M. Itô and M. NishioNagoya Math. J.Vol. 115 (1989), 1-22

POINCARÉ TYPE CONDITIONS OF THE REGULARITY FOR THE PARABOLIC OPERATOR OF ORDER α

MASAYUKI ITÔ AND MASAHARU NISHIO

§ 1. Introduction

Let $R^{n+1} = R^n \times R$ denote the (n+1)-dimensional Euclidean space $(n \ge 1)$. For $X \in R^{n+1}$, we write X = (x, t) with $x \in R^n$ and $t \in R$. In this case, R^n is called the x-space of $R^{n+1} = R^n \times R$.

For an α with $0 < \alpha < 1$, we write

$$L^{\scriptscriptstyle(lpha)}=rac{\partial}{\partial t}+(-\varDelta)^lpha\,,$$

where $(-\Delta)^{\alpha}$ is the fractional power of the Laplacian $-\Delta = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}$ on the x-space. In the case of $\alpha = 1/2$, $L^{(1/2)}$ is called the Poisson operator on R^{n+1} .

First we shall examine some properties of the elementary solution $W^{(a)}$ of $L^{(a)}$. By using the reduced functions with respect to $W^{(a)}$, we shall show the existence of swept-out measures with respect to $W^{(a)}$. By using swept-out measures, we shall give the notion of the regularity for boundary points of an open set in R^{n+1} .

The purpose of this paper is to give a Poincaré type condition for the regularity of boundary points of an open set in R^{n+1} .

Our main theorem is the following

Theorem. Let Ω be an open set in R^{n+1} and X a boundary point of Ω . If there exists a non-empty open set ω in the x-space whose α -tusk $T_X^{(n)}(\omega)$ at X is in $C\Omega$, then X is regular for the Dirichlet problem of $L^{(n)}$ on Ω .

For an $X=(x,t)\in R^{n+1}$ and an open set ω in the x-space, the α -tusk $T_X^{(\alpha)}(\omega)$ of ω at X is defined by

$$T_X^{(\alpha)}(\omega) = \{(x + py, t - p^{2\alpha}); y \in \omega, 0$$

Received January 14, 1988.

with some $p_0 > 0$.

For the heat equation, E. G. Effros and J. L. Kazdan [3] discussed a similar Poincaré type condition of the regularity.

§ 2. Superparabolic functions and the Riesz decomposition

Let $C_{\mathbb{K}}^{\kappa}(R^k)$ denote the usual topological vector space of all infinitely differentiable functions on R^k with compact support $(k \geq 1)$. For $0 < \alpha < 1$, we recall the fractional power $(-\Delta)^{\alpha}$ of $-\Delta$ on the x-space R^n ; $(-\Delta)^{\alpha}$ is the convolution operator on R^n defined by the distribution $-C_{n,\alpha}$ p.f. $|x|^{-n-2\alpha}$, where |x| denotes the distance between x and the origin 0 in R^n and $C_{n,\alpha} = -4^{\alpha}\pi^{-n/2}\Gamma((n+2\alpha)/2)/\Gamma(-\alpha)$, that is,

$$\text{p.f.} |x|^{-n-2a}(\phi) = \lim_{\delta \downarrow 0} \int_{|x| > \delta} (\phi(x) - \phi(0)) |x|^{-n-2a} dx$$

for every $\phi \in C_K^{\infty}(\mathbb{R}^n)$.

We denote by $(g_t)_{t\geq 0}$ the Gaussian semi-group on R^n , namely $g_t(x)=(4\pi t)^{-n/2}\exp(-|x|^2/4t)$ (t>0), and $g_0=\varepsilon$. Here we denote by ε the Dirac measure at the origin of R^k for every $k\geq 1$. Put

$$W^{\scriptscriptstyle(lpha)}(X) = egin{cases} (2\pi)^{\scriptscriptstyle -n} \int_{\mathbb{R}^n} \exp(-\ t |\xi|^{\scriptscriptstyle 2lpha} + ix\!\cdot\!\xi) d\xi & t>0 \ 0 & t\leqq 0 \,, \end{cases}$$

where X=(x,t) and $x\cdot\xi$ denotes the inner product on R^n . By means of the Fourier transform, we see easily that $W^{(a)}$ (resp. $\tilde{W}^{(a)}$) is the elementary solution of $L^{(a)}$ (resp. $\tilde{L}^{(a)}$), where $\tilde{W}^{(a)}(x,t)=W^{(a)}(x,-t)$ and $\tilde{L}^{(a)}=-\partial/\partial t+(-\Delta)^a$ (see for example [4]). Let $(\sigma_t^a)_{t\geq 0}$ be the one-sided stable semigroup of order α on R^+ , where R^+ denotes the semi-group of all nonnegative numbers. Then for any t>0 and $x\in R^n$,

$$(2.1) W^{\scriptscriptstyle(\alpha)}(x,t) = \int_0^\infty g_s(x) d\sigma_t^\alpha(s) > 0$$

(see [1], p. 74), $\int_{\mathbb{R}^n} W^{(a)}(x,t) dx = 1$ and $W^{(a)}(x,t)$ is a decreasing function of |x|. Put

$$\psi_{\alpha}(t) = W^{(\alpha)}((1, 0, \dots, 0), t);$$

then we have easily

$$W^{(\alpha)}(x,t)=|x|^{-n}\psi_{\alpha}(t|x|^{-2\sigma})$$

LEMMA 2.1.
$$\psi_a(t) = O(t)$$
 as $t \downarrow 0$.

Proof. Let ν be the uniform measure on the unit sphere $\{x \in \mathbb{R}^n; |x|=1\}$ with $\int d\nu = 1$. Denoting by $\hat{\nu}$ the Fourier transform of ν , we have

$$\psi_{\scriptscriptstyle lpha}(t) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp(-|t|\xi|^{2lpha}) \hat{
u}(\xi) d\xi, \quad \lim_{t\downarrow 0} \psi_{\scriptscriptstyle lpha}(t) = 0$$

and

$$egin{aligned} rac{d}{dt} \psi_a(t) &= (2\pi)^{-n/2} \int_{\mathbb{R}^n} (-|\xi|^{2lpha} \exp(-|t|\xi|^{2lpha}) \hat{
u}(\xi)) d\xi \ &= (2\pi)^{-n/2} \int_0^\infty \int_{\mathbb{R}^n} (-|\xi|^{2lpha} \exp(-s|\xi|^2) \hat{
u}(\xi)) d\xi d\sigma_t^lpha(s) \end{aligned}$$

for t>0 (see (2.1)). Let $\phi\in C^\infty_R(R^n)$ satisfying $0\leq \phi\leq 1$, supp $[\phi]\subset \{x\in R^n; |x|<1\}$ and $\phi=1$ on a neighborhood of 0, where supp $[\phi]$ denotes the support of ϕ . For any s>0, we have

$$\begin{split} \int_{\mathbb{R}^{n}} |\xi|^{2a} \exp(-|s|\xi|^{2}) \hat{\nu}(\xi) d\xi &= (2\pi)^{n/2} (-|\Delta|^{a} (g_{s} * \nu)(0) \\ &= (2\pi)^{n/2} C_{n, |\alpha|-1} (|x|^{-n-2\alpha+2}) * (\Delta g_{s}) * \nu(0) \\ &= (2\pi)^{n/2} C_{n, |\alpha|-1} (\phi(x)|x|^{-n-2\alpha+2}) * (\Delta g_{s}) * \nu(0) \\ &+ (2\pi)^{n/2} C_{n, |\alpha|-1} (\Delta ((1-|\phi(x)|)|x|^{-n-2\alpha+2})) * (g_{s}) * \nu(0) \;. \end{split}$$

Since $0 \notin \text{supp}[(\phi(x)|x|^{-n-2\alpha}) * \nu]$ and Δg_s vanishes uniformly outside any neighborhood of 0,

$$\lim_{s \to 0} (\phi(x)|x|^{-n-2\alpha+2}) * (\Delta g_s) * \nu(0) = 0.$$

Therefore the function $\int_{\mathbb{R}^n} |\xi|^{2a} \exp(-s|\xi|^2) \hat{\nu}(\xi) d\xi$ of s is bounded on $(0, \infty)$, so that $(d/dt)\psi_a(t)$ is bounded on $(0, \infty)$, which shows Lemma 2.1.

Let $(P_t^{(a)})_{t\geq 0}$ be the convolution semi-group whose infinitesimal generator is equal to $-L^{(a)}$ (see [7]); then

$$P_s^{(\alpha)} * u(x,t) = \int_{\mathbb{R}^n} W^{(\alpha)}(x-y,s)u(y,t-s)dy$$

for every $u \in C_K(\mathbb{R}^{n+1})$, where $C_K(\mathbb{R}^{n+1})$ denotes the usual topological vector space of all finite continuous functions on \mathbb{R}^{n+1} with compact support. For a non-negative continuous function $\phi(t)$ on $(0, \infty)$, we put

$$W_{(\phi)}^{(\alpha)}(x,t) = \phi(t)W^{(\alpha)}(x,t).$$

¹⁾ Evidently $-L^{(\alpha)}$ is a generalized Laplacian, that is, for any $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$ with $\phi \geq 0$ and $\phi(0) = \max_{X \in \mathbb{R}^{n+1}} \phi(X), -(L^{(\alpha)}\phi)(0) \leq 0.$

For a sequence $(\phi_m)_{m=1}^\infty$ in $C_K((0,\infty))$ with $\phi_m \geq 0$, $\int \phi_m dt = 1$ and with $\mathrm{supp}[\phi_{\scriptscriptstyle{m}}] \subset ((m+1)^{\scriptscriptstyle{-1}},\,m^{\scriptscriptstyle{-1}}),$ we shall often use the sequence $(W^{\scriptscriptstyle{(\alpha)}}_{\scriptscriptstyle{(\phi_m)}})_{m=1}^{\scriptscriptstyle{\infty}}.$ We say that such a $(\phi_m)_{m=1}^{\infty}$ is an approximate sequence of the Dirac measure.

Definition 1. A non-negative function u on R^{n+1} is said to be superparabolic of order α if the following two conditions are satisfied:

- (1) u is lower semi-continuous on R^{n+1} and $u < \infty$ a.e..
- (2) For any $s \ge 0$, $u \ge P_s^{(\alpha)} * u$ on R^{n+1} .

