to divergences in the loop
integrals at the origin l = 0. There are various ways to deal with this
situation. Here we shall give just one. Intuitively we know that the region
near the origin in momentum space corresponds to continuum physics.
Let us split the integration region into a ball round the origin with radius
δ and the rest, with a � δ. The radius δ is sent to zero, such that, for
the integrand in the region |l| < δ, we may use the continuum form l2

for l̂2. Then

I = I|l|<δ + I|l|>δ, (3.63)

I|l|<δ(am0) =
∫
|l|<δ

d4l

(2π)4
1

a2m2
0 + l2

=
2π2

(2π)4

∫ δ

0

l3 dl
1

a2m2
0 + l2
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=
1

16π2

[
δ2 − a2m2

0 ln
(
a2m2

0 + δ2

a2m2
0

)]

=
1

16π2
[−a2m2

0 ln δ2 + a2m2
0 ln(a2m2

0)] +O(a4, δ2).

(3.64)

With symbols like O(a2) we shall mean terms proportional to a2 or
a2 ln a2. Note that expressing also l in physical units, l → al, would
bring a−2I|l|<δ into continuum form with a spherical cutoff δ/a. The
integral I|l|>δ can be expanded in a2 without encountering ln(a2m2

0)
terms,

I|l|>δ(am0) = I|l|>δ(0) + I ′|l|>δ(0)a2m2
0 +O(a4)

= I(0) + I ′|l|>δ(0)a2m2
0 +O(a4, δ2). (3.65)

where I ′ ≡ ∂I/∂(a2m2
0). Instead, we encounter ln δ2 terms in I ′|l|>δ(0).

However, these cancel out against the ln δ2 term in (3.64) because the
complete integral is independent of δ. So we get

I(am0) = C0 − C2a
2m2

0 +
1

16π2
a2m2

0 ln(a2m2
0), (3.66)

C0 = I(0) = 0.154933 . . . (3.67)

C2 = lim
δ→0

[∫ π

−π,|l|>δ

d4l

(2π)4
1

(l̂2)2
+

1
16π2

ln δ2
]

(3.68)

= 0.0303457. . .. (3.69)

The function J can be evaluated in similar fashion. We need
J(am0, ap) for a → 0. For a = 0 the integral for J is logarithmically
divergent at the origin. To deal with this we use the same procedure,

J = J|l|<δ + J|l|>δ, (3.70)

J|l|<δ =
∫
|l|<δ

d4l

(2π)4
1

[a2m2
0 + l2][a2m2

0 + (l + ap)2]
, (3.71)

J|l|>δ =
∫ −π

π,|l|>δ

d4l

(2π)4
1

(l̂2)2
+O(a2) (3.72)

(J|l|>δ can be expanded in powers of a, the term linear in a vanishes).
With the help of the identity

1
[a2m2

0 + l2][a2m2
0 + (l + ap)2]

=
∫ 1

0

dx
1

{x[a2m2
0 + l2] + (1− x)[a2m2

0 + (l + ap)2]}2 (3.73)
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and the transformation of variable l′ = l + (1 − x)ap we get for the
inner-region integral

J|l|<δ =
∫ 1

0

dx

∫
D

d4l′

(2π)4
1

[a2m2
0 + l′2 + x(1− x)a2p2]2

. (3.74)

Here the domain of integration D is obtained from the ball with radius δ
by shifting it over (1−x)ap. Replacing D by the original ball with radius
δ leads to an error of order a, which may be neglected. (The difference
between the two integration regions has a volume O(apδ3), the integrand
is O(δ−4).) Then

J|l|<δ =
∫ 1

0

dx
2π2

(2π)4

∫ δ

0

l3 dl
1

[a2m2
0 + l2 + x(1− x)a2p2]2

=
1

16π2

∫ 1

0

dx

[
ln(a2∆ + δ2)− ln(a2∆)− δ2

a2∆ + δ2

]

=
1

16π2

[
ln δ2 −

∫ 1

0

dx ln(a2∆)− 1
]

+O(a2), (3.75)

∆ ≡ m2 + x(1− x)p2. (3.76)

Combining the term ln δ2/16π2 with J|l|>δ as in (3.68) we get

J(am0, ap) = − 1
16π2

∫ 1

0

dx ln[ a2(m2
0+x(1−x)p2)]+C2−

1
16π2

+O(a2).

(3.77)
(We expect errors O(a2), i.e. not O(a): a will appear together with the
external momentum as apµ or as a2m2

0, and there will not be odd powers
of pµ because of cubic symmetry, including reflections.)

Summarizing, we have obtained the following continuum forms for the
vertex functions (in physical units):

Γαβ(p) = −δαβ
{
m2
0 + p2 + λ0(n+ 2)

[
C0
a2
− C2m

2
0

+
1

16π2
m2
0 ln(a2m2

0)
]}

, (3.78)

Γα1α2α3α4(p1p2p3p4) = −2λ0sα1α2α3α4

+ 2λ20tα1α2α3α4

{
C2 −

1
16π2

− 1
16π2

×
∫ 1

0

dx ln[a2(m2
0 + x(1− x)(p1 + p2)2)]

}
+ two permutations, (3.79)
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We see that Γ(2) and Γ(4) are, respectively, quadratically and logarith-
mically divergent as a→ 0.

3.5 Renormalization

Perturbative renormalization theory tells us that, when we rescale the
correlation functions G(n) by a suitable factor Z−n/2 and express them in
terms of a suitable renormalized mass parameter mR and renormalized
coupling constant λR, the result is finite as a → 0. The renormalized
G
(n)
R = Z−n/2G(n) are the correlation functions of renormalized fields

ϕR = Z−1/2ϕ. From (3.53) we see that the renormalized vertex functions
are then given by

ΓR(n) = Zn/2Γ(n). (3.80)

The wave function renormalization constant Z and the renormalized
mass parameter mR may be defined by the first two terms of the
expansion

Γαβ(p) = −Z−1(m2
R + p2 +O(p4))δαβ . (3.81)

Since the one-loop diagram for Γ(2) is momentum independent, the order
λ contribution to Z vanishes in the O(n) model,

Z = 1 +O(λ2). (3.82)

For mR we find from (3.78)

m2
R = m2

0 + λ0(n+ 2)
[
C0a

−2 − C2m
2
0 +

1
16π2

m2
0 ln(a2m2

0)
]
. (3.83)

A renormalized coupling constant λR may be defined in terms of Γ(4) at
zero momentum, by writing

ΓRα1α2α3α4
(0, 0, 0, 0) = −2λR sα1α2α3α4 . (3.84)

From the result (3.79) for the four-point function, using (3.82) and

t1234 + t1324 + t1423 = (n+ 8)s1234, (3.85)

we find

λR = λ0 + λ20
n+ 8
16π2

[ln(a2m2
0) + c], (3.86)

c = − 16π2

n+ 8

(
C2 −

1
16π2

)
. (3.87)
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To express the correlation functions in terms of mR and λR we consider
λR as an expansion parameter and invert (3.83), (3.86),

m2
0 = m2

R − λR(n+ 2)
[
C0a

−2 − C2m
2
R +

1
16π2

m2
R ln(a2m2

R)
]

+O(λ2R), (3.88)

λ0 = λR − λ2R
n+ 8
16π2

[ln(a2m2
R) + c] +O(λ3R). (3.89)

Inserting these relations into (3.78), (3.79) gives the renormalized vertex
functions

ΓRαβ(p) = −δαβ(m2
R + p2) +O(λ2R), (3.90)

ΓRα1α2α3α4
(p1p2p3p4) = −2λRsα1α2α3α4 − 2λ2Rtα1α2α3α4

× 1
16π2

∫ 1

0

dx ln
(
m2
R + x(1− x)(p1 + p2)2

m2
R

)
+ two permutations +O(λ3R), (3.91)

which are indeed independent of the lattice spacing a. Notice that the
constants C0, C1 and C2 are absent: all reference to the lattice has
disappeared from the renormalized vertex functions.

To this order the mass m of the particles is equal to mR. The mass m
is given by the value of −p2 where Γ(2) is zero and G(2) has a pole. In
higher orders the mass m will be different from the renormalized mass
parameter mR: m = mR(1 +O(λ2R)).

The O(n) tensor structure in (3.84) is the general form of Γ(4) at
a symmetry point where (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 ≡ µ2.
We can therefore also define a ‘running renormalized coupling’ λ̄(µ) at
momentum scale µ by

ΓRα1α2α3α4
(p1p2p3p4) = −2λ̄(µ)sα1α2α3α4 , symmetry pointµ, (3.92)

which gives

λ̄(µ) = λ0 + λ20
n+ 8
16π2

{∫ 1

0

dx ln[a2m2
0 + x(1− x)a2µ2] + c

}
. (3.93)

Expressing the running coupling in terms of λR and mR leads to

λ̄(µ) = λR + λ2R
n+ 8
16π2

∫ 1

0

dx ln[1 + x(1− x)µ2/m2
R] +O(λ3R)

= λR, µ = 0, (3.94)

≈ λR + λ2R
n+ 8
16π2

[ln(µ2/m2
R)− 2], µ2 
 m2

R. (3.95)
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The running coupling indicates the strength of the interactions at
momentum scale µ. Expressing the vertex function (3.91) in terms of
this running coupling shows that, at large momenta, terms of the type
λ2R ln[(p1 + p2)2/m2

R] are replaced by λ̄2(µ) ln[(p1 + p2)2/µ2]. So, on
choosing µ2 equal to values of (pi + pj)2 that typically occur in a given
situation, the logarithms are generically not large and the strength of
the four-point vertex on this momentum scale is expressed by λ̄(µ).

