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Background. PANoptosis has been a research hotspot, but the role of PANoptosis in hepatocellular carcinoma (HCC) remains
widely unknown. Drug resistance and low response rate are the main limitations of chemotherapy and immunotherapy in HCC.
Tus, construction of a prognostic signature to predict prognosis and recognize ideal patients for corresponding chemotherapy
and immunotherapy is necessary. Method. Te mRNA expression data of HCC patients was collected from TCGA database.
Trough LASSO and Cox regression, we developed a prognostic signature based on PANoptosis-related genes. KM analysis and
ROC curve were implemented to evaluate the prognostic efcacy of this signature, and ICGC and GEO database were used as
external validation cohorts. Te immune cell infltration, immune status, and IC50 of chemotherapeutic drugs were compared
among diferent risk subgroups. Te relationships between the signature and the efcacy of ICI therapy, sorafenib treatment, and
transcatheter arterial chemoembolization (TACE) therapy were investigated. Result. A 3-gene prognostic signature was con-
structed which divided the patients into low- and high-risk subgroups. Low-risk patients had better prognosis, and the risk score
was proved to be an independent predictor of overall survival (OS), which had a well predictive efect. Patients in high-risk
population had more immunosuppressive cells (Tregs, M0 macrophages, and MDSCs), higher TIDE score and TP53 mutation
rate, and elevated activity of base excision repair (BER) pathways. Patients with low risk benefted more from ICI, TACE, and
sorafenib therapy. Te predictive value of the risk score was comparable with TIDE and MSI for OS under ICI therapy. Te risk
score could be a biomarker to predict the response to ICI, TACE, and sorafenib therapy. Conclusion. Te novel signature based on
PANoptosis is a promising biomarker to distinguish the prognosis predict the beneft of ICI, TACE, and sorafenib therapy, and
forecast the response to them.

1. Introduction

Hepatocellular carcinoma (HCC), the most common type of
liver cancer with poor prognosis, ranks as the third highest
cause of cancer-related death currently around the world
with nearly 900 thousand new cases in 2020 [1]. According
to the prediction of the World Health Organization, about 1
million HCC patients will die of HCC in 2030 [2]. Although
surgical treatment based on radical surgery has greatly
improved the prognosis of patients, the fve-year survival
rate of HCC is only 12% [3]. Sorafenib and other clinical

frst-line drugs have a certain therapeutic efect on advanced
HCC, but drug resistance is increasingly common. In recent
years, immune checkpoint inhibitor (ICI) therapy for HCC
patients is a burgeoning feld of study, which has attracted
a great deal of attention and also achieved promising results
[4]. However, the low response rate to ICI therapy is a major
defciency which is still unresolved, and there were fewer
biomarkers to predict prognosis and response to ICI ther-
apy. Terefore, identifcation of a potential predictor for the
efcacy of ICI therapy is necessary for individualized im-
munotherapy in HCC.
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Due to the broad crosstalk among programmed cell
death (PCD) pathways, PCD generally occur not alone but in
a mixed mode, just like pyroptosis, apoptosis, and nec-
roptosis [5]. To better apprehend the crosstalk among them,
PANoptosis is defned as a type of infammatory cell death
driven by PANoptosome, which contains the key features of
pyroptosis, apoptosis, and necroptosis [6]. Similar to other
PCD, PANoptosis induces tumor cell death to inhibit the
development of cancer, which can be a therapeutic target for
oncotherapy. Moreover, there exists a close relationship
between innate immune and PANoptosis, and the molecules
composed of PANoptosome involve in infammatory im-
mune responses [7]. PANoptosis also has an important
impact on the PD-1/PD-L1 pathway [8]. Many chemo-
therapeutic drugs can cause pyroptosis, apoptosis, or nec-
roptosis to kill tumor cells, especially sorafenib, the clinical
frst-line drug for advanced HCC patients which can induce
the three types of PCD concurrently [9–11]. Tus, inducing
PANoptosis may decrease the drug resistance to sorafenib
therapy.

Given that the close relationship between PANoptosis
and innate immune, and chemotherapeutic agents, identi-
fcation of a novel biomarker based on PANoptosis to select
ideal HCC patients for ICI therapy and sorafenib treatment
has good feasibility, which can aid in the execution of in-
dividualized treatment and improve the outcome of HCC
patients. To predict the overall survival (OS) of HCC patients
and explore whether the efcacy of ICI and sorafenib
therapy can be forecasted by PANoptosis-related molecules,
we construct a prognostic signature made up of three
PANoptosis-related genes using LASSO and Cox regression.
Te cohorts of ICI therapy, transcatheter arterial chemo-
embolization (TACE), and sorafenib treatment were utilized
to evaluate the predictive value of this signature for ICI,
TACE, and sorafenib therapy in HCC.

2. Materials and Methods

2.1. Data Retrieval. Te mRNA data and corresponding
clinical information of 50 normal liver tissues and 374 HCC
specimens were downloaded from TCGA database. To en-
sure the accuracy of our study, we performed external
validation in which we retrieved the transcript and clinical
information of 243 HCC specimens from ICGC Data Portal
and 221 HCC samples from the GEO database (GSE14520).
26 PANoptosis-related genes were extracted from the pre-
vious articles which were shown in Supplementary Table S1
[5, 6].