We denote by S_a (resp. $S_{a,c}$) the set of all superparabolic (resp. all continuous superparabolic) functions of order α , and by \tilde{S}_{α} (resp. $\tilde{S}_{\alpha,c}$) the set of all functions u with $\tilde{u} \in S_a$ (resp. $\tilde{u} \in S_{a,c}$), where $\tilde{u}(x,t) = u(x,-t)$.

For a non-negative Borel measure μ on R^{n+1} , we denote by $W^{(\alpha)}\mu$ (resp. $\tilde{W}^{(a)}\mu$) the function defined by the convolution $W^{(a)}*\mu$ (resp. $\tilde{W}^{(a)}*\mu$) and call it the $W^{(a)}$ -potential (resp. the $\tilde{W}^{(a)}$ -potential) of μ .

Remark 2.2. (1) $1 \in S_{\alpha, c}$ and for $u \in S_{\alpha}$, u is locally integrable.

- (2) The condition (2) in Definition 1 is equivalent to $u \ge W^{(a)}_{(\phi)} * u$ for $\begin{array}{l} \text{every } \phi \in C_{\scriptscriptstyle{K}}((0,\,\infty)) \text{ with } \phi \geqq 0 \text{ and } \int \phi dt = 1. \\ \text{(3) } \text{ If } W^{\scriptscriptstyle(\alpha)}\mu < \infty \text{ (resp. } \tilde{W}^{\scriptscriptstyle(\alpha)}\mu < \infty) \text{ a.e., then } W^{\scriptscriptstyle(\alpha)}\mu \in S_{\scriptscriptstyle{\alpha}} \text{ (resp. } \end{array}$
- $\tilde{W}^{(\alpha)}\mu\in \tilde{S}_{\alpha}$).

We denote by M_{α} (resp. $M_{\alpha,c}$, \tilde{M}_{α} and $\tilde{M}_{\alpha,c}$) the set of all positive Borel measures μ with $W^{(a)}\mu \in S_{a}$ (resp. $W^{(a)}\mu \in S_{a,c}$, $\tilde{W}^{(a)}\mu \in \tilde{S}_{a}$ and $\tilde{W}^{(a)}\mu \in \tilde{S}_{a,c}$). For a Borel measure μ and a Borel set A, we denote by $\mu|_A$ the Borel measure defined by $\mu|_{A}(E) = \mu(A \cap E)$ for every Borel set E.

Lemma 2.3. For $u \in S_a$, we have

$$\int_a^b \int_{|x|>1} u(x,t)|x|^{-n-2\alpha} \, dx \, dt < \infty$$

for every finite interval [a, b].

Proof. Let $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$ with $0 \le \phi \le 1$, $\phi(X) = 1$ on $\{X = (x, t); |x| \le 1/2$, $a \le t \le b$ and with $\phi(X) = 0$ on $\{X = (x, t); |x| \ge 3/4\}$. Since for any $X = (x, t) \in C \operatorname{supp}[\phi],$

$$ilde{L}^{(a)}\phi(x,t) = - C_{n,a} \int_{\mathbb{R}^n} \phi(y,t) |x-y|^{-n-2a} dy \leq 0,$$

 $\operatorname{supp}[(\tilde{L}^{(a)}\phi)^+] \subset \operatorname{supp}[\phi]$. On the other hand for any open ball B con-

taining supp $[\phi]$,

$$egin{aligned} \int_B u(ilde{L}^{(a)}\phi)dX &= \lim_{s\downarrow 0} \int_B u rac{\phi - ilde{P}_s^{(a)}*\phi}{s}dX \ &= \lim_{s\downarrow 0} \left(\int_{R^{n+1}} rac{u - P_s^{(a)}*u}{s}\phi\,dX + \int_{CB} u rac{ ilde{P}_s^{(a)}*\phi}{s}dX
ight) \geqq 0 \ , \end{aligned}$$

where $ilde{P}_s^{(lpha)}$ is defined by $\int f d ilde{P}_s^{(lpha)} = \int f(-X) dP_s^{(lpha)}(X)$ for every $f \in C_{\kappa}(R^{n+1})$. Hence

$$egin{split} &\infty > \int_{R^{n+1}} u(ilde{L}^{(a)}\phi)^+ dX \geqq \int_{R^{n+1}} u(L^{(a)}\phi)^- dX \ &\geqq \int_a^b \int_{|x| \geqq 1} u(x,t) \Big(C_{n,\,lpha} \int_{R^n} \phi(y,t) |x-y|^{-n-2lpha} dy \Big) dx \, dt \ &\geqq 2^{-n-2lpha} C_{n,\,lpha} \int_{|y| \le 1/2} dy \int_a^b \int_{|x| \trianglerighteq 1} u(x,t) |x|^{-n-2lpha} \, dx \, dt \, , \end{split}$$

which shows Lemma 2.3.

LEMMA 2.4. (1) S_{α} and $S_{\alpha,c}$ are convex semi-lattices by $u \wedge v(X) = \min(u(X), v(X))$.

- (2) Let $u \in S_a$ and let $(\phi_m)_{m=1}^{\infty}$ be an approximate sequence of the Dirac measure. Then $W_{(\phi_m)}^{(a)} * u \in S_{a,c}$ and $W_{(\phi_m)}^{(a)} * u \uparrow u$ with $m \uparrow \infty$.
- (3) Let $u, v \in S_{\alpha}$ and ω be an open set in \mathbb{R}^{n+1} . If $u \leq v$ a.e. on ω , then $u \leq v$ on ω .

Proof. The assertion (1) is evident (see Definition 1). Since $W^{(\alpha)}_{(\phi_m)}$ is finite continuous, Lemmas 2.1, 2.3 give $W^{(\alpha)}_{(\phi_m)} * u \in S_{\alpha,c}$. Since $(W^{(\alpha)}_{(\phi_m)}(X)dX)^{\infty}_{m=1}$ converges vaguely to ε as $m \to \infty$, we have the second part of (2) (see Definition 1). The assertion (3) follows from (2).

Lemma 2.5. For $u \in S_a$, the family $\left(\frac{u-P_s^{(a)}*u}{s}dX\right)_{s>0}$ of positive measures converges vaguely as $s \downarrow 0$, where dX denotes the Lebesgue measure on R^{n+1} . Denote by μ its vague limit. Then

$$\int_{{\mathbb R}^{n+1}} u\, ilde{L}^{\scriptscriptstyle(lpha)} \phi\, dX = \int_{{\mathbb R}^{n+1}} \phi\, d\mu$$

for every $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$.

Proof. For any $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$ with $\phi \geq 0$, we take r > 0 with $\operatorname{supp}[\phi] \subset \{X; |X| \leq r\}$. For $(x, t) \in \mathbb{R}^{n+1}$ with $|x| \geq 2r$ and any s > 0, Lemma 2.1 shows

$$\left| \frac{\phi(x,t) - \tilde{P}_s^{(\alpha)} * \phi(x,t)}{s} \right| \leq \frac{1}{s} \int W^{(\alpha)}(x-y,s) \phi(y,t+s) dy$$

$$\leq \frac{1}{s} \int W^{(\alpha)}\left(\frac{x}{2},s\right) \phi(y,t+s) dy$$

$$\leq C|x|^{-n-2\alpha}$$

for some constant C. The Lebesgue theorem and Lemma 2.3 give

(2.2)
$$\int u \, \tilde{L}^{\scriptscriptstyle(\alpha)} \phi \, dX = \lim_{s \downarrow 0} \int \frac{u - P_s^{\scriptscriptstyle(\alpha)} * u}{s} \phi \, dX.$$

Hence $\left(\frac{(u-P_s^{(a)}*u}{s}dX\right)_{s>0}$ converges vaguely as $s\downarrow 0$ and we get

$$\int u\, ilde{L}^{\scriptscriptstyle(lpha)}\phi\, dX = \int \phi\, d\mu$$

for every $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$.

The above positive Borel measure μ is called the associated measure of u.

Remark 2.6. Let $\mu \in M_a$. Then the associated measure of $W^{(a)}\mu$ is equal to μ , because $\frac{W^{(a)}\mu - P_s^{(a)} * W^{(a)}\mu}{s} = \frac{1}{s} \int_0^s P_t^{(a)} * \mu dt^2$ (see (2.2)).

LEMMA 2.7. Let $u \in S_a$, $(u_m)_{m=1}^{\infty}$ a sequence in S_a , μ the associated measure of u and μ_m the associated measure of $u_m(m \ge 1)$. If $\lim_{m \to \infty} u_m = u$ a.e. and if there exixts $v \in S_a$ such that for any $m \ge 1$, $u_m \le v$, then $(\mu)_{m=1}^{\infty}$ converges vaguely to μ as $m \to \infty$.

Proof. For any $\phi \in C^\infty_K(R^{n+1})$ with $\phi \ge 0$, Lemmas 2.3, 2.5 and $\int v |\tilde{\mathcal{L}}^{(a)}\phi| dX < \infty$ give

$$\int \phi \, d\mu = \int u \, ilde{\mathcal{L}}^{(lpha)} \phi \, dX = \lim_{m o \infty} u_m \, ilde{\mathcal{L}}^{(lpha)} \phi \, dX = \lim_{m o \infty} \int \phi \, d\mu_m \; ,$$

which shows Lemma 2.7.

Lemma 2.8. Let u be a non-negative continuous function on R^{n+1} . If $u = P_s^{(a)} * u$ for every s > 0, u is constant.

For the proof, we use the following

LEMMA 2.9 (Choquet-Deny [2]). Let σ be a positive Borel measure on 2) $\int_0^s P_t^{(\alpha)} * \mu dt$ is a positive measure defined by $\int_0^s \int \phi d(P_t^{(\alpha)} * \mu) dt$ for every $\phi \in C_K(\mathbb{R}^{n+1})$.

 R^{k} $(k \ge 1)$ with $\int d\sigma = 1$ and h a non-negative Borel function on R^{k} . Assume that R^{k} is generated by supp $[\sigma]$ as a group and that $h * \sigma = h$ on R^{k} . Then h has the following representation:

$$h(x) = \int \exp(a \cdot x) d\nu(a)$$
 a.e.

with some positive Borel measure ν on R^k .