3.6 Renormalization-group beta functions

The renormalized quantities do not depend explicitly on the lattice
distance, all dependence on a is absorbed by the relations between m0,
λ0 and mR, λR. Thus it seems that we can take the continuum limit
a→ 0 in the renormalized quantities. Changing a while keeping mR and
λR fixed implies that m0 and λ0 must be chosen to depend on a, as given
by (3.88) and (3.89). We see that a2m2

0 decreases and becomes negative
as a decreases, even in the symmetric phase. This we found earlier in the
mean-field approximation. However, the bare λ0 increases as a decreases
and beyond a certain value we can no longer trust perturbation theory
in λ0. Neither can we trust (3.89) if a becomes too small, since then the
coefficient of λ2R blows up.

Let us look at the problem in another way. Consider what happens
to λR as we approach the phase boundary at fixed λ0. In (3.86) we may
replace to this order m0 by mR,

λR = λ0 + λ20
n+ 8
16π2

[ln(a2m2
R) + c] +O(λ30). (3.96)

We see that λR decreases as a decreases, but when the logarithm becomes
too large the perturbative relation breaks down. We can extract more
information by differentiating with respect to a and writing the result
in terms of λR,

βR(λR) =
[
a
∂λR
∂a

]
λ0

=
[
amR

∂λR
∂amR

]
λ0

= β1λ
2
0 +O(λ30) (3.97)

= β1λ
2
R + β2λ

3
R + · · ·, (3.98)

β1 =
n+ 8
8π2

. (3.99)

The function βR(λR) is one of the renormalization-group functions
introduced by Callan and by Symanzik. For a clear derivation of the
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3.6 Renormalization-group beta functions 49

Callan–Symanzik equations in our context see [20]. They are dimen-
sionless functions which may be expressed in terms of renormalized
vertex functions and are given by renormalized perturbation theory as
a series

∑
k βkλ

k
R. This means that the higher-order terms of the form

λk0 [ln(amR)]l can be rearranged in terms of powers of λR with coefficients
that do not depend any more on ln(amR). This is the justification for
rewriting (3.97) in terms of λR.

Integration of ∂λR/∂t = −β1λ2R gives

λR =
λ1

1 + λ1β1t
, t ≡ −[ln(amR) + c/2], (3.100)

where λ1 is an integration constant, λ1 = λ0 +O(λ20). As a→ 0, t→∞
and we see that λR approaches zero. The approximation of using only
the lowest-order approximation to the beta function is therefore self-
consistent.

Let us try the beta-function trick on λ0 to see whether we can
determine how it depends on a if we keep λR fixed. From (3.89) we
find [

a
∂λ0
∂a

]
λR

≡ −β0(λ0) = −β1λ20 + · · · . (3.101)

Note the change of sign compared with (3.98). Integrating this equation
gives

λ0 =
λ2

1− λ2β1t
, (3.102)

where λ2 = λR + O(λ2R). We see that λ0 blows up at the ‘Landau pole’
t = 1/λ2β1, but, of course, before reaching this value the first-order
approximation to β0(λ0) breaks down.

Consider next the beta function β̄(λ̄) for the running coupling λ̄(µ)
on momentum scale µ. From (3.95) we see that, for large µ
 mR,[
µ
∂λ̄(µ)
∂µ

]
λR,mR

≡ β̄(λ̄) = β1λ̄
2 + · · ·, µ
 mR, (3.103)

again with the same universal coefficient for the first-order term in its
expansion. The solution is similar to that for λ0,

λ̄ =
λ3

1− λ3β1 ln(µ/mR)
. (3.104)

The effective coupling λ̄ increases with momentum scale µ. To see if it
can become arbitrarily large we need to go beyond the weak-coupling
expansion.
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Fig. 3.7. Two possible shapes of β0(λ0). The arrows denote the flow of λ0 for
increasing t = − ln(amR) + constant.

We end this section by speculating about different shapes of the beta
function β0 for the bare coupling constant. Two typical possibilities are
shown in figure 3.7. In case (a) there is a fixed point λ∗ that attracts
the flow of λ0 for increasing ‘time’ t. Near λ∗ we can linearize

∂λ0
∂t

= −A(λ0 − λ∗), (3.105)

λ0 − λ∗ = C exp(−At), t→∞, (3.106)

where C is an integration constant. The large-t behavior can be rewritten
in the form

ξ =
1

amR
∝ (λ∗ − λ0)−ν , ν = 1/A, (3.107)

which shows that the critical exponent ν is determined by the slope of
the beta function at the fixed point. Since t can go to infinity without a
problem, a continuum limit a→ 0 is possible for case (a).

In case (b) the beta function does not have a zero, apart from the
origin λ0 = 0. Supposing a behavior

∂λ0
∂t

= Aλα0 , λ0 →∞, α > 0, A > 0, (3.108)

leads to the asymptotic solution

λ
−(α−1)
0 = −A(α− 1)(t− t1), (3.109)

where we assumed α > 1. In this case λ0 becomes infinite in a finite
‘time’ t = t1. Since λ0 =∞ is the largest value λ0 can take, t cannot go
beyond t1, a cannot go to zero and a continuum limit is not possible.
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3.7 Hopping expansion 51

A similar discussion can be given for the running coupling λ̄. Cases
(a) and (b) also illustrate possible behaviors of the running coupling for
large momentum scales µ. In case (a) the running coupling approaches
λ∗ as µ → ∞, whereas in case (b) λ̄ goes to infinity on some large but
finite momentum scale µ1.

A fixed point like λ∗ is called ultraviolet stable as it attracts the
running coupling when µ → ∞, while the fixed point at the origin is
called infrared stable as it attracts the running coupling for µ→ 0. Case
(a) is like the situation in three Euclidean dimensions (with a reflection
about the horizontal axis), whereas we shall see in the following that in
four dimensions the situation is like case (b).

The main conclusion in this section is that λR → 0 as we approach
the phase boundary at fixed sufficiently small λ0. To see whether we can
avoid a noninteracting theory in the continuum limit, we need to be able
to investigate large λ0. This can be done with the hopping expansion
and with numerical simulations.

3.7 Hopping expansion

Consider the partition function in the form

Z =
∫

Dµ(φ)
∏
xµ

exp(2κφαxφ
α
x+µ̂), (3.110)

where Dµ(φ) =
∏

x dµ(φx) is the product of one-site measures defined in
(3.18). Expansion in κ (hopping expansion) leads to products of one-site
integrals of the form

∫
Dµ(φ) ≡ Z0 =

(∫
dµ(φ)

)# sites
, (3.111)∫

Dµ(φ)φαxφ
β
y = δxyZ0〈φαφβ〉1, (3.112)∫

Dµ(φ)φαxφ
β
yφ

γ
z = 0, (3.113)∫

Dµ(φ)φαxφ
β
xφ

γ
xφ

δ
x = Z0〈φαφβφγφδ〉1, (3.114)

etc., where # sites is the total number of lattice sites. Odd powers of φ
vanish in the one-site average

〈F 〉1 =
∫

dµ(φ)F (φ)
/∫

dµ(φ). (3.115)
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Fig. 3.8. Diagrams in the expansion of exp(2κ
∑

xµ φα
xφ

α
x+µ̂).

Fig. 3.9. The diagrams of figure 3.8 after integration over φ. The fat dot
denotes the four-point vertex γ4.

Before integration over φ, each term in the expansion can be represented
by a dimer diagram ‘on the lattice’, as illustrated in figure 3.8. The dots
indicate the fields φ. The integration over φ leads to diagrams as shown
in figure 3.9.

The one-site integrals can be treated as a mini field theory, with
propagators gαβ and vertex functions γα1···α4 , γα1···α6 , . . .. For instance,
γαβγδ can be defined by

〈φαφβ〉1 = gαβ , (3.116)

〈φαφβφγφδ〉1 = gαβgγδ + gαγgβδ + gαδgβγ + gαβγδ, (3.117)

gαβγδ = gαα
′
gββ

′
gγγ

′
gδδ

′
γα′β′γ′δ′ , (3.118)

analogously to (3.53). By O(n) symmetry we have

gαβ = δαβ g, g =
〈φ2〉1
n

, (3.119)

gαβγδ = sαβδγ
〈(φ2)2〉1
n2 + 2n

, (3.120)

γαβγδ = sαβδγ γ4, γ4 =
n3

n+ 2
〈(φ2)2〉1
〈φ2〉41

− n2

〈φ2〉21
, (3.121)

where sαβδγ = δαβδγδ + · · · has been defined in (3.49). For small λ,
γ4 ∝ λ, whereas for λ→∞, γ4 → −2n4/(n+ 2).