2.2. Consensus Clustering Analysis Based on DEGs. To in-
vestigate the connections between diferentially expressed
PANoptosis-related genes and hepatocellular carcinoma
subtypes, consensus clustering analysis was carried out with
the “ConsensusClusterPlus” R package. Principal compo-
nent analysis (PCA) was implemented by the “stats” R
package, and K-M analysis was employed to compare the OS
among diferent clusters. Diferentially expressed genes
(DEGs) among clusters were identifed through the “limma”

package. To explore the functional diferences between the
two clusters, we adopted Gene Set Enrichment Analysis
(GSEA) to analyze.

2.3. Construction of a PrognosticModel Based on PANoptosis-
Related Genes. In TCGA cohort, diferentially expressed
PANoptosis-related genes (DEPGs) were identifed from
a list of 26 PANoptosis-related genes by the “limma” R
package, in which the DEGs with a false discovery rate
(FDR)< 0.05 were picked out. To screen out the diferentially
expressed prognostic PANoptosis-related genes (DEPPGs),
univariate Cox regression of OS and K-M analysis were
applied. Afterwards, the DEPPGs were enrolled in LASSO
Cox regression analysis using the “glmnet” R package.
Multivariate Cox regression analysis was employed for the
genes picked out from LASSO regression through the
“survival” R package to construct a prognosis-predicting
model. Based on the expression values of each gene and their
regression coefcients, a risk score for each sample was
calculated based on the following formula: risk score� 􏽐i
Coefcient (DEPPGi)∗Exp (DEPPGi). Patients were clas-
sifed into low- and high-risk groups on the basis of the
median risk score for subsequent analysis. PCA was adopted
to evaluate distinction between the two groups. Similarly,
HCC samples in the validation cohorts (ICGC and
GSE14520) were also divided into low- or high-risk sub-
groups according to the median risk score based on the same
formula.

2.4. Analysis of Immune Cell Infltration in Risk Subgroups.
Te potential association among the 3 genes in the signature
and immune cell infltration was evaluated through the
TIMER2 online tool (https://timer.cistrome.org). To assess
the immune infltration among diferent risk subgroups, the
CIBERSORTx algorithm was implemented to quantify the
proportions of 22 types of immune cells. In addition, single
sample gene set enrichment analysis (ssGSEA) was also
implemented to explore the relationship between risk scores
and immune cell infltration using the “ESTIMATE” R
package. In addition, the expression levels of 24 immune cell
markers were collected and correlation analysis was utilized
to investigate the relationship between risk value and
immune-infltrating cell markers.

2.5. Prediction of Immunotherapeutic Response. To in-
vestigate the connection between prognostic signature and
immunotherapeutic response, the expression of
immunotherapy-related genes was compared among risk
subgroups. Moreover, the data of signifcant immunother-
apy indicators including tumor immune dysfunction and
exclusion (TIDE), microsatellite instability (MSI), and
myeloid-derived suppressor cells (MDSC) were acquired
online (https://tide.dfci.harvard.edu/), while another im-
munotherapy marker, immunophenotypic score (IPS)
which represented the response to PD-1 and CTLA-4 in-
hibitor, was obtained from Cancer Immunome Atlas (TCIA,
https://tcia.at/). Diference analysis of TIDE, MSI, MDSC,
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and IPS was employed in low- and high-risk population.
Anti-PD-L1 cohort (GSE78220) and immune checkpoint
blockade cohort (anti-PD-L1 and anti-CTLA4, GSE91061)
were downloaded to verify the predictive value of risk values
for immunotherapy responses.

2.6. Correlation of the Prognostic Signature with Chemo-
therapeutic Agents’ Sensitivity. Te half-maximal inhibitory
concentration (IC50) of chemotherapeutic drugs was
computed based on the “oncoPredict” R package [12]. Te
lower values of IC50 represented better sensitivity to che-
motherapeutic agents. Te sorafenib cohort (GSE109211)
and transcatheter arterial chemoembolization cohort
(TACE, GSE104580) were utilized to perform stratifed
analysis and ROC curve to estimate the predictive value of
the risk score for the response to chemotherapy.

2.7. Comprehensive Analysis of Molecular Characteristics in
Diferent Subgroups. To further explore the biological
function of diferentially expressed genes, gene ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis were
employed between the two risk groups. We also used GSEA
to investigate the signaling mechanisms of the risk model.
Protein-protein interaction (PPI) network for DEGs was
constructed with the Search Tool for the Retrieval of
Interacting Genes (STRING) (https://string-db.org/) data-
base. Te quantity and quality of gene mutations were
analyzed in two risk subgroups by the “Maftools” package
of R.