Proof of Lemma 2.8. Let ϕ be a non-negative continuous function on $(0, \infty)$ with compact support and with $\int \phi(t) dt = 1$. Then $u = P_s^{(\alpha)} * u$ give $u = W_{\phi}^{(\alpha)} * u$. Applying Lemma 2.9 with $\sigma = W_{\phi}^{(\alpha)}$, we see that there exists a positive measure ν on R^{n+1} such that

$$u(x, t) = \int_{\mathbb{R}^{n+1}} \exp(a \cdot x + bt) d\nu(a, b) \text{ a.e.}$$

By Lemma 2.3, we have

$$\int_{\mathbb{R}^{n+1}} \int_{|x| \ge 1} \exp(a \cdot x + bt) |x|^{-n-2a} \, dx \, d\nu(a, b) < \infty ,$$

so that supp $[\nu] \subset \{0\} \times R$. By using $u = P_s^{(\alpha)} * u$ for every s > 0 again, we conclude that u is constant.

Proposition 2.10. Let $u \in S_a$ and the associated measure of u. Then

$$u = W^{(\alpha)}\mu + c \qquad on \ R^{n+1}$$

with some constant $c \ge 0$. Furthermore if for any positive Borel measure ν on R^{n+1} , $u-W^{(\alpha)}\nu=a$ a.e. with some constant a, then $\nu=\mu$ and a=c.

Proof. For a positive integer m, we put $\mu_m = \mu|_{B(0, m)}$, where $B(\mathbb{C}, m)$ denotes the open ball in \mathbb{R}^{n+1} with center 0 and with radius m. For $\phi \in C_K^{\infty}(\mathbb{R}^{n+1})$ with $\phi \geq 0$ and for any s > 0, Lemma 2.5 gives

$$\left(\int_0^s P_{\tau}^{(\alpha)} d\tau\right) * (u - W^{(\alpha)} \mu_m) * (\tilde{L}^{(\alpha)} \phi)^{\sim}(X) \geq 0,$$

so that

$$\int u \, \phi \, dX - \int u \cdot (ilde{P}_s^{\,(a)} * \phi) \, dX \geqq \int \left(\int_0^s ilde{P}_{\mathfrak{r}}^{\,(a)} d au
ight) * \phi \, d\mu_m \; .$$

Hence

$$\int u \phi dX \geqq \int W^{(a)} \mu_m \phi dX.$$

Thus $u \ge W^{(a)}\mu_m$ a.e. By Lemma 2.4, $u \ge W^{(a)}\mu_m$. Letting $m \to \infty$, we obtain $u \ge W^{(a)}\mu$. Put

$$h = u - W^{(\alpha)}\mu$$
 on $\{X \in \mathbb{R}^{n+1}; W^{(\alpha)}\mu(X) < \infty\}$.

Then Remark 2.6 gives

$$\int (h - \tilde{P}_s^{(\alpha)} * h) \phi dX = \left(\int_0^s P_{\tau}^{(\alpha)} d\tau \right) * h * (\tilde{L}^{(\alpha)} \phi)^{\sim}(0) = 0$$

for every s>0 and $\phi\in C_K(R^{n+1})$. Hence $h=P_s^{(\alpha)}*h$ a.e. For any $\psi\in C_K((0,\infty))$ with $\psi\geq 0$ and with $\int \psi dt=1$, $h=W_{(\phi)}^{(\alpha)}*h$ a.e. and $(W_{(\psi)}^{(\alpha)}*h)=P_s^{(\alpha)}*(W_{(\psi)}^{(\alpha)}*h)$ on R^{n+1} , so that Lemma 2.8 gives $W_{(\psi)}^{(\alpha)}*h=c$ with some constant $c\geq 0$, that is, h=c a.e., which gives $u=W^{(\alpha)}\mu+c$ a.e. Lemma 2.4 leads to $u=W^{(\alpha)}\mu+c$, which shows the first equality. By Remark 2.6, we obtain the second part of this proposition. Thus Proposition 2.10 is shown.

Corollary 2.11. Let $u \in S_{\alpha}$ and $\mu \in M_{\alpha}$. If $u \leq W^{(\alpha)}\mu$, then u is the $W^{(\alpha)}$ -potential of the associated measure of u.

§ 3. Reduced functions and swept-out measures

For $u \in S_{a,c}$ and a compact set K in \mathbb{R}^{n+1} , we put

$$Q_K^{(\alpha)}u(X)=\inf\{v(X);\,v\in S_\alpha,\,v\geqq u\,\,\,\mathrm{on}\,\,\,K\}$$

and

$$R_K^{(\alpha)}u(X) = Q_K^{(\alpha)}u(X)$$
,

where $Q_K^{(\alpha)}u$ is the lower regularization of $Q_K^{(\alpha)}u$, namely for a function v on R^{n+1} , $v(X) = \liminf_{Y \to X} v(Y)$. Furthermore, for $u \in S_\alpha$ and a set A in R^{n+1} , we put

$$R_{\scriptscriptstyle A}^{\scriptscriptstyle(\alpha)}u(X)=\sup\{R_{\scriptscriptstyle K}^{\scriptscriptstyle(\alpha)}v(X);\,v\in S_{\scriptscriptstyle \alpha,\,c},\,v\leqq u\ \ {
m and}\ \ A\supset K\colon {
m compact\ set}\},$$

$$\overline{Q}^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle A}u(X)=\inf\{R^{\scriptscriptstyle(lpha)}_{\scriptscriptstyle \omega}u(X);A\subset\omega\colon {
m open \ \ set}\}$$

and

$$\overline{R}_{A}^{(\alpha)}u(X)=\overline{Q}_{A}^{(\alpha)}u(X)$$
.

We say that $R_A^{(\alpha)}u$ and $\overline{R}_A^{(\alpha)}u$ are the reduced function of u to A and the outer reduced function of u to A with respect to $L^{(\alpha)}$, respectively.

For a set A in R^{n+1} and for $u \in \tilde{S}_a$, the reduced function $\tilde{R}_A^{(a)}u$ of u to A and the outer reduced function $\tilde{R}_A^{(a)}u$ of u to A with respect to $\tilde{L}^{(a)}$

can be defined analogously. For all the results for $L^{(\alpha)}$ in this paragraph, the analogies for $\tilde{L}^{(\alpha)}$ hold.

Remark 3.1. Let ω be an open set in \mathbb{R}^{n+1} and $u \in S_{\alpha}$. Then we have:

- (1) ω is redusable, that is, $\overline{R}_{\omega}^{(\alpha)}u=R_{\omega}^{(\alpha)}u$.
- (2) $R^{(\alpha)}_{\omega}u=u$ on ω .

LEMMA 3.2 (G. Choquet, [6] p. 34). Let $(f_i)_{i\in I}$ be an arbitrary family of functions on R^{n+1} . Then there exists a countable subset I_0 of I such that for any lower semi-continuous function $g, g \leq f_{I_0}$ implies $g \leq f_I$. Here for a subset J of I, we write $f_J(X) = \inf_{i \in J} f_i(X)$.

LEMMA 3.3. Let u be a positive and locally integrable Borel function on R^{n+1} and assume $u \ge P_s^{(\alpha)} * u$ for s > 0. Then $\underline{u} \in S_{\alpha}$, $\underline{u} = u$ a.e. and for any approximate sequence $(\phi_m)_{m=1}^{\infty}$ of the Dirac measure, $(W_{(\phi_m)}^{(\alpha)} * u(X))_{m=1}^{\infty}$ converges increasingly to $\underline{u}(X)$ with $m \to \infty$.

Proof. Take an approximate sequence $(\phi_m)_{m=1}^{\infty}$ of the Dirac measure. The semi-group property of $(P_s^{(a)})_{s\geq 0}$ shows that $P_{s_1}^{(a)}*u\geq P_{s_2}^{(a)}*u$ on R^{n+1} if $0< s_1< s_2$, so that $(W_{(\phi_m)}^{(a)}*u(X))_{m=1}^{\infty}$ is increasing. For $X\in R^{n+1}$, we choose a sequence $(X_k)_{k=1}^{\infty}\subset R^{n+1}$ convergent to X satisfying $u(X)=\lim_{k\to\infty}u(X_k)$. Then for any $m\geq 1$,

$$\underline{u}(X) \geq \liminf_{k \to \infty} (W_{(\phi_m)}^{(\alpha)} * u(X_k)) \geq W_{(\phi_m)}^{(\alpha)} * u(X) \geq W_{(\phi_m)}^{(\alpha)} * \underline{u}(X).$$

For any $\phi \in C_{\kappa}(\mathbb{R}^{n+1})$ with $\phi \geq 0$, the Fatou lemma gives

$$\int u \,\phi \,dX \leqq \liminf_{m \to \infty} \int u \cdot (\tilde{W}_{(\phi_m)}^{(\alpha)} * \phi) dX = \liminf_{m \to \infty} \int (W_{(\phi_m)}^{(\alpha)} * u) \phi \,dX \leqq \int \underline{u} \,\phi \,dX,$$

so that $u \leq \underline{u}$ a.e., that is, $u = \underline{u}$ a.e. Since $w^*-\lim_{m\to\infty} (W^{(a)}_{(\theta_m)}dX) = \varepsilon^3$ and u is lower semi-continuous, we have

$$\liminf_{(\phi_m)} (W_{(\phi_m)}^{(\alpha)} * \underline{u}(X)) \ge \underline{u}(X) \text{ on } R^{n+1}.$$

Thus we have

$$\underline{u}(X) = \lim_{m \to \infty} (W_{(\phi_m)}^{(\alpha)} * \underline{u}(X)) = \lim_{m \to \infty} (W_{(\phi_m)}^{(\alpha)} * u(X)) \text{ on } R^{n+1}.$$

This gives $\underline{u} \in S_a$, which shows Lemma 3.3.

³⁾ For a sequence $(\mu_m)_{m=1}^{\infty}$ of Borel measures and a Borel measure μ , we write $\mu=$ w*- $\lim_{m\to\infty}\mu_m$ if $(\mu_m)_{m=1}^{\infty}$ converges vaguely to μ as $m\to\infty$.