As usual, one expects that disconnected diagrams cancel out in ex-
pressions for the vertex functions, and that the two-point function,
Gαβ

xy = 〈φαxφβy 〉, can be expressed as a sum of connected diagrams. It
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Fig. 3.10. Random-walk contribution to the propagator.

is instructive to make an approximation for the two-point function in
which the vertex functions γ(4), γ(6), . . ., are neglected at first. This
leads to the random-walk approximation

Gαβ
xy = δαβ

∞∑
L=0

(2κ)LgL+1(HL)xy + ‘interactions’, (3.122)

illustrated in figure 3.10. Here ‘interactions’ denote the neglected con-
tributions proportional to γ(4), γ(6), . . ., and we introduced the hopping
matrix

Huv =
∑
µ

(δu+µ̂−v,0 + δv+µ̂−u,0). (3.123)

Applying this matrix e.g. to the vector δv,x gives a non-zero answer only
for u’s that are nearest neighbors of x, i.e. all sites that can be reached
from x in ‘one step’. Applying H once more corresponds to making one
more step in all possible directions, etc. In this way a random walk
is built up by successive application of H. Each link in the expansion
contributes a factor 2κ, and each site a factor g. In momentum space we
get

Gαβ
xy = δαβ

∫ π

−π

d4p

(2π)4
eip(x−y)g

∑
L

(2κg)LH(p)L (3.124)

= δαβ

∫ π

−π

d4p

(2π)4
eip(x−y) g

1− 2κgH(p)
, (3.125)

where

H(p) =
∑
x

e−ipxHx,0 =
∑
µ

2 cos pµ. (3.126)

In the random-walk approximation the two-point correlation function
has the free-field form. For small momenta we identify the mass param-
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Fig. 3.11. Four random walks correlated by the one site γ4.

eter mR and the wavefunction-renormalization constant Zφ,

Gαβ(p) = δαβ
Zφ

m2
R + p2 +O(p4)

, (3.127)

Zφ = (2κ)−1, m2
R = (2gκ)−1 − 2d. (3.128)

This Zφ corresponds to Zϕ = 1 (cf. (3.15)). When mR → 0 we enter
the scaling region. In the random-walk approximation this occurs at
κ = κc = 1/4gd, which is the mean-field value (3.36). This is not so
surprising as the mean-field approximation is good for d → ∞, when
also the random-walk approximation is expected to be good, because
the chance of self-intersections in the walk, where γ(4), γ(6), . . . come
into play, goes to zero. Notice that κc is also the radius of convergence
of the expansion (3.124).

Within the random-walk approximation we have the estimate for the
renormalized coupling (cf. (3.80)) as illustrated in figure 3.11,

−2λR = Z2γ4 =
γ4
4κ2c

, (3.129)

λR → λ0, λ→ 0, (3.130)

→
(

2d
n

)2
n2

n+ 2
=

32
3
, λ→∞, d = 4, n = 4. (3.131)

This indicates already that λR is not infinite at λ =∞.
The partition function and expectation values can be expressed as a

systematic expansion in κ. This is called the hopping expansion because
the random-walk picture suggests propagation of particles by ‘hopping’
from one site to the next. By the analogy of κ with the inverse tempera-
ture in the Ising model, the expansion is known in statistical physics as
the high-temperature expansion, or, with increasing sophistication, the
linked-cluster expansion. Using computers to help with the algebra, the
expansion can be carried out to high orders (see e.g. [22] and references
therein).
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A good property of the hopping expansion is that it has a non-zero
radius of convergence, for any fixed λ ∈ (0,∞). This is in contrast to
the weak-coupling expansion, which is an asymptotic expansion (as is
typical for saddle-point expansions) with zero radius of convergence (see
for example [13]). An expansion f(x) =

∑∞
k=0 fkx

k is called asymptotic
if ∣∣∣∣∣f(x)−

N∑
k=0

fkx
k

∣∣∣∣∣ = O(xN+1). (3.132)

For fixed finite N the sum gives an accurate approximation to f(x), for
sufficiently small x. The expansion need not converge as N → ∞ and
for a given x there is an optimum N beyond which the approximation
becomes worse.

3.8 Lüscher–Weisz solution

Using the hopping expansion in combination with the Callan–Symanzik
renormalization-group equations, Lüscher and Weisz showed how the
O(n) models in four dimensions can be solved to a good approximation
[20, 21, 22, 23]. The coefficients of the hopping series were calculated
to 14th order and the Callan–Symanzik beta functions were used to
three-loop order. The cases n = 1 [20, 21] and n = 4 [23] were worked
out in detail. The interested reader is urged to study these lucid papers
which contain a lot of information on field theory. We shall review the
highlights for the O(4) model.

The critical κc(λ) is estimated from the radius of convergence of the
hopping expansion to be monotonically increasing from κc = 1

8 at λ = 0
to κc = 0.304 11(6) at λ =∞. An important aspect of the results is the
carefully estimated errors in various quantities. For simplicity, we shall
not quote the errors anymore in the following. Along the line κ = 0.98κc
in the κ–λ plane the hopping expansion still converges well, with the
mass parameter mR decreasing from 0.40 to 0.28 and the renormalized
coupling λR increasing from 0 to 3.2 as λ increases from 0 to ∞. At a
slightly smaller κ < κc such that mR = 0.5, λR = 4.3 for λ =∞.

Remarkably, λR = 3.2 may be considered as relatively weak coupling.
Let us rewrite the beta function

mR
∂λR
∂mR

= βR(λR) = β1λ
2
R + β2λ

3
R + · · ·, (3.133)
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in terms of a natural variable λ̃ ≡ β1λR,

mR
∂λ̃

∂mR
= λ̃2 +

β2
β21

λ̃3 + · · · . (3.134)

The results

β1 =
n+ 8
8π2

, β2 = −9n+ 42
(8π2)2

, (3.135)

give β2/β
2
1 ≈ −0.54. Then λR = 3.2 means λ̃ ≈ 0.41 and the two-loop

term in (3.134) is only about 20% of the one-loop term. This indicates
that renormalized perturbation theory may be applicable for these cou-
plings. The next (three-loop) term in the series is again positive and
Lüscher and Weisz reason that the true beta function in this coupling
region may be between the two- and three-loop values.

A basic assumption made in order to proceed is that renormalized
perturbation theory is valid for sufficiently small λR, even if the bare λ
is infinite. This may seem daring if one thinks of deriving renormalized
perturbation theory from the bare weak-coupling expansion. However,
it appears natural from the point of view of Wilson’s renormalization
theory in terms of an effective action with an effective cutoff, or from the
point of view of effective actions, or Schwinger’s Source Theory, which
uses unitarity to obtain higher-order approximations in an expansion in
a physical coupling parameter (e.g. λR).

Using the beta function calculated in renormalized perturbation the-
ory, Lüscher and Weisz integrate the Callan–Symanzik equations toward
the critical point mR = 0. (The variable κ is traded for mR.) As we
have seen in (3.100) this leads to the conclusion that the renormalized
coupling vanishes at the phase boundary, which is thus established even
for bare coupling λ =∞ (!).

The integration is done numerically, using (3.133). Sufficiently deep
in the scaling region we may integrate by expansion,

∂λR
∂ lnmR

= βR(λR), (3.136)

lnmR =
∫ λR dx

βR(x)
, (3.137)

=
∫ λR

dx

[
1

β1x2
− β2
β21x

+O(1)
]
, (3.138)

= − 1
β1λR

− β2
β21

ln(β1λR) + lnC1 +O(λR). (3.139)
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Here C1 is an integration constant, which becomes dependent on the
bare λ once the solution is matched to the hopping expansion. (Part
of the integration constant is written as −(β2/β21) lnβ1.) Notice that
knowledge of β2 is needed in order to be able to define C1(λ) as λR → 0.
Eq. (3.139) can also be written as

mR = C1(β1λR)−β2/β
2
1e−1/β1λR [1 +O(λR)], (3.140)

which shows that mR depends non-analytically on λR for λR → 0.
Lüscher and Weisz show that similarly

Z = C2[1 +O(λR)], (3.141)

κc − κ = C3m
2
R(λR)δ1/β1 [1 +O(λR)], (3.142)

where δ1 is a Callan–Symanzik coefficient similar to the β’s.
From these equations follow the scalings laws, τ = 1− κ/κc → 0:

mR → C4τ
1/2| ln τ |δ1/2β1 , (3.143)

λR →
2
β1
| ln τ |−1, (3.144)

Z → C2. (3.145)

We recognize that the behavior (3.144) follows from (3.100). Note that
(3.143) shows that the correlation-length critical exponent ν has almost
the mean-field value ν = 1

2 : it is modified only by a power of ln τ .
In the scaling limit all information about the renormalized coupling

coming from the hopping expansion is contained in C1(λ), which in-
creases monotonically with decreasing λ. For small bare coupling C1
can be calculated with the weak-coupling expansion. In fact, inserting
the expansion (3.86) for λR into (3.140) and expanding in λ0 leads
to

lnC1(λ) =
1

β1λ0
+

β2
β21

ln(β1λ0)−
c

2
+O(λ0). (3.146)

For infinite bare coupling Lüscher and Weisz find C1(∞) = exp(1.5). The
fact that C1(λ) decreases as λ increases corresponds to the intuition that
for given mR, the renormalized coupling increases with λ. Conversely,
for given λR, the smallest lattice spacing (smallest mR) is obtained with
the largest λ, i.e. λ =∞.

The hopping expansion holds in the region of the phase diagram
connected to the line κ = 0, i.e. the symmetric phase. Lüscher and
Weisz extended these results into the physically relevant broken phase,
where relations similar to (3.140)–(3.145) were obtained with coefficients
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C ′ (the Callan–Symanzik coefficients are the same in both phases). They
considered the critical theory at κ = κc and used perturbation theory
in κ − κc, or equivalently m2

R, to connect the symmetric and broken
phases. This is done again using renormalized perturbation theory with
the results

C ′
1(λ) = 1.435C1(λ), C ′

2,3(λ) = C2,3(λ). (3.147)

Another definition was chosen for the renormalized coupling in the
broken phase, which is very convenient:

λR =
m2
R

2v2R
, vR ≡ Z−1/2

π v = Z−1/2
π 〈φ〉, (3.148)

where Zπ is the wave-function renormalization constant of the Goldstone
bosons. This choice is identical in form to the classical relation between
the coupling, mass and vacuum expectation value (cf. (3.10)). The
renormalized coupling in the broken phase cannot be defined at zero
momentum, as in the symmetric phase, because the massless Goldstone
bosons would lead to infrared divergences (in absence of explicit symme-
try breaking). Using Zπ in the definition of vR allows the identification
of vR with the pion decay constant fπ in the application of the O(4)
model to low-energy pion physics, or with the electroweak scale of 246
GeV in the application to the Standard Model.

The renormalization-group equations were numerically integrated
again in the broken phase, this time for increasing mR, until the renor-
malized λR became too large and the perturbative beta function could
no longer be trusted. We mention here the result λR < 3.5 for mR < 0.5,
at λ =∞. Hence, also in the broken phase the renormalized coupling is
relatively small even at the edge of the scaling region, taken somewhat
arbitrarily to be at mR = 0.5, and the renormalized coupling goes to
zero in the continuum limit mR → 0.

Figure 3.12 shows lines of constant renormalized coupling with varying
κ/κc for the case n = 1 [21]. For a given λR we can go deeper into the
scaling region, i.e. approach the critical line κ/κc = 1 by increasing
the bare coupling λ. This behavior was also found in the weak-coupling
expansion, but the results there became invalid as λ grew too big. Here
we see that the behavior continues for large λ and that the line λ =
∞ is reached before reaching the critical line. The critical line can be
approached arbitrarily closely only for arbitrarily small renormalized
coupling. It follows that the beta function of the model has to correspond
to case (b) in figure 3.7.
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Fig. 3.12. Lines of constant renormalized coupling for the case n = 1 deter-
mined by Lüscher and Weisz. The lines are labeled by the value of gR ≡ 6λR.
The bare coupling λ increases from 0 to ∞ as the LW parameter λ̄ goes from
0 to 1. From [21].

For the O(4) model, the figure corresponding to 3.12 is similar, except
that the values of λR at a given amR are smaller [23]. The first beta-
function coefficient increases with n, so one expects the renormalization
effects to be larger than for n = 1.

Let us recall here another well-known criterion for a coupling being
small or large: the unitarity bound. This is the value of the renormalized
coupling at which the lowest-order approximation to the elastic scatter-
ing amplitude T becomes larger than a bound deduced from the unitarity
of the scattering matrix S. In a partial wave state of definite angular
momentum (e.g. the s-wave) the scattering matrix is finite dimensional,
its eigenvalues are phase factors S = exp(i2δ), with δ the standard
phase shifts. Since the lowest-order (Born) approximation is real and
T = (S − 1)/i = 2 exp(iδ) sin δ has a real part ∈ (−1, 1), one requires
the Born approximation for |T | to be smaller than 1. This gives an
upper bound on λR: the unitarity bound. The maximum values of the
renormalized coupling at mR = 0.5 turn out to be smaller than the
unitarity bound (in the broken phase the maximum λR is only about
two thirds of this bound).

Summarizing, the results show that the O(n) models (in particular
the cases n = 1 and 4) in four dimensions are ‘trivial’: the renormalized
coupling vanishes in the continuum limit. Since we want of course an
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interacting model we cannot take the lattice distance to zero. The model
is to be interpreted as an effective model that is valid at momenta much
smaller than the cutoff π (π/a in physical units). For not too large
renormalized coupling the cutoff can be huge and lattice artifacts very
small. At the scale of the cutoff the model loses its validity, and in
realistic applications new physical input is needed. Where this happens
depends on the circumstances. The relevance of these results for the
Standard Model will be discussed later.

3.9 Numerical simulation

With numerical simulations we get non-perturbative results albeit on
finite lattices. Simulations provide furthermore a valuable kind of insight
into the properties of the systems, which is complementary to expansions
in some parameter.

The lattice is usually taken of the form N3×Nt, with N = 4, 6, 8, . . .,
and Nt of the same order. For simplicity we shall assume that Nt = N in
the following. For the O(4) model sizes 104–164 are already very useful.
Expectation values

〈O〉 =
1
Z

∫
Dφ exp[S(φ)]O(φ) (3.149)

are evaluated by producing a set of field configurations {φαx}j , j =
1, . . .,K, which is distributed according to the weight factor expS(φ),
giving the approximate result

〈O〉 ≈ O ≡ 1
K

K∑
j=1

O(φj), (3.150)

with a statistical error ∝ 1/
√
K. The ensemble is generated with a

stochastic process, e.g. using a Metropolis or a Langevin algorithm. We
shall give only a brief description of the Monte Carlo methods and the
analysis of the results. Monte Carlo methods are described in more detail
in [4, 6, 10].

For example, a Langevin simulation produces a sequence φαx,n, n =
1, 2, . . ., by the rule

φαx,n+1 = φαx,n + δ
∂S(φn)
∂φαx,n

+
√

2δ ηαx,n, (3.151)
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where ηαx,n are Gaussian pseudo-random numbers with unit variance and
zero mean,

〈ηαx,n〉 = 0, 〈ηαx,nηα
′

x′,n′〉 = δαα′δxx′δnn′ , (3.152)

and δ is a step size related to the Langevin time t by t = δn. It can
be shown that as t → ∞, the φ’s become distributed according to the
desired expS(φ), up to terms of order δ (cf. problem (viii)). Using a
small δ such as 0.01, the system reaches equilibrium after some time, in
units related to the mass gap of the model, and configurations φj may
be recorded every ∆t = 1, say. The finite δ produces a systematic error,
which can be reduced by taking δ sufficiently small, or by using several
δ’s and extrapolating to δ = 0. The configurations j and j+1 are usually
correlated, such that the true statistical error is larger than the naive
standard deviation √√√√ 1

K

K∑
j=1

(
O(φj)−O

)2
(3.153)

but there are methods to take care of this.
The Metropolis algorithm is often preferred over the Langevin one,

since it does not suffer from systematic step-size errors ∝ δ and it is
often more efficient. Research into efficient algorithms is fascinating and
requires good insight into the nature of the system under investigation.
New algorithms are being reported every year in the ‘Lattice proceed-
ings’.

Since the lattices are finite, we have to take into account systematic
errors due to scaling (O(a)) violations and finite-size (L) effects (L =
Na). It is important to determine these systematic errors and check that
they accord with theoretical scaling and finite-size formulas. We can then
attempt to extrapolate to infinite volume and zero lattice spacing.

Typical observables O for the O(n) models are the average ‘magnetiza-
tion’ φ̄α =

∑
x φ

α
x/N

4, the average ‘energy’ −S/N4, which reduces to the
average ‘link’

∑
xµ φ

α
xφ

α
x+µ̂/4N

4 in the limit λ → ∞, and products like
φαxφ

β
y giving correlation functions upon averaging. The free energy F =

− lnZ itself cannot be obtained directly by Monte Carlo methods, but
may be reconstructed, e.g. by integrating ∂F/∂κ = −2〈

∑
xµ φ

α
xφ

α
x+µ̂〉.

The correlation function Gαβ
xy = 〈φαxφβy 〉 − 〈φαx〉〈φβy 〉 is used to de-

termine the masses of particles. With periodic boundary conditions it
depends only on the difference x − y. For example, in the symmetric
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phase the spectral representation can be written as∑
x

e−ipxGαα
x,t;0,0 =

∑
γ

|〈0|φα|p, γ〉|2
[
e−ωp,γt + e−ωp,γ(Nt−t)

]
, (3.154)

where finite-temperature (finite Nt) corrections of the form ∝
〈p′γ′|φαx |pγ〉 have been neglected. Choosing zero momentum p, one may
fit the propagator data for large t and Nt − t to

R cosh
[
m

(
t− Nt

2

)]
, R = |〈0|φα|0α〉|2 exp

(
−mNt

2

)
, (3.155)

where m = ωmin is the mass of the particle with the quantum numbers of
φα. It is assumed that the contributions of the next energy levels ω′ with
the same quantum numbers (such as three particle intermediate states),
which have relative size exp[−(ω′−m)t], can be neglected for sufficiently
large times. Alternatively, one can try to determine the renormalized
mass and wave-function renormalization constant in momentum space
from eq. (3.81), but this does not give the particle mass directly. Only
when the particle is weakly coupled is mR ≈ m. The higher-order
correlation functions (such as the four-point functions) require in general
much better statistics than do the propagators.

For illustration we show first some early results in the symmetric
phase. Figure 3.13 shows the particle mass and the renormalized coupling
gR = 6λR as functions of the spatial sizeN in a simulation at infinite bare
coupling [24]. We see that the interactions cause the finite-volume mass
to increase over the infinite-volume value (the linear extent in physical
units, Lm, changes by roughly a factor of two). The results for the
coupling constant roughly agree within the errors with those obtained
by Lüscher and Weisz using the hopping expansion. Figure 3.14 shows
a result [25] for the dressed propagator (correlation function) analyzed
in momentum space. The fact that the propagator resembles so closely
a free propagator, apart from renormalization, is an indication that the
effective interactions are not very strong, despite the large bare coupling.