Lemmas 3.2 and 3.3 give the following

Remark 3.4. For $u \in S_a$ and any set A in \mathbb{R}^{n+1} , we have:

- $(1) \quad R_{_{\!\!A}}^{_{(\alpha)}}u = \lim\nolimits_{_{\!\!m\to\infty}} R_{_{\!A}}^{_{(\alpha)}}(W_{_{(\phi_m)}}^{_{(\alpha)}}*u), \ R_{_{\!\!A}}^{_{(\alpha)}}u \in S_{_{\!\alpha}}, \ \overline{R}_{_{\!\!A}}^{_{(\alpha)}}u \in S_{_{\!\alpha}},$
- (2) $R_A^{(\alpha)}u$ is a $W^{(\alpha)}$ -potential if A is relatively compact (see Corollary 2.11) and $R_A^{(\alpha)}R_A^{(\alpha)}u=R_A^{(\alpha)}u$ if A is open (see Remark 3.1).

In general, a closed set F is not always reducible, that is, $\overline{R}_F^{(a)}u \neq R_F^{(a)}u$ for some $u \in S_a$. But we have the following

Lemma 3.5. Let F be a closed set in R^{n+1} and $u \in S_a$. If u is continuous on a neighborhood of F and if $\lim_{X \in F, X \to \infty} u(X) = 0$, then $\overline{R}_F^{(a)} u = R_F^{(a)} u$.

Proof. For any $\delta > 0$, we choose a compact set $K \subset F$ such that $u \leq \delta$ on $F \setminus K$. Then we have

$$R_K^{(\alpha)}u \leq R_F^{(\alpha)}u \leq \overline{R}_F^{(\alpha)}u \leq \overline{R}_K^{(\alpha)}u + \delta \text{ on } R^{n+1},$$

so that it suffices to show that $\overline{R}_K^{(a)}u = R_K^{(a)}u$ for every compact set $K \subset F$. Let $v \in S_a$ with $v \geq u$ on K. Then for any $\delta > 0$, continuity of u on some neighborhood of K shows that $v + \delta \geq \overline{R}_K^{(a)}u$ on R^{n+1} . Letting $\delta \to 0$ and taking the lower regularizations, we obtain $R_K^{(a)}u \geq \overline{R}_K^{(a)}u$ on R^{n+1} , that is, $R_K^{(a)}u \geq \overline{R}_K^{(a)}u$, which shows Lemma 3.5.

For $\mu \in M_{\alpha}$ (resp. $\mu \in \tilde{M}_{\alpha}$) and for a set A in R^{n+1} , Corollary 2.11 shows that $R_A^{(\alpha)}W^{(\alpha)}\mu$ (resp. $\tilde{R}_A^{(\alpha)}\tilde{W}^{(\alpha)}\mu$) is a $W^{(\alpha)}$ -potential (resp. $\tilde{W}^{(\alpha)}$ -potential). We denote by μ_A' (resp. μ_A'') the associated measure of $R_A^{(\alpha)}W^{(\alpha)}\mu$ (resp. $\tilde{R}_A^{(\alpha)}\tilde{W}^{(\alpha)}\mu$). We say that μ_A' (resp. μ_A'') is the inner $W^{(\alpha)}$ -swept-out (resp. $\tilde{W}^{(\alpha)}$ -swept-out) measure of μ to A.

Proposition 3.6. Let A be a set in R^{n+1} and $\mu \in M_a$. Then

$$\int d\mu_{\mathtt{A}}' \leqq \int d\mu$$
 .

Proof. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of R^{n+1} . By Remark 3.1, there exists a positive measure ν_m with $\tilde{R}_{\omega_m}^{(\alpha)} 1 = \tilde{W}^{(\alpha)} \nu_m$. Then we have

$$egin{aligned} \int d\mu_{\!\scriptscriptstylem{A}}' &= \lim_{m o\infty} \int . ilde{W}^{\scriptscriptstyle(lpha)}
u_m d\mu_{\!\scriptscriptstylem{A}}' &= \lim_{m o\infty} \int W^{\scriptscriptstyle(lpha)} \mu_{\!\scriptscriptstylem{A}}' d
u_m \ &\leq \lim_{m o\infty} \int W^{\scriptscriptstyle(lpha)} \mu \, d
u_m &= \lim_{m o\infty} \int ilde{W}^{\scriptscriptstyle(lpha)}
u_m d\mu &= \int d\mu \, . \end{aligned}$$

PROPOSITION 3.7. Let $u \in S_a$ and let A be a set in \mathbb{R}^{n+1} . Then the support of associated measure of $R_A^{(a)}u$ is in \overline{A} .

Proof. By the definition of $R_A^{(\alpha)}u$, Lemma 2.7 and by Remarks 3.5, 3.4, we may assume that A is compact and that u is a continuous $W^{(\alpha)}$ -potential. Put $u=W^{(\alpha)}\mu$ with $\mu\in M_\alpha$ and let $(\omega_m)_{m=1}^\infty$ be a sequence of relatively compact open sets with $\overline{\omega_{m+1}}\subset\omega_m$ and with $\bigcap_{m=1}^\infty\omega_m=A$. Since $W^{(\alpha)}\mu'_{\omega_m}\leqq W^{(\alpha)}\mu$ for all m and since Lemmas 3.3 and 3.5 give $\lim_{m\to\infty}(W^{(\alpha)}\mu'_{\omega_m})=W^{(\alpha)}\mu'_A$ a.e., we obtain $\mu'_A=w^*-\lim_{m\to\infty}\mu'_{\omega_m}$ (see Lemma 2.7). Hence it suffices to show $\sup[\mu'_\omega]\subset \overline{\omega}$ for every open set ω in R^{n+1} . Suppose that there exists a point $X_0\in C\overline{\omega}\cap\sup[\mu'_\omega]$. Let $(V_m)_{m=1}^\infty$ be a sequence of open sets in R^{n+1} with $\overline{V}_1\subset C\overline{\omega}$, $\overline{V}_{m+1}\subset V_m$ and with $\bigcap_{m=1}^\infty V_m=\{X_0\}$. We put $\mu_m=\mu'_\omega|_{V_m}$. Then

$$W^{(\alpha)}\mu_\omega' \geq W^{(\alpha)}(\mu_\omega' - \mu_m) + W^{(\alpha)}(\mu_m)_\omega'$$
 on R^{n+1}

and

$$W^{(\alpha)}(\mu_\omega' - \mu_m) + W^{(\alpha)}(\mu_m)_\omega' = W^{(\alpha)}\mu$$
 on ω .

Hence

$$W^{(\alpha)}\mu_m = W^{(\alpha)}(\mu_m)'_{\omega}$$
 on R^{n+1} ,

so that

$$\lim_{m o\infty}W^{(lpha)}\Bigl((\mu_m)'_{\omega}\Bigl/\int d\mu_m\Bigr)=\lim_{m o\infty}W^{(lpha)}\Bigl(\mu_m\Bigl/\int d\mu_m\Bigr)=W^{(lpha)}arepsilon_{X_0}\qquad ext{on }C\{X_0\}$$
 ,

which contradicts the unboundedness of $W^{(a)}\varepsilon_{X_0}$ on a neighborhood of X_0 . Thus Proposition 3.7 is shown.

Proposition 3.8. Let $\mu \in M_{\alpha}$ and $\nu \in \tilde{M}_{\alpha}$. For a set A in \mathbb{R}^{n+1} , we have

$$\int W^{(lpha)} \mu_{A}' \, d
u = \int W^{(lpha)} \mu \, d
u_{A}'' \quad and \quad W^{(lpha)} \mu_{A}'(X) = \int W^{(lpha)} arepsilon_{Y,\,A}'(X) \, d\mu(Y) \, ,$$

where we denote by ε_Y and by $\varepsilon'_{Y,A}$ the Dirac measure at Y and its inner $W^{(a)}$ -swept-out measure to A. In particular if A is open,

$$\int W^{(lpha)} \mu_A^\prime \, d
u = \int W^{(lpha)} \mu_A^\prime \, d
u_A^{\prime\prime} \, .$$

Proof. First we assume that A is open. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of A. Then Proposition 3.7 and Remark 3.1 show that

$$\int W^{(lpha)} \mu_A' \, d
u = \lim_{m o \infty} \int W^{(lpha)} \mu_{\omega_m}' \, d
u = \lim_{m o \infty} \int \widetilde{W}^{(lpha)}
u \, d\mu_{\omega_m}' = \lim_{m o \infty} \int \widetilde{W}^{(lpha)}
u_A'' \, d\mu_{\omega_m}' \, d
u_{\omega_m}' = \lim_{m o \infty} \int W^{(lpha)}
u_A'' \, d
u_{\omega_m}' \, d$$

Let A be an ar bitrary set. By the definition of inner $W^{(\alpha)}$ -swept-out

measures and Lemma 3.3, we may assume that A is compact, $\mu \in M_{\alpha,c}$ and that $\nu \in \widetilde{M}_{\alpha,c}$. Take a sequence $(\Omega_m)_{m=1}^{\infty}$ of relatively compact open sets with $\overline{\Omega_{m+1}} \subset \Omega_m$ and with $\bigcap_{m=1}^{\infty} \Omega_m = A$. By Lemma 3.5 and the above result, we have

$$\int W^{(a)} \mu_A' \, d
u = \lim_{m o \infty} \int W^{(a)} \mu_{g_m}' \, d
u = \lim_{m o \infty} \int \, ilde{W}^{(a)}
u_{g_m}'' \, d\mu = \int \, ilde{W}^{(a)}
u_A'' \, d\mu \, .$$

In particular, we have $W^{(a)}\varepsilon'_{Y,A}(X)=\tilde{W}^{(a)}\varepsilon''_{X,A}(Y)$. Hence

$$W^{\scriptscriptstyle(lpha)}\mu_{\scriptscriptstyle A}'(X) = \int W^{\scriptscriptstyle(lpha)}\mu_{\scriptscriptstyle A}'\,darepsilon_{\scriptscriptstyle X} = \int ilde{W}^{\scriptscriptstyle(lpha)}arepsilon_{\scriptscriptstyle X,\,A}'(Y)d\mu(Y) = \int W^{\scriptscriptstyle(lpha)}arepsilon_{\scriptscriptstyle Y,\,A}'(X)d\mu(Y)\,.$$

This completes the proof.

By Remark 3.4, (2) and Proposition 3.8, we have the following

COROLLARY 3.9. Let ω be an open set in R^{n+1} . Then the mapping $M_{\alpha}\ni \mu {\rightarrow} \mu'_{\omega}$ is positively linear, and for any $\mu\in M_{\alpha}$ and any positive measure ν with $\nu \leqq \mu'_{\omega}$, we have $\nu'_{\omega}=\nu$.