The broken phase is physically more interesting. Although there is
rigorously no phase transition in a finite volume, the difference between
the symmetric- and broken-phase regions in parameter space is clear
in the simulations. The phase boundary is somewhat smeared out by
finite-volume effects. In the broken phase of the O(n) model for n > 1,
there is a preferred direction, along 〈φα〉 = vα �= 0, and one con-
siders the longitudinal and transverse modes Gσ = v−2vαvβGαβ and
Gπ = (δαβ − v−2vαvβ)Gαβ/(n− 1). The latter correspond to the Gold-
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Fig. 3.13. Finite-size dependence of m and gR = 6λR in a simulation in the
symmetric phase (L = N , λ = ∞). The full circles correspond to a finite-size
dependence expected from renormalized perturbation theory. From [24].

stone bosons. The σ particle can decay into the π particles, which leads
to complications in the analysis of the numerical data. The Goldstone
bosons lead to strong finite-size effects. Finite-size effects depend on the
range of the interactions, the correlation length, which is infinite for the
Goldstone bosons. However, the finite size also gives a non-zero mass
to the Goldstone bosons. These effects have to be taken into account in
the analysis of the simulation results. The theoretical analysis is based
on effective actions, using ‘chiral perturbation theory’ or ‘renormalized
perturbation theory’.

Consider the magnetization observable φ̄α =
∑

x φ
α
x/N

4. An im-
pression of its typical distribution is illustrated in figure 3.15. The
difference between the symmetric and broken phase is clear, yet the
figure suggests correctly that the angular average leads to 〈φ̄α〉 = 0 also
in the broken-phase region. In a finite volume there is no spontaneous
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Fig. 3.14. Dressed propagator in momentum space plotted as a function of∑
µ 4 sin2(pµ/2), at m2

0 = −24.6, λ0 = 100. From [25].

Fig. 3.15. Qualitative illustration of the probability distribution of φ̄α at finite
volume for n = 2 in the symmetric phase (left) and the broken phase (right).

symmetry breaking. To formulate a precise definition of vα, we introduce
an explicit symmetry-breaking term into the action, which ‘pulls’ the
spins along a direction, say 0,

∆S = ε
∑
x

φ0x, (3.156)
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and define

vα = lim
ε→0

lim
L→∞

〈φαx〉, (3.157)

where the order of the limits is crucial. To understand this somewhat
better, one introduces the constrained effective potential VL(φ̄), which is
obtained by integrating over all field configurations with the constraint
φ̄α =

∑
x φ

α
x/L

4,

exp(−L4VL(φ̄)) =
∫

Dφ exp[S(φ)] δ

(
φ̄α −

∑
x

φαx/L
4

)
, (3.158)

such that

Z =
∫

dnφ̄ exp
[
−L4VL(φ̄)

]
, (3.159)

and

〈φ̄α〉 =

∫
dnφ̄ exp

[
−L4VL(φ̄)

]
φ̄α∫

dnφ̄ exp
[
−L4VL(φ̄)

] . (3.160)

The fact that the effective potential comes with a factor L4 is easily
understood from the lowest-order approximation in λ → 0, which is
obtained by simply inserting the constant φ̄α for φαx in the classical
action,

S(φ̄) = −L4VL(φ̄) = −N4[(1− 8κ)φ̄2 + λ(φ̄2 − 1)2 − εφ̄0], (3.161)

where we used the form (3.16) of the action in lattice units. In this
classical approximation the constraint effective potential is independent
of L. The exact constraint effective potential is only weakly dependent
on L, for sufficiently large L, and as L increases the integrals in (3.160)
are accurately given by the saddle-point approximation, i.e. by the sum
over the minima of VL(φ̄). In absence of the ε term there is a continuum
of saddle points and 〈φ̄α〉 = 0 even in the broken phase. A unique saddle
point is obtained, however, for non-zero ε. If we let ε go to zero after the
infinite-volume limit, 〈φ̄α〉 remains non-zero. For more information on
the constraint effective potential, see e.g. [26].

This technique of introducing explicit symmetry breaking is used in
simulations [27] as shown in figure 3.16. A simpler estimate of the
infinite-volume value v of the magnetization is obtained with the ‘ro-
tation method’, in which the magnetization of each individual configu-
ration is rotated to a standard direction before averaging. The resulting
〈|φ̄|〉 can be fitted to a form v + constant×N−2.

https://doi.org/10.1017/9781009402705.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.004


66 O(n)models

Fig. 3.16. Plots of 〈φ̄4〉 as a function of j = ε in the O(4) model for various
lattice sizes. The data are fitted to the theoretical behavior (curves) and
extrapolated to infinite-volume and ε = 0, giving the full circle in the upper
left-hand corner. From [27].

Fig. 3.17. Results on mσ/F = mσ/vR as a function of the correlation length
1/mσ, for the ‘standard (usual) action’ (lower data) and a ‘Symanzik-improved
action’ (upper data). The crosses are results of Lüscher and Weisz obtained
with the hopping expansion. The bare coupling λ = ∞. The curves are
interpolations based on renormalized perturbation theory. From [28].
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As a last example we show in figure 3.17 results on the renormalized
coupling

√
2λR = mR/vR [28]. Data are shown for the action considered

here (the ‘standard action’) and for a ‘Symanzik-improved action’. We
see that the data for the standard action agree with the results obtained
with the hopping expansion in the previous section, within errors. The
Symanzik-improved action has next-to-nearest-neighbor couplings such
that the O(a2) errors are eliminated in the classical continuum limit.
It is not clear a priori that this leads to better scaling in the quantum
theory, because the scalar field configurations that contribute to the path
integral are not smooth on the lattice scale, but it is interesting that the
different regularization leads to somewhat larger renormalized couplings
for a given correlation length.

In conclusion, the numerical simulations have led to accurate results
which fully support the theoretical understanding that the O(n) models
are ‘trivial’.

3.10 Real-space renormalization group and universality

One of the cornerstones of quantum field theory is universality: the
physical properties emerging in the scaling region are to a large extent
independent of the details of formulating the theory on the scale of the
cutoff. The physics of the O(n) models is expected to be independent
of the lattice shape, the addition of next-nearest-neighbor couplings,
next-next-nearest-neighbor couplings, . . ., or higher-order terms (φ2)k,
k = 3, 4, . . . (of course, in its Ising limit or non-linear sigma limit where
φ2 = 1 such higher-order terms no longer play a role). More precisely, the
physical outcome of the models falls into universality classes, depending
on the symmetries of the system and the dimensionality of space–time.
Our understanding of universality comes from the renormalization group
à la Wilson [29, 30] (‘block spinning’, see e.g. [11]), and from the weak-
coupling expansion. We shall sketch the ideas using the one-component
scalar field as an example, starting with the block spinning approach
used in the theory of critical phenomena.

In the real-space renormalization-group method one imagines inte-
grating out the degrees of freedom with wave lengths of order of the
lattice distance and expressing the result in terms of an effective action
for the remaining variables. On iterating this procedure one obtains the
effective action describing the theory at physical (
 a) distance scales.
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Let φ̄x̄ be the average of φx over a region of linear size s around x̄,

φ̄x̄ =
∑
x

Bx̄,xφx. (3.162)

The averaging function B(x̄, x) is concentrated near sites x̄ on a coarser
lattice that are a distance s apart in units of the original lattice. We could
simply take values x̄µ = 2xµ with Bx,x̄ = z

∑
µ δx̄±µ̂,x (‘blocking’), or a

smoother Gaussian average B = z
∑

x exp(−(x− x̄)2/2s), with suitable
normalization factors z. The effective action S̄ is defined by

eS̄(φ̄) =
∫

DφeS(φ)
∏
x̄

δ

(
φ̄x̄ −

∑
x

Bx̄,xφx

)
, (3.163)

and it satisfies ∫
Dφ̄ eS̄(φ̄) =

∫
DφeS(φ). (3.164)

After a few iterations the effective action has many types of terms, so
one is led to consider general actions of the form

S(φ) =
∑
α

KαOα(φ). (3.165)

Here Oα denotes terms of the schematic form (∂µφ∂µφ)k, (φ2)k, . . . (k =
1, 2, . . .). The new effective action can then again be written in the form

S̄(φ̄) =
∑
α

K̄αOα(φ̄). (3.166)

The scale factor z in the definition of the averaging function B is chosen
such that the coefficient of ∂µφ̄∂µφ̄ is equal to 1

2 , in lattice units of
the coarse x̄ lattice, in order that the new coefficients K̄α do not run
away after many iterations. Because of the locality of the averaging
function one expects the action S̄ to be local too, i.e. the range of the
couplings in S̄ is effectively finite, and one expects the dependence of
the coefficients K̄α on Kα to be analytic. One iteration thus constitutes
a renormalization-group transformation

K̄α = Tα(K). (3.167)

We can still calculate correlation functions and quantities of physical
interest with the new fields φ̄. For these the highest-momentum contribu-
tions are suppressed by the averaging, as can be seen by expressing them
in terms of the original fields φ, but contributions from physical momenta
which are low compared to the cutoff are unaffected. In particular the
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correlation length in units of the original lattice distance is unchanged.
However, in units of the x̄ lattice distance the correlation length is
smaller by a factor 1/s. Each iteration the correlation length is shortened
by a factor 1/s and when it is of order one we imagine stopping the
iterations. We can then still extract the physics on the momentum scales
of order of the mass scale. If we want to discuss scales ten times higher,
we can stop iterating when the correlation length is still of order ten.