Proof. It follows immediately from Proposition 3.8 that the mapping $\mu \to \mu'_{\omega}$ is positively linear. By Remark 3.4, (2) we have $(\mu'_{\omega})'_{\omega} = \mu'_{\omega}$, so that by Proposition 3.8, for any $X \in \mathbb{R}^{n+1}$,

$$\int (W^{(a)} arepsilon_Y(X) - W^{(a)} arepsilon'_{Y,\omega}(X)) d\mu'_\omega(Y) = 0$$
 .

Since $W^{(\alpha)} \varepsilon_Y \ge W^{(\alpha)} \varepsilon_{Y,\omega}'$, we have $W^{(\alpha)} \varepsilon_Y = W^{(\alpha)} \varepsilon_{Y,\omega}' \mu_\omega'$ -a.e. as functions of Y, so that

$$\int (W^{(a)}\varepsilon_Y(X) - W^{(a)}\varepsilon'_{Y,\omega}(X))d\nu(Y) = 0,$$

that is,

$$W^{(\alpha)}\nu = W^{(\alpha)}\nu'$$

which gives $\nu = \nu'_{\alpha}$.

Proposition 3.10. Let $\mu \in M_{\alpha}$. Then we have:

- (1) For two sets A_1 and A_2 in R^{n+1} with $A_1 \subset A_2$, we have $\mu'_{A_1} \ge \mu'_{A_2}$ on $\operatorname{Int}(A_1)$, where $\operatorname{Int}(A_1)$ denotes the interior of A_1 .
 - (2) For a set A in R^{n+1} with $\int_{\overline{CA}} d\mu = 0$, we have $\mu'_A = \mu$.

Proof. (1): Choose $\phi \in C^{\infty}_{K}(\mathbb{R}^{n+1})$ with $\phi \geq 0$ and $\operatorname{supp}[\phi] \subset \operatorname{Int}(A_{1})$. Let λ be the real Borel measure such that $\phi = \tilde{W}^{(\alpha)}\lambda$. Then we have

$$egin{aligned} \int ilde{W}^{(lpha)} \lambda \, d\mu'_{A_2} &= \int W^{(lpha)} \mu'_{A_2} \, d\lambda^+ - \int W^{(lpha)} \mu'_{A_2} \, d\lambda^- \ &\leq \int W^{(lpha)} \mu'_{A_1} \, d\lambda^+ - \int W^{(lpha)} \mu'_{A_1} \, d\lambda^- \ &= \int ilde{W}^{(lpha)} \lambda \, d\mu'_{A_1} \, , \end{aligned}$$

because $\operatorname{supp}[\lambda^{\scriptscriptstyle +}] \subset \operatorname{Int}(A_{\scriptscriptstyle 1})$ and $W^{\scriptscriptstyle (\alpha)}\mu'_{A_1} = W^{\scriptscriptstyle (\alpha)}\mu'_{A_2}$ on $\operatorname{Int}(A_{\scriptscriptstyle 1}).$

By using Proposition 3.8 and Remark 3.1, (2), we show (2) in the same manner as in (1). This completes the proof.

PROPOSITION 3.11 (the domination principle). Let Ω be an open set in R^{n+1} , $u \in S_{\alpha}$ and $\mu \in M_{\alpha}$ with $\text{supp}[\mu] \subset \Omega$. Put

$$E = \{ X \in \Omega \; ; \; u(X) - R_{CG}^{(a)} u(X) \ge W^{(a)} \mu(X) - W^{(a)} \mu_{CG}^{(A)}(X) \} \; .$$

If $\mu_E' = \mu$, then $u - R_{C\Omega}^{(a)} u \ge W^{(a)} \mu - W^{(a)} \mu_{C\Omega}'$ on R^{n+1} .

Proof. Since μ is a sum of positive measures with compact support, we may assume that $\sup[\mu]$ is compact. Let ω be an open set with $\omega \supset C\Omega$. Then

$$u + R_{\alpha}^{(\alpha)} W^{(\alpha)} \mu \ge R_{CO}^{(\alpha)} u + W^{(\alpha)} \mu$$
 on $E \cup \omega$.

Let ν be the associated measure of $R_{\mathcal{C}\beta}^{(a)}u$ and put $R_{\mathcal{C}\beta}^{(a)}u = W^{(a)}\nu + c$ with $c \geq 0$, Then $\sup[\nu] \subset C\Omega$, so that

$$R_{{\cal C}{\cal G}}^{(lpha)}u + W^{(lpha)}\mu = c + R_{{\cal E}\cup\omega}^{(lpha)}(W^{(lpha)}
u + W^{(lpha)}\mu) \leqq u + R_{\omega}^{(lpha)}W^{(lpha)}\mu \,\,\,{
m on}\,\,\,R^{n+1}$$
 ,

because $u-c+R_{\omega}^{(a)}W^{(a)}\mu\geq 0$. Since $W^{(a)}\mu$ is continuous in a certain neighborhood of $C\Omega$ and vanishes at the infinity, Lemma 3.5 shows

$$u-R_{\scriptscriptstyle C\Omega}^{\scriptscriptstyle (lpha)}u\geqq W^{\scriptscriptstyle (lpha)}\mu-W^{\scriptscriptstyle (lpha)}\mu_{\scriptscriptstyle C\Omega}'$$
 ,

which shows Proposition 3.11.

PROPOSITION 3.12. Let ω_1 and ω_1 be open sets in R^{n+1} with $\overline{\omega_1} \cap \overline{\omega_2} = \phi$ and $\mu \in M_a$. Then $\mu'_{\omega_1} = \mu'_{\omega_1 \cup \omega_2}|_{\overline{\omega_1}} + (\mu'_{\omega_1 \cup \omega_2}|_{\overline{\omega_2}})'_{\omega_1}$.

Proof. Let $(\omega_{1, m})_{m=1}^{\infty}$ be an exhaustion of ω_1 and put $\mu_1 = \mu'_{\omega_1 \cup \omega_2}|_{\omega_1}$ and $\mu'_m = (\mu_1)'_{\omega_1, m \cup \omega_2}$. Since $\sup[\mu'_m|_{\omega_1}] \subset \overline{\omega_{1, m}} \subset \omega_1$, by Proposition 3.10, (2), $\mu'_m|_{\omega_1} = (\mu'_m|_{\omega_1})'_{\omega_1}$, so that

$$W^{\scriptscriptstyle(lpha)}(\mu'_{m}|_{\omega_{1}}) = R^{\scriptscriptstyle(lpha)}_{\omega_{1}} W^{\scriptscriptstyle(lpha)}(\mu'_{m}|_{\omega_{1}}) \leqq R^{\scriptscriptstyle(lpha)}_{\omega_{1}} W^{\scriptscriptstyle(lpha)}\mu_{1} = W^{\scriptscriptstyle(lpha)}(\mu_{1})'_{\omega_{1}}.$$

On the other hand, by Corollary 3.9, we have $(\mu_1)'_{\omega_1 \cup \omega_2} = \mu_1$, so that

 $(\mu_1)'_{\omega_1 \cup \omega_2}|_{\overline{\omega_1}} = \mu_1$. Since w*- $\lim_{m \to \infty} \mu'_m = (\mu_1)'_{\omega_1 \cup \omega_2}$ by Lemma 2.7, it follows that $W^{(\alpha)}\mu_1 = W^{(\alpha)}((\mu_1)'_{\omega_1 \cup \omega_2}|_{\overline{\omega_1}}) \leq \liminf_{m \to \infty} W^{(\alpha)}(\mu'_m|_{\omega_1}) \leq W^{(\alpha)}(\mu_1)'_{\omega_1}.$

Thus, $\mu_1 = (\mu_1)'_{\omega_1}$, and hence $\mu'_{\omega_1} = (\mu'_{\omega_1 \cup \omega_2})'_{\omega_1} = \mu_1 + (\mu'_{\omega_1 \cup \omega_2}|'_{\omega_2})'_{\omega_1}$, which shows Proposition 3.12.

COROLLARY 3.13. Let Ω and ω be open sets in R^{n+1} and $\mu \in M_{\alpha}$. Then $(\mu'_{\Omega}|_{\omega})'_{\Omega \cap \omega} = \mu'_{\Omega}|_{\omega}$.

Proof. By Proposition 3.8, we may assume that $\sup[\mu]$ is compact. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of ω . By Proposition 3.6, we may assume that $((\mu'_{\alpha}|_{\omega})'_{\alpha\cap(\omega_m\cup C\overline{\omega_{m+1}})})_{m=1}^{\infty}$ converges vaguely to some measure ν . By the definition of inner $W^{(\alpha)}$ -swept-out measures, we have $\nu = (\mu'_{\alpha}|_{\omega})'_{\alpha} = \mu'_{\alpha}|_{\omega}$ (see Corollary 3.9). Proposition 3.12 gives

$$(\mu'_{\mathcal{Q}}|_{\omega})'_{\mathcal{Q}\cap(\omega_m\cup\mathcal{C}_{\omega_m+1})} \leq (\mu'_{\mathcal{Q}}|_{\omega})'_{\mathcal{Q}\cap\omega_m}$$
 on ω_m .

Letting $m \to \infty$, we have

$$|\mu_{\alpha}'|_{\omega} \leq (|\mu_{\alpha}'|_{\omega})_{\alpha \cap \omega}'$$
 on ω .

Hence Proposition 3.6 shows $\mu'_{\mathfrak{g}}|_{\scriptscriptstyle{\omega}} = (\mu'_{\mathfrak{g}}|_{\scriptscriptstyle{\omega}})'_{\mathfrak{g}\cap\scriptscriptstyle{\omega}}$.

PROPOSITION 3.14. Let Ω be an open set in R^{n+1} , T the projection of $C\overline{\Omega}$ to the t-axis and $X_0 = (x_0, t_0) \in R^{n+1}$. Let M be the connected component of $T \cup \{t_0\}$ satisfying $t_0 \in M$ and put $t_1 = \sup M$. If $\varepsilon'_{X_0, \Omega} \neq \varepsilon_{X_0}$, then

$$\operatorname{supp}[\varepsilon'_{X_0,\Omega}]\supset \overline{\Omega}\cap (R^n\times (t_0,t_1)).$$

For the proof, we use the following

LEMMA 3.15. Let $\mu, \nu \in M_{\alpha}$ and $X_0 = (x_0, t_0) \in R^{n+1} \setminus \text{supp}[\nu]$. Suppose that $W^{(a)}\mu \geq W^{(a)}\nu$ on R^{n+1} and that $\text{supp}[\mu] \subset \{(x, t) \in R^{n+1}; t < t_0\}$. If $W^{(a)}\mu(X_0) = W^{(a)}\nu(X_0)$, then $\text{supp}[\nu] \subset \{(x, t) \in R^{n+1}; t \leq t_0\}$ and $W^{(a)}\mu = W^{(a)}\nu$ on $\{(x, t) \in R^{n+1}; t > t_0\}$.