In the infinite dimensional space of coupling constants Kα there is a
hypersurface where the correlation length is infinite, the critical surface.
We want to start our iterations very close to the critical surface because
we want a large correlation length on the original lattice, which means
that we are able to do many iterations before the correlation length is
of order unity. If there is a fixed point K∗,

Tα(K∗) = K∗
α, (3.168)

then we can perform many iterations near such a point without changing
the Kα very much. At such a fixed point the correlation length does not
change, so it is either zero or infinite. We are of course particularly
interested in fixed points in the critical surface. Linearizing about such
a critical fixed point (on the critical surface),

K̄α −K∗
α = Mαβ(Kβ −K∗

β), Mαβ =[∂Tα/∂Kβ ]K=K∗ , (3.169)

it follows that the eigenvalues λi of Mαβ determine the attractive (λi <
1) or repulsive (λi > 1) directions of the ‘flow’. These directions are given
by the corresponding eigenvectors eαi , which determine the combinations
eαi Oα.

One expects only a few repulsive eigenvalues, called ‘relevant’, while
most of them are attractive and called ‘irrelevant’. Eigenvalues λi = 1
are called marginal. Further away from the fixed point the attractive and
repulsive directions will smoothly deform into attractive and repulsive
curves. The marginal directions will also turn into either attractive or
repulsive curves.

Let us start the iteration somewhere on the critical surface. Then
the flow stays on the surface. Suppose that the flow on the surface is
attracted to a critical fixed point K∗. Next let us start very close to
the critical surface. Then the flow will at first still be attracted to K∗,
but, since with each iteration the correlation length decreases by a factor
1/s, the flow moves away from the critical surface and eventually turns
away from the fixed point. Hence the critical fixed point has at least one
relevant direction away from the critical surface.
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Suppose there is only one such relevant direction (and its opposite
on the other side of the critical surface). Then, after many iterations
the flow just follows the flow-line through this relevant direction. The
physics is then completely determined by the flow-line through the
relevant direction: the physical trajectory (also called the renormalized
trajectory). To the relevant direction there corresponds the only free
parameter we end up with: the ratio cutoff/mass, Λ/m (where Λ = π/a).
This ratio is determined by the initial distance to the critical surface,
or equivalently, by the number of iterations and the final distance to
the critical surface where we stop the iterations. However, the mass just
sets the dimensional scale of the theory and there is no physical free
parameter at all under these circumstances. All the physical properties
(e.g. the renormalized vertex functions and the renormalized coupling
λR) are fixed by the properties of the physical trajectory. On the other
hand, each additional relevant direction offers the possibility of an
additional free physical parameter, which may be tuned by choosing
appropriate initial conditions.

Many years of investigation have led to the picture that there is only
one type of critical fixed point in the O(n) symmetric models, which
has only one relevant direction corresponding to the mass as described
above, and one marginal but attractive direction corresponding to the
renormalized coupling. This means that eventually the renormalized
coupling will vanish after an infinite number of iterations (triviality).
This is the reason that the fixed point is called ‘Gaussian’, for the
corresponding effective action is quadratic. However, because the renor-
malized coupling is marginal and therefore changes very slowly near the
critical point, it can still be substantially different from zero even after
very many iterations (very large Λ/m ratios). With a given number of
iterations we can imagine maximizing the renormalized coupling over
all possible initial actions parameterized by Kα, giving an upper bound
on the renormalized coupling. Within its upper bound the renormalized
coupling is then still a free parameter in the models. The situation is
illustrated in figure 3.18.

For the massless theory the correlation length is infinite, so we start
on the critical surface. The flow is attracted to K∗, which determines
the physics outcome. The marginally attractive direction corresponds in
the massless case to the running renormalized coupling λ̄(µ) at some
physical momentum scale µ. Each iteration the maximum momentum
scale is lowered by a factor 1/s and, after many iterations, the ratio
(maximum momentum scale)/cutoff is very small. We stop the iteration
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Fig. 3.18. Renormalization group-flow in φ4 theory. The line C represents the
‘canonical surface’ of actions of the standard form S = 2κ

∑
xµ φxφx+µ̂ −∑

x[φ2
x + λ(φ2

x − 1)2]. The line P represents the physical trajectory. Direction
1 is an irrelevant direction, direction 2 represents the marginal direction
corresponding to the renormalized coupling. Shown are two flows starting from
a point in C, one near the critical surface and on this surface.

when the maximum momentum scale is of order µ. For a given number
of iterations the running coupling can still vary within its upper bound.
As the number of iterations goes to infinity, µ has to go to zero and
λ̄(µ) → 0 because the flow along the marginal direction is attracted
to zero coupling. So the massless theory can be defined by taking the
number of iterations (∝ Λ/µ) large but finite, and λ̄(µ)→ 0 as µ→ 0.

The critical fixed points of the real-space renormalization-group trans-
formation give a very attractive explanation of universality.

3.11 Universality at weak coupling

To formulate a general action at weak coupling we start with the form
(3.16) and first make a scale transformation φ = φ′/

√
λ, which brings

the action into the form

S(φ′) =
1
λ

∑
x

[
2κ
∑
µ

φ′
xφ

′
x+µ̂ − φ

′2
x − (φ

′2
x − 1)2

]
. (3.170)

We see that λ appears as a natural expansion parameter for a saddle-
point expansion, while the other coefficients in the action are of order
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one in lattice units. A natural generalization is given by

S(φ′) =
1
λ

∑
x

[
2κ
∑
µ

φ′
xφ

′
x+µ̂ + κ′

∑
µ<ν

φ′
xφ

′
x+µ̂+ν̂ (3.171)

+ κ′′
∑
µ

φ′
xφ

′
x+2µ̂ + κ

′′′∑
µ

φ
′2
x φ

′2
x+µ̂ + · · · −

∞∑
k=1

v2kφ
′2k
x

]
,

which still has the symmetry φ→ −φ. The coefficients in this expression
are supposed to be of order 1.

The parameter λ enters in the same place as Planck’s constant � when
we introduced the path-integral quantization method, before we set it
equal to 1. It can be shown that the expansion in powers of � corresponds
to an expansion in the number of loops in Feynman diagrams. For this
reason the weak-coupling expansion is called the semiclassical expansion.

For convenience in the following we shall use the original continuum-
motivated parameterization (3.13) with the field ϕ = φ/

√
2κ and rewrite

(3.171) in the form

S = − 1
λ0

∑
x

[
1
2
∂µϕ

′
x∂µϕ

′
x + z∂µϕ

′2
x ∂µϕ

′2
x + · · ·+

∑
k

u2k ϕ
′2k
x

]

= −
∑
x

[
1
2
∂µϕx∂µϕx + λ0z∂µϕ

2
x∂µϕ

2
x + · · ·+

∑
k

λk−10 u2kϕ
2k
x

]
,

(3.172)

where ϕ′ =
√
λ0ϕ. Here again the coefficients z, . . ., and u2k are supposed

to be dimensionless numbers of order unity, with the exception of u2
which becomes m2

0c = O(λ0) at the phase boundary (this is special to
the continuum parameterization). It is instructive to rewrite the generic
action (3.172) in physical units,

S = −
∑
x

(
1
2
∂µϕx∂µϕx + a2λ0z∂µϕ

2
x∂µϕ

2
x + · · ·

+
∑
k

a2k−4λk−10 u2kϕ
2k
x

)
, (3.173)

where now ∂µϕx = (ϕx+aµ − ϕx)/a and
∑

x contains a factor a4. The
higher-dimensional operators are accompanied by powers of the lattice
distance a such that the action is dimensionless.

In the classical continuum limit a → 0 we end up with just the ϕ4

theory, with u2 chosen such that m2 = 2u2a−2 remains finite. In other
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Fig. 3.19. Contribution of the bare six-point vertex to Γ(4).

words, the bare two- and four-point vertex functions take their usual
continuum limits and the higher-order bare vertex functions vanish. In
non-trivial orders of the semiclassical expansion, the powers of a in the
bare vertex functions can be compensated by the divergences in the loop
diagrams. For example, consider the effect of the term −

∑
x λ

2
0u6a

2ϕ6x
on the four-point vertex at one-loop order as given by the diagram in
figure 3.19. The bare vertex function in momentum space is −6!λ20u6a

2

and the contribution to Γ(4) is given by

− 1
26!λ20u6a

2

∫ π/a

−π/a

d4l

(2π)4
1

m2
0 + a−2

∑
µ(2− 2 cos alµ)

= − 1
26!λ20u6C0,

(3.174)
in the limit a→ 0 (the constant C0 was defined in (3.67)).

By looking at more examples one may convince oneself that the higher-
order bare vertex functions just lead to new expressions for the vertex
functions in terms of the coefficients in the action, which have, however,
the same momentum dependence as before. All lattice artifacts end up
in constants like C0, and in the relation between λR and m2

R to λ0 and
m2
0, such that the renormalized vertex functions, once expressed in terms

of the renormalized coupling λR and renormalized mass parameter mR,
are universal, order by order in perturbation theory.