Proof. Since $W^{(\alpha)}(\mu - \nu) \ge 0$, $W^{(\alpha)}(\mu - \nu)(X_0) = 0$ and since $W^{(\alpha)}(\mu - \nu)$ is of class C^{∞} in a neighborhood of X_0 ,

$$W^{(a)}(\mu-
u)(X_0)=rac{\partial}{\partial t}W^{(a)}(\mu-
u)(X_0)=0$$

and

$$0 = L^{(\alpha)} W^{(\alpha)}(\mu - \nu)(X_0) = -C_{n,\alpha} \int_{\mathbb{R}^n} W^{(\alpha)}(\mu - \nu)(x_0 - y, t_0) |y|^{-n-2\alpha} dy$$

Then we have $W^{(\alpha)}\mu(x,t_0)=W^{(\alpha)}\nu(x,t_0)$ dx-a.e., so that for any s>0 and for any $x\in R^n$, we have

$$W^{(a)}\mu(x, t_0 + s) = \int W^{(a)}(x - y, s)W^{(a)}\mu(y, t_0)dy$$

= $\int W^{(a)}(x - y, s)W^{(a)}\nu(y, t_0)dy$
 $\leq W^{(a)}\nu(x, t_0 + s)$.

Therefore $W^{(a)}\mu = W^{(a)}\nu$ on $\{(x, t) \in \mathbb{R}^{n+1}; t > t_0\}$ and $\nu = 0$ on $\{(x, t) \in \mathbb{R}^{n+1}; t > t_0\}$, which shows Lemma 3.15.

Proof of Proposition 3.14. Put

$$s = \sup\{t \geq t_{\scriptscriptstyle 0}; \operatorname{supp}[arepsilon_{X_{\scriptscriptstyle 0},\,arrho}] \,\cap\, (R^{\scriptscriptstyle n} imes \{t\})
eq \phi\}\,.$$

Then Lemma 3.15 yields $s > t_0$ and

$$\operatorname{supp}[\varepsilon_{X_0,\,\varOmega}'] = \overline{\varOmega \cap (R^n \times (t_0,\,\overline{s}))}.$$

Suppose that $s < t_1$ and $\Omega \cap (R^n \times (s, \infty)) \neq \phi$; we can take a nonempty open set ω in R^n and a positive number $\delta > 0$ such that $t_0 < s - \delta$ and

$$D_s = \omega \times (s - \delta, s) \subset C\overline{\Omega}$$
.

Put $\nu_{\delta} = \varepsilon'_{X_0, \, a \cup D_{\delta}}|_{\overline{D_{\delta}}}$. If $\nu_{\delta} = 0$, then Proposition 3.12 gives $\varepsilon'_{X_0, \, a} = \varepsilon'_{X_0, \, a \cup D_{\delta}}$, so that Lemma 3.15 shows that $\varepsilon'_{X_0, \, a}$ vanishes on $R^n \times (s - \delta, \infty)$, which is a contradiction. Hence $\nu_{\delta} \neq 0$ for every sufficiently small $\delta > 0$. By Lemma 3.15, there exists s' > s such that

$$W^{(\alpha)}\nu_{\delta} = W^{(\alpha)}\nu'_{\delta+\beta}$$
 on $R^n \times [s', \infty)$.

Since Proposition 3.12 shows $\sup [\nu_{\delta} + \nu'_{\delta, \varrho}] \subset R^n \times (-\infty, s]$, for any s < t < s', we have

$$egin{aligned} 0 &= W^{(lpha)}
u_{\delta}(0,\,s') - W^{(lpha)}
u'_{\delta,\,\,arrho}(0,\,s') \ &= \int_{\mathbb{R}^n} (W^{(lpha)}
u_{\delta}(x,\,t) - W^{(lpha)}
u'_{\delta,\,\,arrho}(x,\,t))W^{(lpha)}(-\,x,\,s'\,-\,t)dx \,. \end{aligned}$$

Since $W^{(a)}\nu_{\delta} \ge W^{(a)}\nu'_{\delta,\Omega}$ on R^{n+1} , Lemma 2.4, (3) shows

$$W^{(a)}
u_\delta \geqq W^{(a)}
u_{\delta,\,\Omega}' \qquad ext{on } R^n imes (s,\,\infty) \,.$$

We may assume that $\left(\nu_{\delta}\Big/\int d\nu_{\delta}\right)_{\delta>0}$ and $\left(\nu'_{\delta}, g\Big/\int d\nu_{\delta}\right)_{\delta>0}$ converges vaguely as $\delta\to 0$. Put

$$u = \operatorname{w*-lim}_{\delta \downarrow 0} \left(
u_\delta \middle/ \int d
u_\delta \right) \quad ext{and} \quad
u' = \operatorname{w*-lim}_{\delta \downarrow 0} \left(
u'_{\delta,\,\varOmega} \middle/ \int d
u_\delta \right);$$

then Proposition 3.12 gives $\sup[\nu'] \subset \overline{\Omega} \cap (R^n \times [t_0, s])$, $W^{(\alpha)}\nu \geq W^{(\alpha)}\nu'$ on R^{n+1} and $W^{(\alpha)}\nu = W^{(\alpha)}\nu'$ on $R^n \times (s, \infty)$. Since $\sup[\nu] \subset R^n \times \{s\}$, $W^{(\alpha)}\nu = 0$ on $R^n \times (-\infty, s]$. Hence $W^{(\alpha)}\nu = W^{(\alpha)}\nu'$ on R^{n+1} , which implies $\nu = \nu'$. But this contradicts $\sup[\nu] \subset C\overline{\Omega}$ and $\sup[\nu'] \subset \overline{\Omega}$. Thus Proposition 3.14 is shown.

§ 4. $L^{(a)}$ -regular points and a Poincaré type condition

As in the classical potential theory, we define $L^{(a)}$ -regular points for Dirichlet problem.

DEFINITION 2. Let Ω be an open set in R^{n+1} and $X_0 \in \partial \Omega$. Then X_0 is said to be regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω if

$$\underset{X \in \varOmega, X \to X_0}{\mathrm{w}^*\text{-}\mathrm{lim}} \, \varepsilon_{X,\, C\varOmega}^{\prime\prime} = \varepsilon_{X_0} \, .$$

PROPOSITION 4.1. Let Ω and Ω' be open sets in R^{n+1} and $X_0 \in \partial \Omega \cap \partial \Omega'$. If there exists a neighborhood V of X_0 such that $\Omega \cap V = \Omega' \cap V$ and if X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω' , then X_0 is so on Ω .

Proof. Let U be an open neighborhood of X_0 with $\overline{U} \subset V$. Then w*- $\lim_{X \in \Omega, X \to X_0} \varepsilon''_{X, C\Omega'}|_{U} = \varepsilon_{X_0}$. For any $X \in \Omega$, Lemma 3.5 and the domination principle of $\widetilde{W}^{(\alpha)}$ (Proposition 3.11) show

$$ilde{W}^{(lpha)}(arepsilon_{X,CQ'}^{\prime\prime}|_{U}) \leq ar{ ilde{R}}^{(lpha)}_{CQ} ilde{W}^{(lpha)}arepsilon_{X} = ilde{R}^{(lpha)}_{CQ} ilde{W}^{(lpha)}arepsilon_{X} = ilde{W}^{(lpha)}(arepsilon_{X,CQ}^{\prime\prime}) \leq ilde{W}^{(lpha)}arepsilon_{X}$$

Let $(X_m)_{m=1}^{\infty}$ be an arbitrary sequence in Ω with $\lim_{m\to\infty}X_m=X_0$. Since $\int d\varepsilon_{X_m,\,C\Omega}'' \leq 1$, it suffices to show $\mathrm{w}^*\text{-}\!\lim_{m\to\infty}\varepsilon_{X_m,\,C\Omega}'' = \varepsilon_{X_0}$ in the case that $(\varepsilon_{X_m,\,C\Omega}')_{m=1}^{\infty}$ converges vaguely. Put $\mu=\mathrm{w}^*\text{-}\!\lim_{m\to\infty}\varepsilon_{X_m,\,C\Omega}''$. Since for any non-negative $f\in C_K(R^{n+1})$, $W^{(\alpha)}(fdX)$ is finite continuous and vanishes at the infinity,

$$\begin{split} \int \tilde{W}^{(\alpha)} \varepsilon_{X_0} f \, dX &= \lim_{m \to \infty} \int \tilde{W}^{(\alpha)} (\varepsilon_{X_m, \, C\Omega'}'|_U) f \, dX \\ & \leq \lim_{m \to \infty} \int \tilde{W}^{(\alpha)} (\varepsilon_{X_m, \, C\Omega}'') \, f \, dX = \int \tilde{W}^{(\alpha)} \mu \cdot f \, dX \\ & \leq \int \tilde{W}^{(\alpha)} \varepsilon_{X_0} f \, dX \, . \end{split}$$

Therefore $\tilde{W}^{(a)}\varepsilon_{X_0}=\tilde{W}^{(a)}\mu$ a.e., so that $\tilde{W}^{(a)}\varepsilon_{X_0}=\tilde{W}^{(a)}\mu$, which gives $\mu=\varepsilon_{X_0}$. This shows that X_0 is regular for the Dirichlet problem of $L^{(a)}$ on Ω .

PROPOSITION 4.2. Let Ω be an open set in R^{n+1} and $X_0 = (x_0, t_0) \in \partial \Omega$ such that for any neighborhood V of X_0 ,

$$V \cap \Omega \cap \{(x, t); t < t_0\} \neq \phi$$
.

Then the following four conditions are equivalent:

- (1) X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω .
- (2) For any $u \in S_a$, $R_{CB}^{(\alpha)}u(X_0) = u(X_0)$.
- $(3) \ \ \textit{There exist} \ \ u \in S_{\alpha} \ \ \textit{and} \ \ \{(x_{\scriptscriptstyle m},t_{\scriptscriptstyle m})\}_{\scriptscriptstyle m=1}^{\scriptscriptstyle m} \subset R^{\scriptscriptstyle n+1} \ \ \textit{such that} \ \ t_{\scriptscriptstyle m} < t_{\scriptscriptstyle 0}, \\ \lim_{m\to\infty} t_{\scriptscriptstyle m} = t_{\scriptscriptstyle 0}, \ R_{\scriptscriptstyle CB}^{\scriptscriptstyle (a)} u(x_{\scriptscriptstyle m},t_{\scriptscriptstyle m}) \neq u(x_{\scriptscriptstyle m},t_{\scriptscriptstyle m}) \ \textit{and that} \ R_{\scriptscriptstyle CB}^{\scriptscriptstyle (a)} u(X_{\scriptscriptstyle 0}) = u(X_{\scriptscriptstyle 0}).$
 - $(4) \quad \varepsilon_{X_0, CQ}^{\prime\prime} = \varepsilon_{X_0}.$

Proof. Proposition 3.8 shows for any $\mu \in M_a$, $R_{CB}^{(\alpha)}W^{(\alpha)}\mu(X_0) = \int W^{(\alpha)}\mu \,d\varepsilon_{X_0,CB}^{\prime\prime}$, so that (2) \leftrightarrow (4) holds.

(1) \rightarrow (3): Choose $f \in C_K(\mathbb{R}^{n+1})$ such that $f \geq 0$ and that f > 0 on a neighborhood of X_0 . Then $W^{(\alpha)}(fdX)$ is a required function. In fact, since $W^{(\alpha)}(fdX)$ is finite continuous and vanishes at the infinity, we have

$$\lim_{Y \in arrho_{,Y o X_0}} \int W^{\scriptscriptstyle(lpha)}(fdX) darepsilon_{Y,\;Carrho}' = \; W^{\scriptscriptstyle(lpha)}(fdX)(X_{\scriptscriptstyle 0}) \, ,$$

so that Proposition 3.8 gives

$$\lim_{Y\,\in\,\varOmega,\,Y\,-\,X_0}R^{\scriptscriptstyle(\alpha)}_{\scriptscriptstyle C\varOmega}W^{\scriptscriptstyle(\alpha)}(fdX)(Y)=\,W^{\scriptscriptstyle(\alpha)}(fdX)(X_{\scriptscriptstyle 0})\,.$$

Since

$$Q_{C,Q}^{(\alpha)}W^{(\alpha)}(fdX)(Y)=W^{(\alpha)}(fdX)(Y)$$
 on $C\Omega$,

we have

$$R_{CB}^{(\alpha)}W^{(\alpha)}(fdX)(X_0) = W^{(\alpha)}(fdX)(X_0).$$

Assume $W^{(\alpha)}(fdX) = R_{C2}^{(\alpha)}W^{(\alpha)}(fdX)$ on $R^n \times (t, t_0)$ with some $t < t_0$ and denote by f_1 the restriction of f to $R^n \times (t, t_0)$. Then Propositions 3.8, 3.11 show

$$W^{(\alpha)}(f_1 dX) = R_{CO}^{(\alpha)} W^{(\alpha)}(f_1 dX)$$
 on R^{n+1} ,

which contradicts Proposition 2.10. Thus (3) holds.

(3) \rightarrow (4): By Proposition 3.7, $u - R_{C_{\alpha}}^{(\alpha)} u$ is lower semi-continuous on Ω . Furthermore for any $\delta > 0$,

$$\{X \in \Omega; u(X) > R_{CQ}^{(\alpha)}u(X)\} \cap (R^n \times (t_0 - \delta, t_0)) \neq \phi.$$

In fact, if $u(X) = R_{CQ}^{(\alpha)}u(X)$ on $\Omega \cap (R^n \times (t_0 - \delta, t_0))$, $L^{(\alpha)}u = 0$ on $\Omega \cap$

 $(R^n \times (t_0 - \delta, t_0))$ (in the sense of distributions), because $L^{(\alpha)}(R_{CG}^{(\alpha)}u) = 0$ on Ω , and hence for any $(x, t) \in \Omega \cap (R^n \times (t_0 - \delta, t_0))$,

$$\int_{\mathbb{R}^n} (u - R_{Ca}^{(\alpha)}u)(x + y, t)|y|^{-n-2\alpha}dy = 0,$$

that is, $u = R_{CB}^{(\alpha)}u$ on $R^n \times (t_0 - \delta, t_0)$ (see Lemma 2.4, (3)), which contradicts (3). Hence we can choose $\mu_{\delta} \in M_{\alpha}$ such that $\mu_{\delta} \neq 0$, supp $[\mu_{\delta}] \subset \Omega \cap (R^n \times (t_0 - \delta, t_0))$ and that $u - R_{CB}^{(\alpha)}u \geq W^{(\alpha)}\mu_{\delta}$ on a certain neighborhood of supp $[\mu_{\delta}]$. Then Proposition 3.11 gives

$$u-R_{CQ}^{(\alpha)}u\geqq W^{(\alpha)}\mu_{\delta}-W^{(\alpha)}\mu_{\delta,CQ}'$$
 on R^{n+1} ,

so that by Proposition 3.8, and the assumption that $u(X_0) = R_{CD}^{(a)} u(X_0)$,

$$ilde{W}^{(lpha)}arepsilon_{X_{m{0}}}= ilde{W}^{(lpha)}arepsilon_{X_{m{0}},\;C^{arOmega}}\qquad \mu_{\delta} ext{-a.e.,}$$

which implies $\tilde{W}^{(\alpha)} \varepsilon_{X_0} = \tilde{W}^{(\alpha)} \varepsilon_{X_0, CQ}^{"}$ on $R^n \times (-\infty, t_0 - \delta)$ by Lemma 3.15 for $\tilde{L}^{(\alpha)}$. Therefore let $\delta \rightarrow 0$; then Proposition 2.10 yields

$$\varepsilon_{X_0} = \varepsilon_{X_0, CQ}^{\prime\prime}$$
,

which shows (4).

(2) \rightarrow (1): Let $(X_m)_{m=1}^{\infty}$ be an arbitrary sequence in Ω with $\lim_{m\to\infty} X_m = X_0$. To show w*- $\lim_{m\to\infty} \varepsilon_{X_m,C\Omega}'' = \varepsilon_{X_0}$, we may assume that $(\varepsilon_{X_m,C\Omega}')_{m=1}^{\infty}$ converges vaguely. Put $\nu = w$ *- $\lim_{m\to\infty} \varepsilon_{X_m,C\Omega}''$. For any $\mu \in M_{\alpha,c}$ whose support is compact, we have

$$egin{aligned} \int ilde{W}^{(lpha)}
u \, d\mu &= \lim_{m o\infty} \int W^{(lpha)} \mu \, darepsilon_{X_m,\; C \mathcal{Q}}^{\prime\prime} &= \lim_{m o\infty} W^{(lpha)} \mu_{C \mathcal{Q}}^{\prime}(X_m) \ &\geq W^{(lpha)} \mu_{C \mathcal{Q}}^{\prime}(X_0) &= W^{(lpha)} \mu(X_0) &= \int ilde{W}^{(lpha)} arepsilon_{X_0} \, d\mu \, , \end{aligned}$$

so that $\tilde{W}^{(\alpha)}\nu \geq \tilde{W}^{(\alpha)}\varepsilon_{X_0}$ a.e., that is, $\tilde{W}^{(\alpha)}\nu = \tilde{W}^{(\alpha)}\varepsilon_{X_0}$, which shows $\nu = \varepsilon_{X_0}$. Thus X_0 is regular. This completes the proof.

For any $(x, t) \in \mathbb{R}^{n+1}$ and $k \in \mathbb{R}$, we set

$$\tau_{k}^{(\alpha)}(x, t) = (2^{k}x, 2^{2\alpha k}t).$$

Remark 4.3. Let $u \in S_{\alpha}$ and $k \in R$ and put $v(X) = u(\tau_k^{(\alpha)}X)$. Then $v \in S_{\alpha}$.

We shall prove the following main theorem.

THEOREM. Let Ω be an open set in R^{n+1} and $X_0 \in \partial \Omega$. If there exists a non-empty open set ω in R^n such that α -tusk $T_{X_0}^{(\alpha)}(\omega)$ of ω at X_0 is in

 $C\Omega$, then X_0 is regular for the Dirichlet problem of $L^{(\alpha)}$ on Ω .

Proof. We may assume that X_0 is the origin 0 of \mathbb{R}^{n+1} . By Proposition 4.1, we may assume that

$$T_0^{(\alpha)}(\omega) = \{(px, -p^{2\alpha}); x \in \omega, 0$$

Put

$$egin{aligned} V &= \left\{ (x,t); -1 < t < 1, |x| < 1
ight\}, \ V_k &= \left\{ au_k^{(a)}(X); \ X \in V
ight\}, \ D &= V ackslash \overline{T_0^{(a)}(\omega)} \ ext{and} \ D_k &= V_k \cap D \ (k: ext{ integer}). \end{aligned}$$

By Propositions 4.1 and 4.2, it suffices to show that 0 is regular on D. For any $\delta > 0$, we can choose a positive integer k such that

$$\sup_{X \in V} \int_{\mathit{CV}_k} d\varepsilon_{X,\,\mathit{C}\bar{\mathit{D}}}^{\prime\prime} < \delta \,,$$

because for any $X \in \overline{D}$, $\varepsilon_{X, C\overline{D}}^{\prime\prime} - \varepsilon_{X} = \tilde{L}^{(a)}(\tilde{W}^{(a)}\varepsilon_{X, C\overline{D}}^{\prime\prime} - \tilde{W}^{(a)}\varepsilon_{X})$ in the sense of distribution, that is,

$$(4.2) \quad \varepsilon_{X,\; c\bar{D}}^{\prime\prime} = C_{n,\;a} \bigg(\int_{\mathbb{R}^n} (\tilde{W}^{(a)} \varepsilon_X(y-z,t) - \tilde{W}^{(a)} \varepsilon_{X,\; c\bar{D}}^{\prime\prime}(y-z,t)) |z|^{-n-2a} dz \bigg) dy dt$$

in $C\overline{D}$. Put

$$egin{align} u_{\scriptscriptstyle
m I}(X) &= \int_{\scriptscriptstyle CV} darepsilon_{\scriptscriptstyle X,\; Car D}^{\prime\prime}\,, \ η &= \sup_{\scriptscriptstyle X\in V} \int_{\scriptscriptstyle CV} darepsilon_{\scriptscriptstyle X,\; Car D}^{\prime\prime}\,, \end{array}$$

and

$$u_2(X) = \beta \int_{CV} d\varepsilon_{X, C\overline{D-k-1}}'' + (1-\beta) \int_{CV} d\varepsilon_{X, C\overline{D-k-1}}''.$$

Then $\beta < 1$. In fact, we take a sequence $(X_m)_{m=1}^{\infty} \subset V_{-1} \cap \overline{D}$ such that $\lim_{m \to \infty} \int_{CV} d\varepsilon_{X_m,\,C\overline{D}}'' = \beta$. We may assume that $(\varepsilon_{X_m,\,C\overline{D}}')_{m=1}^{\infty}$ converges vaguely to some $\nu \in \widetilde{M}_{\alpha}$ as $m \to \infty$ and that $(X_m)_{m=1}^{\infty}$ converges to some point $X_{\infty} = (x_{\infty},\,t_{\infty})$. Then

$$ilde{W}^{\scriptscriptstyle(lpha)}arepsilon_{X_\infty}\geqq ilde{W}^{\scriptscriptstyle(lpha)}
u$$
 on R^{n+1} .