There is one aspect worth mentioning: the effect of the lattice symme-
tries. Consider the two-point vertex function in one-loop order, which has
the form Γ(2)(p) = a−2f(ap, am0) on dimensional grounds. For a → 0
this takes the form a−2(τa2m2

0 + τµνa
2pµpν) + logarithms. We have

seen in section 3.4 how the logarithms emerge from the integration over
the loop variable near the origin in momentum space where the lattice
expressions take their classical continuum form: the terms containing
logarithms are covariant under continuous rotations. What about the
polynomial τµνpµpν? Its coefficient τµν depends on lattice details, the
loop integrations over the cosines near the edge of the Brillouin zone
in momentum space. Here the lattice symmetries come to help. The
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polynomial has to be invariant under the cubic rotations

R(ρσ): xρ → xσ, xσ → −xρ, xµ	=ρ,σ → xµ (3.175)

and axis reversals

I(ρ): xρ → −xρ, xµ	=ρ → xµ. (3.176)

There is only one such polynomial: p2 = p21 + · · · + p24. So the lat-
tice symmetries and dimensional effects are important in order to get
covariant renormalized vertex functions. Dimensional analysis showed
that the above polynomial is at most of second order and even in
pµ → −pµ because of axis-reversal symmetry. Note that there is more
than one fourth-order polynomial τκλµνpκpλpµpν that is invariant under
the lattice symmetries. Such polynomials go together with dimensional
couplings, such as cutoff effects ∝ a2. The polynomials are called contact
terms, because they correspond in position space to Dirac delta functions
and derivatives thereof.

If we destroy the space–time symmetry of the lattice, e.g. by having
different couplings in the space and time directions, then we may have
to tune the couplings in the action to regain covariance in the scaling
region.

3.12 Triviality and the Standard Model

Arguments that scalar field models are trivial in the sense that they be-
come non-interacting when the regularization is removed were first given
by Wilson, using his formulation of the renormalization group [29, 30].
The arguments imply that triviality should hold within a universality
class of bare actions, e.g. next-to-nearest-neighbor couplings, . . .. In the
previous sections we reviewed some calculations and numerical simula-
tions leading to accurate determination of the renormalized coupling in
the O(4) model in the broken phase. The O(4) model may be identified
with the scalar Higgs sector of the Standard Model, and we shall now
review the implications and applications of triviality.

First we review how the O(4) model is embedded in the Standard
Model. The action for the Higgs field is given by

SH = −
∫

d4x [(Dµϕ)†Dµϕ+m2
0ϕ

†ϕ+ λ0(ϕ†ϕ)2], (3.177)

Dµϕ =
(
∂µ − ig1

1
2
Bµ − ig2W

k
µ

τk
2

)
ϕ, (3.178)
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where τk are the Pauli matrices, ϕ = (ϕu, ϕd)T is the complex Higgs
doublet and Bµ, and W k

µ are the U(1)×SU(2) electroweak gauge fields.
Setting the gauge couplings to zero, the action becomes equivalent to
the O(4) model,

S|g=0 = −
∫

d4x [∂µϕ†∂µϕ+m2
0ϕ

†ϕ+ λ0(ϕ†ϕ)2] (3.179)

= −
∫

d4x

[
1
2
∂µϕ

α∂µϕ
α +

m2
0

2
ϕαϕα +

λ0
4

(ϕαϕα)2
]
,

ϕu =
1√
2
(ϕ2 + iϕ1), ϕd =

1√
2
(ϕ0 − iϕ3). (3.180)

The Higgs field enters also in Yukawa couplings with the fermions. In
terms of a matrix field φ defined by

φ ≡
√

2
(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)
, (3.181)

= ϕ0 + iϕkτk = ρV, V ∈ SU(2), ρ > 0, (3.182)

the Yukawa couplings to the quarks can be expressed as

SY = −
∫

d4x ψ̄cg(PRφyg + ygPLφ
†)ψcg. (3.183)

Here PL,R = (1∓ γ5)/2 are the projectors on the left- and right-handed
fermion fields and the summation is over the QCD colors c and gener-
ations g. The Yukawa couplings y are diagonal in SU(2) doublet space,
y = yu(1+τ3)/2+yd(1−τ3)/2. The Yukawa couplings to the leptons are
similar (in the massless neutrino limit the right-handed neutrino fields
decouple).

If we insert the vacuum expectation value of the scalar field

ϕ =
1√
2

(
0
v

)
, (3.184)

φ = v11, (3.185)

in the action, we find the masses of the vector bosons W and Z and
the photon A, from the terms quadratic in the gauge fields, and the
masses of the fermions from the Yukawa couplings. Choosing renormal-
ization conditions such that the ‘tree-graph’ relations remain valid after
renormalization, we have

m2
W = 1

4g
2
2R v

2
R, m2

Z = 1
4 (g

2
1R + g22R) v2R, mA = 0, (3.186)

mf = yRf vR, m2
H = 2λR v2R, (3.187)
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where f denotes the fermion. From experiment we know

vR = 246 GeV, g1R = 0.34, g2R = 0.64. (3.188)

The electroweak gauge couplings are effectively quite small (recall the
typical factors of g2/π2 that occur in perturbative expansions). The
Yukawa couplings are generally much smaller, as follows from (3.187)
and the fact that the fermion masses are generally small (< 5 GeV)
on the electroweak scale. Even the much heavier top quark, which has
a mass of about 175 GeV has a Yukawa coupling yt ≈ 0.71, which is
not very large either. The (running) QCD gauge coupling of the strong
interactions is also relatively small on the electroweak scale of 100 GeV:
g3R ≈ 1.2.

To discuss the implications of triviality of the O(4) model, let us
assume for the moment that all the gauge and Yukawa couplings can
be treated as perturbations on scales vR or higher. Furthermore, assume
that the Higgs mass is non-zero (we shall comment on these assump-
tions below). It then follows from the triviality of the O(4) model that
the Standard Model itself must be ‘trivial’. Because a non-zero Higgs
mass implies λR �= 0, the triviality leads to the conclusion that the
regularization cannot be removed completely. Consequently the model
must lose its validity on the regularization scale. New physical input is
required on this momentum or equivalent distance scale.

It would obviously be very interesting if we could predict at which scale
new physics has to come into play. To some extent this can be done as
follows. If the Higgs mass is not too large such that λR = m2

H/2vR is in
the perturbative domain, we can use eq. (3.140) to calculate the cutoff
Λ = π/a in the lattice regularization,

Λ = mHC(β1λR)β2/β
2
1 exp(1/β1λR)[1 +O(λR)], (3.189)

where C = π/C ′
1(λ0). The constant C1 is minimal, hence Λ maximal,

for infinite bare coupling λ0. We shall assume this in the following, with
C ′
1(∞) = 6.4 (the value obtained by Lüscher and Weisz). As an example,

mH = 100 GeV gives λR = 0.083 and Λ = 7×1036 GeV. This value for Λ
is far beyond the Planck mass O(1019) GeV for which gravity cannot be
neglected. Certainly new physics comes into play at the Planck scale, so
effectively the regulator scale for mH = 100 GeV may be considered to
be irrelevantly high. On the other hand, when mH increases, Λ decreases.
When λR becomes too large eq. (3.189) can no longer be trusted, but
we still have non-perturbative results for λR and the corresponding
Λ/mH anyhow. For example, for mH = 615 GeV (mH/vR = 2.5) figure
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3.17 shows that 1/amH ≈ 3; hence Λ ≈ 3πmH = 5800 GeV, for
the standard action. For the Symanzik-improved action this would be
Λ ≈ 8300 GeV.

So we can compute a cutoff scale Λ from knowledge of the Higgs
mass, but this Λ is clearly regularization dependent (the dependence
of C in (3.189) on λ0 also indicates a regularization dependence, cf. c
in eq. (3.146)). For values of mH deep in the scaling regime Λ is very
sensitive to changes in mH, but at the edge of the scaling region, e.g. for
Λ/mH ≈ 6, this dependence is greatly reduced.

This supports the idea of establishing an upper bound on the Higgs
mass: given a criterion for allowed scaling violations, there is an upper
bound on mH [31]. For example, requiring Λ/mH > 2π (amH < 1

2 ), we
get an upper bound on mH from results like figure 3.17. This should
then be maximized over all possible regularizations. Figure 3.17 shows
that the standard and Symanzik-improved actions give the bounds
mH/vR � 2.7 and 3, respectively. A way to search through regularization
space systematically has been advocated especially by Neuberger [32]. To
order 1/Λ2 all possible regularizations (including ones formulated in the
continuum) can be represented by a three-parameter action on the F4
lattice, which has more rotational symmetry than does the hypercubic
lattice. It is believed that the results of this program will not lead to
drastic changes in the above result mH/vR � 3.

The Pauli–Villars regularization in the continuum appears to give
much larger Λ’s than the lattice [33]. The problem with relating various
regularization schemes lies in the fact that it is not immediately clear
what the physical implications of a requirement like Λ/mH > 2π are. One
may correlate Λ to regularization artifacts (mimicking ‘new physics’) in
physical quantities, such as the scattering amplitude for the Goldstone
bosons. Requiring, in a given regularization, that such an amplitude
differs by less than 5%, say, from the value obtained in renormalized
perturbation theory, would determine Λ and the corresponding upper
bound on mH in that regularization. The significance of such criteria is
unclear, however.

At this point it is useful to recall one example in which nature (QCD)
introduces ‘new physics’. The O(4) model may also be interpreted as
giving an effective description of the three pions, which are Goldstone
bosons with masses around 140 MeV due to explicit symmetry break-
ing. The expectation value vR is equal to the pion decay constant,
vR = fπ = 93 MeV. The analog of the Higgs particle is the very
broad σ resonance around 900 MeV. The low-energy pion physics is
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approximately described by the O(4) model. However, since mσ/vR ≈ 10
is far above the upper bounds found above, the cutoff needed in this
application of the O(4) model is very low, probably even below mσ, and
the model is not expected to describe physics at the σ scale. Indeed,
there is ‘new physics’ in the form of the well-known ρ resonance with a
mass of 770 MeV and width of about 150 MeV.

Let us now discuss the assumptions of neglecting the effect of the gauge
and Yukawa couplings. The gauge couplings g2,3 are asymptotically free
and their effective size is even smaller on the scale of the cutoff. So it
seems reasonable that their inclusion will not cause large deviations from
the above results. The U(1) coupling g1 is not asymptotically free and
its effective strength grows with the momentum scale. However, its size
on the Planck scale is still small. If we accept not putting the cutoff
beyond the Planck scale anyway, then also the gauge coupling g1 may
be expected to have little influence. The same can be said about the
Yukawa couplings, which are also not asymptotically free (possibly with
the exception of the top-quark coupling).

These expectations have been studied in some detail. An important
result based on O(4) Ward identities is that relations like m2

W = g22v
2
R/4

are still valid to first order in g22 on treating the Higgs self-coupling
non-perturbatively [31, 34]. This may be seen as justifying a definition
of the gR such that (3.186) is exact.

Of course, it is desirable to verify the above expectations non-pertur-
batively. A lattice formulation of the Standard Model is difficult because
of problems with fermions on a lattice (cf. section 8.4). However, lattice
formulations of gauge-Higgs systems and to a certain extent Yukawa
models are possible and have been much studied over the years. The
lattice formulation of gauge-Higgs systems has interesting aspects having
to do with the gauge-invariant formulation of the Higgs phenomenon,
presentation and discussion of which here would lead too far [35].

It turns out that the Yukawa couplings are also ‘trivial’ and that the
maximum renormalized coupling is also relatively weak, see for example
[36]. Numerical simulations have set upper bounds on the masses of
possible hitherto undiscovered generations of heavy fermions (including
heavy neutrinos), as well as the influence of such generations on the
Higgs-mass bound.

Finally, the assumption made above, namely that mH �= 0, is justified
by theoretical arguments for a lower bound on mH, which are based
on the effect that the fermions and gauge bosons induce on the Higgs
self-couplings (for reviews, see [37, 38]).
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3.13 Problems

(i) Six-point vertex
Determine the Feynman diagrams for the six-point vertex func-
tion in the ϕ4 theory in the one-loop approximation. For one
of these diagrams, write down the corresponding mathematical
expression in lattice units (a = 1) and in physical units (a �= 1).
Show that it converges in the limit a→ 0, to the expression one
would write down directly in the continuum.

(ii) Renormalized coupling for mass zero
In the massless O(n) model λR is ill defined. In this case λ̄(µ) is
still a good renormalized coupling. Give the renormalized four-
point vertex function ΓRα1···α4

(p1 · · · p4) in terms of λ̄(µ).
(iii) Critical κ and m0 at weak coupling

What are the critical values of the bare mass m2
0c (in lattice units)

and the hopping parameter κc to first order in λ0 in the weak-
coupling expansion?

(iv) Minimal subtraction
To obtain renormalized vertex functions in the weak-coupling ex-
pansion, wavefunction, mass, and coupling-constant renormaliza-
tions are needed. Here we concentrate on the latter. We substitute
the bare λ0 for a series in terms of a renormalized λ (not to be
confused with the λ in the lattice parameterization (3.15)),

λ0 = λZλ(λ, ln aµ),

Zλ(λ, ln aµ) = 1 +
∞∑
n=1

n∑
k=0

Znkλ
n(ln aµ)k

=
∞∑
k=0

Zk(λ)(ln aµ)k. (3.190)

Terms vanishing as a → 0 have been neglected, order by order
in perturbation theory. From the point of view of obtaining finite
renormalized vertex functions we can be quite liberal and allow
any choice of the coefficients Znk leading to a series in λ for
physical quantities for which the a dependence cancels out.

The renormalized λ depends on a physical scale µ but not on
a, it is a ‘running coupling’, whereas λ0 is supposed to depend on
a but not on µ. Introducing a reference mass µ1, we write

λ0(t) = λ(s)Zλ(λ(s), s− t), t = − ln(aµ1), s = ln(µ/µ1).
(3.191)

https://doi.org/10.1017/9781009402705.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.004


80 O(n)models

From 0 = dλ0/ds we find(
∂

∂s
+ β

∂

∂λ

)
λZλ(λ, s− t) = 0, (3.192)

where

β =
∂λ

∂s
. (3.193)

Using the above expansion for Zλ in terms of powers (ln aµ)k =
(t− s)k, show that

(k + 1)Zk(λ) + β
∂

∂λ
(λZk(λ)) = 0, k = 0, 1, 2, . . ., (3.194)

and hence that the β function is given by

β(λ) = − Z1(λ)
∂(λZ0(λ))/∂λ

. (3.195)

In a minimal subtraction scheme one does not ‘subtract’ more
than is necessary to cancel out the ln(aµ)’s, and one chooses
Z0(λ) ≡ 1. Notice that there is a whole class of minimal subtrac-
tion schemes: we may replace ln(aµ) by ln(aµ) + c, with c some
numerical constant, since such a c is equivalent to a redefinition
of µ. It follows that the beta function in a minimal subtraction
scheme can be read off from the coefficients of the terms involving
only a single power of ln aµ:

β(λ) = −Z1(λ). (3.196)

Show that in minimal subtraction the beta function β0(λ0) for
λ0 is identical to β(λ0).

Assuming that the beta function is given, solve eq. (3.192) with
the boundary condition Zλ(λ, 0) = Z0(λ) = 1.

(v) Mass for small κ
The hopping result (3.128) shows that the mass parameter mR

is infinite for κ = 0. For small κ we see from (3.122) that
Gxy ∝ (2gκ)Lxy = exp(−mxy|x − y|), where Lxy is the mini-
mal number of steps between x and y. We can identify a mass
mxy = − ln(2gκ) (Lxy/|x−y|). For small κ, compare mxy for x, y
along a lattice direction and along a lattice diagonal with the
results of problem (i) in chapter 2. Compare also with equations
(2.117), (2.120) and (2.122), for the case that x and y are along
a timelike direction in the lattice.
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(vi) An example of a divergent expansion
Instructive examples of convergent and divergent expansions, in
κ and λ, are given by

z(κ, λ) =
∫ ∞

−∞
dφ exp(−κφ2 − λφ4) (3.197)

=
λ−1/4

2

∞∑
k=0

Γ(k/2 + 1/4)
k!

(−κλ−1/2)k (3.198)

= κ−1/2
∞∑
k=0

Γ(2k + 1/2)
k!

(−λκ−2)k. (3.199)

Verify.
(vii) A dimension-six four-point vertex

Show that the dimension-six term −
∑

x a
2λ0z∂µϕ

2
x∂µϕ

2
x in the

general action (3.173) corresponds to the vertex function
0Γ(p1 · · · p4) = −8a2λ0z(−i)2K∗

µ(p1 + p2)K∗
µ(p3 + p4)

+ two permutations, (3.200)

Kµ(p) =
1
ia

(eiapµ − 1). (3.201)

In the classical continuum limit this vertex vanishes but in
one-loop order it contributes to the two-point function Γ(p) (cf.
figure 3.5). Show that this contribution is given by

+4λ0z
[
2a−2 + p2

(
C0 − 1

8

)
+O(a2)

]
, (3.202)

where C0 is given in (3.67) and we used (2π)−4
∫ π
−π

d4l l̂2µ/l̂
2 = 1

4 ,
independent of µ = 1, . . ., 4.

(viii) Langevin equation and Fokker–Planck Hamiltonian
Consider a probability distribution P (φ) for the field φx. One
Langevin time step changes φ into φ′ according to

φ′
x = φx +

√
2δ ηx + δ

∂S(φ)
∂φx

. (3.203)

This corresponds to P (φ) → P ′(φ). The new P ′(φ) may be
determined as follows. Let O(φ) be an arbitrary observable, with
average value

∫
DφP (φ)O(φ). After a Langevin time step the

new average value is
∫
DφP (φ)〈O(φ′(φ))〉η, where 〈· · ·〉η denotes

the average over the Gaussian random numbers ηx. By definition
this new average value is equal to

∫
DφP ′(φ)O(φ), i.e.∫

DφP ′(φ)O(φ) =
∫

DφP (φ)〈O(φ′(φ))〉η. (3.204)
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By expansion in
√
δ, show that

〈O(φ′)〉η = O(φ) + δ
∑
x

[
∂O(φ)
∂φx

∂S(φ)
∂φx

+
∂2O(φ)
∂φx ∂φx

]
+O(δ2),

(3.205)
and consequently that

P ′ − P

δ
=
∑
x

∂

∂φx

[
∂

∂φx
− ∂S

∂φx

]
P (3.206)

≡ −HFP P. (3.207)

The partial differential operator in φ-space, HFP, is called the
Fokker–Planck Hamiltonian. Using

∂

∂φx
eS/2 = eS/2

(
∂

∂φx
+

1
2
∂S

∂φx

)
, (3.208)

show that P̃ defined by P = eS/2P̃ satisfies

P̃ ′ − P̃

δ
= −H̃P̃ +O(δ), (3.209)

H̃ =
∑
x

(
− ∂

∂φx
− 1

2
∂S

∂φx

)(
∂

∂φx
− 1

2
∂S

∂φx

)
.

Show that H̃ is a Hermitian positive semidefinite operator, which
has one eigenvalue equal to zero with eigenvector exp(S/2). Give
arguments showing that, as δ → 0 and the number n of iterations
goes to infinity, with t = nδ → ∞, P will tend to the desired
distribution expS.
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