Since the family of the density of $\varepsilon''_{X, C\overline{D}}$ $(X \in \overline{D})$ with respect to dX is uniformly bounded on every compact set in $C\overline{D}$ (see (4.2) in this proof), we have

$$ilde{W}^{\scriptscriptstyle(a)}arepsilon_{_{X_{\infty}}}= ilde{W}^{\scriptscriptstyle(a)}
u$$
 on $Car{D}$ and $\int d
u=1$.

Assume that $\beta=1$; $\int_V d\nu \leq \liminf_{m\to\infty} \int_V d\varepsilon_{X_m,\,C\bar{D}}''=0$ and hence $\sup[\nu]\subset CV$. Since for any $\lambda\in M_a$, $W^{(a)}\lambda'_{C\bar{D}}$ is continuous on D, the function $\int W^{(a)}\lambda\,d\varepsilon_{X,\,C\bar{D}}''$ of X is continuous on D (see Proposition 3.8), so that the mapping $D\ni X\to \varepsilon_{X,\,C\bar{D}}''$ is vaguely continuous. Therefore Proposition 3.14 gives $X_\infty\in\overline{V_{-1}}\cap\partial D$, because if $X_\infty\in D$, then $\nu=\varepsilon_{X_\infty,\,C\bar{D}}''$, which contradicts $\sup[\nu]\subset CV$ and Proposition 3.14. By Lemma 3.15, $\tilde{W}^{(a)}\varepsilon_{X_\infty}=\tilde{W}^{(a)}\nu$ on $\{(x,t);\,t< t_\infty\}$. Proposition 2.10 gives $\nu=\varepsilon_{X_\infty}$, which contradicts $\sup[\nu]\subset CV$. Thus $\beta<1$.

Let $(\phi_m)_{m=1}^{\infty}$ be an increasing sequence in $C_K^{\infty}(R^{n+1})$ such that $0 \leq \phi_m \leq 1$, $\lim_{m \to \infty} \phi_m = 1$ on CV and that $\phi_m = 0$ on V_{-1} . We write $\phi_m = W^{(a)} \lambda_m$ with some signed measure λ_m . Then

$$\int_{Y_{-k-1}} \left(\int_{CV} d\varepsilon_{Y,\,C\bar{D}}'' \right) \! d\varepsilon_{X,\,C\overline{D_{-k-1}}}'(Y) \leqq \lim_{m \to \infty} \int_{Y_{-k-1}} \! W^{\scriptscriptstyle(\alpha)} \lambda_{m,\,C\bar{D}}' \, d\varepsilon_{X,\,C\overline{D_{-k-1}}}',$$

where $\lambda'_{m, C\bar{D}} = (\lambda_m^+)'_{C\bar{D}} - (\lambda_m^-)'_{C\bar{D}}$. Since Corollary 3.13 gives

$$(\varepsilon_{X,\sqrt{D-k-1}}^{\prime\prime})_{C\overline{D}}^{\prime\prime} = \varepsilon_{X,\sqrt{D-k-1}}^{\prime\prime}|_{V-k-1} + (\varepsilon_{X,\sqrt{D-k-1}}^{\prime\prime}|_{CV-k-1})_{C\overline{D}}^{\prime\prime},$$

we have

$$\int_{V_{-k-1}} W^{\scriptscriptstyle(\alpha)} \lambda'_{\scriptscriptstyle m,\; C\,\overline{\scriptscriptstyle D}}\, d\varepsilon''_{\scriptscriptstyle X,\; C\,\overline{\scriptscriptstyle D_{-k-1}}} = \int_{V_{-k-1}} W^{\scriptscriptstyle(\alpha)} \lambda_{\scriptscriptstyle m}\, d(\varepsilon''_{\scriptscriptstyle X,\; C\,\overline{\scriptscriptstyle D_{-k-1}}}) = 0 \ .$$

Let $(\phi_m)_{m=1}^{\infty}$ be a sequence in $C_K^{\infty}(R^{n+1})$ such that $0 \leq \phi_m \leq 1$ and $\lim_{m \to \infty} \phi_m(X) = 1$ on CV and = 0 on V. Since $\phi_m = W^{(\alpha)}\lambda_m$ with some signed measure λ_m , by Proposition 3.8, we have, for $X \in V_{-k-1}$,

$$egin{aligned} u_{\scriptscriptstyle 1}(X) &= \lim_{m o \infty} \int \phi_m \, darepsilon_{X,\; Car{D}}^{\prime\prime} = \lim_{m o \infty} \int \int \phi_m \, darepsilon_{Y,\; Car{D}}^{\prime\prime} \, darepsilon_{X,\; Car{D}-k-1}^{\prime\prime}(Y) \ &= \int_{CV-k-1} \left(\int_{CV} \, darepsilon_{Y,\; Car{D}}^{\prime\prime}
ight) darepsilon_{X,\; Car{D}-k-1}^{\prime\prime}(Y) \ &\leq u_{\scriptscriptstyle 2}(X) \leq eta u_{\scriptscriptstyle 1}(au_{\scriptscriptstyle k+1}^{\prime\prime}(X)) + (1-eta) \delta \,. \end{aligned}$$

Thus we obtain inductively

$$\underset{X\to 0}{\operatorname{limsup}}\ u_{\scriptscriptstyle 1}(X) \leqq \sum_{k=0}^{\infty} \beta^k (1-\beta)\delta = \delta \ ,$$

which gives

$$\lim_{X\to 0}u_1(X)=0.$$

By Proposition 3.14, we can choose $f \in C_K(\mathbb{R}^{n+1})$ such that $0 \le f \le 1$, supp $[f] \subset CV$ and that

$$u(X) = \int f(Y) d\varepsilon_{X, c\bar{p}}^{"}(Y) > 0$$
 on D .

Take $\phi \in C_K(R^{n+1})$ such that $\operatorname{supp}[\phi] \subset D$, $\phi \geq 0$, $\operatorname{Int}(\operatorname{supp}[\phi]) \cap \{(x,t); t < 0\}$ $\neq \phi$ and that $W^{(\alpha)}(\phi dX) \leq u$ on $\operatorname{supp}[\phi]$. For any open set $\omega \supset CD$, we put $\omega_0 = \{X; \phi(X) > 0\} \cup \omega$. Let $(\omega_m)_{m=1}^{\infty}$ be an exhaustion of ω_0 . Then we have

$$egin{aligned} W^{(a)}(\phi dX)(X) &- W^{(a)}(\phi dX)'_{\omega}(X) \ &= \int (W^{(a)}(\phi dX) - W^{(a)}(\phi dX)'_{\omega}) darepsilon''_{X,\;\omega_0} \ &= \lim_{m o \infty} \int (W^{(a)}(\phi dX) - W^{(a)}(\phi dX)'_{\omega}) darepsilon''_{X,\;\omega_m} \ &\leq \lim_{m o \infty} \int u \, darepsilon''_{X,\;\omega_m} = \lim_{m o \infty} \int \left(\int f darepsilon''_{Y,\;Car{D}}
ight) darepsilon''_{X,\;\omega_m}(Y) = u(X) \; . \end{aligned}$$

By Lemma 3.5, we have

$$W^{(\alpha)}(\phi dX)(X) - W^{(\alpha)}(\phi dX)'_{CD}(X) \leq u(X)$$
 on R^{n+1} ,

which implies

$$\lim_{X\in\mathcal{Q},X\to 0}W^{(a)}(\phi dX)_{CD}'(X)=\ W^{(a)}(\phi dX)(0)\ .$$

Hence

$$W^{\scriptscriptstyle(\alpha)}(\phi dX)'_{\scriptscriptstyle CD}(0) = W^{\scriptscriptstyle(\alpha)}(\phi dX)(0)$$

(see, for example, the proof of (1) \rightarrow (3) in Proposition 4.2). By Proposition 4.2, (3), 0 is regular for the Dirichlet problem of $L^{(a)}$ on D. This completes the proof.

ACKNOWLEDGEMENT. The authors are thankful to the referee for his suggestions.

REFERENCES

- C. Berg and G. Forst, Potential theory on locally compact abelian groups, Springer-Verlag, Berlin Heiderberg New York, 1975.
- [2] G. Choquet and J. Deny, Sur l'equation de convolution $\mu=\mu*\sigma$, C. R. Acad. Sci., 250 (1960), 799-801.

- [3] E. Effros and J. Kazdan, On the Dirichlet problem for the heat equation, Indiana U. Math. J., 20 (1971), 683-693.
- [4] J. Elliot, Dirichlet spaces and integro-differential operators, Part I, Illinois J. Math., 9 (1965), 87-98.
- [5] L. Evans and R. Griepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), 293-314.
- [6] L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969.
- [7] C. R. Herz, Analyse harmonique à plusiers variables, Sém. Math. d'Orsay, 1965/66.

M. Itô

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya, 464, Japan

M. Nishio
Department of Mathematics
School of Sciences
Nagoya University
Chikusa-ku, Nagoya, 464,
Japan