2.8. Evaluation and Validation of the Prognostic Model.
To evaluate the predictive value of the prognostic model, the
time-dependent ROC curves were performed by the “sur-
vivalROC” R package. K-M analysis was also carried out to
compare the OS among diferent risk groups. Besides, to
ascertain whether the risk score could be considered as an
independent factor to predict the prognosis of HCC patients,
both risk score and clinicopathological information were
incorporated in univariate and multivariate analyses. Based
on the results of multivariate analyses, the nomogram
prediction model was constructed to predict the survival
probability of HCC patients at 1, 2, and 3 years. Calibration
graphs were plotted to investigate whether the nomogram
predicted survival rates were close to the actual survival
rates. ROC curves were employed to assess the predictive
efect of the nomogram model. To validate the accuracy of
the prognostic model, the same analysis was also conducted
in external validation cohorts (ICGC and GSE14520
cohorts).

2.9. Statistical Analysis. R software and SPSS were applied
for all statistical analyses. Te independent t-test was per-
formed when continuous variables were normally distrib-
uted; otherwise, the Mann-Whitney U test was adopted. χ2
test or Fisher’s exact test was performed to analyze

categorical variables, as appropriate. A p value <0.05 was
identifed as statistically signifcant.

3. Results

3.1. Identifcation of Diferentially Expressed Genes in TCGA.
Based on the Wilcox test, 21 diferentially expressed genes
(DEGs) are picked out among 26 PANoptosis-related genes
which are shown as heatmap (Figure 1(a)). Te protein-
protein interaction (PPI) network of the 21 DEGs was
displayed in Figure 1(b), while their correlation coefcients
were represented in Figure 1(c), which revealed the in-
teractions among the DEGs. As shown in the boxplot, all
DEGs except for NLRP3 were upregulated in HCC tissues
(Figure 1(d)). Trough univariate Cox regression, 8 DEGs
were proved to be associated with overall survival (OS),
which were risk factors for HCC patients (Figure 1(e)).

3.2. Building Clusters in HCC Based on PANoptosis-Related
DEGs. To explore the connection between DEGs expres-
sion and HCC subtypes, we performed consensus clus-
tering analysis based on PANoptosis-related DEGs. It was
found that when the clustering variable (k) was up to three,
clustering analysis exhibited the optimal clustering sta-
bility, which was confrmed by the CDF curve and delta
area (Figure 2(a) and Supplementary Figure S1(a)). Due to
only 6 samples in cluster 1, it was hard to perform dif-
ference analysis between cluster 1 and other clusters, so
clusters 2 and 3 were enrolled into the subsequent analysis.
Besides, the same clustering also occurred in the validation
cohorts (ICGC and GSE14520) (Supplementary
Figures S1(b) and S1(e)), and the CDF curve confrmed the
clustering (Supplementary Figures S1(c) and S1(f )), which
suggested that the clustering of HCC cases based on
PANoptosis-related DEGs was stable and reliable. As ex-
pected, there existed a satisfactory separation between
clusters 2 and 3, as shown in PCA (Figure 2(b)). Te
baseline characteristics of the patients in the two clusters
were described in Supplementary Table S2, which showed
that patients in cluster 3 had higher mortality and less
survival time (p< 0.05). KM analysis also revealed that
HCC patients in cluster 3 had a signifcantly lower survival
time than those in cluster 2 (p � 0.0038) (Figure 2(c)).
Similarly, it was also confrmed in validation cohorts that
HCC subtypes clustered by DEGs were closely related to OS
(Supplementary Figures S1(d) and S1(g)). In Figures 2(d)
and 2(e), we found that cluster 3 had higher expression
levels of the 20 DEGs that expected NFS1. To investigate the
pathways activated in clusters 2 and 3, GSEA was also
employed which unfolded that asthma, base excision re-
pair, and mismatch repair displayed obvious activation in
cluster 3, while arginine biosynthesis, fatty acid degrada-
tion, and retinol metabolism were remarkably activated in
cluster 2 (Figure 2(f )). Moreover, cluster 3 had a higher
level of inhibitory immune cells including Tregs and M0
macrophages with a low level of M2macrophages and naive
B-cells, indicating that the two clusters had diferent im-
mune infltration (Supplementary Figure S1(h)).
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4 Genetics Research

https://doi.org/10.1155/2023/6879022
Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.43, on 28 Apr 2024 at 17:15:46, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1155/2023/6879022
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1 0.3

1

0.29

0.32

1

0.11

0.09

−0.02

1

0.04

−0.04

−0.12

0.16

1

0.18

−0.09

0.04

0.26

0.15

1

0.32

0.09

0.12

0.28

0.1

0.53

1

0.19

−0.11

0.16

0.11

0.09

0.51

0.34

1

0.3

0.03

0.3

0.09

0.11

0.33

0.4

0.47

1

0.37

0.07

0.4

0.15

0.14

0.42

0.47

0.47

0.62

1

0.11

0.07

0.11

0.05

0.07

0.2

0.41

0.22

0.15

0.25

1

0.31

0.01

0.25

0.07

−0.09

0.21

0.2

0.3

0.16

0.25

0.28

1

0.12

−0.08

0.14

0.08

−0.03

0.3

0.19

0.34

0.11

0.24

0.3

0.37

1

0.07

−0.09

0.26

−0.03

−0.08

0.25

0.19

0.28

0.18

0.32

0.41

0.37

0.54

1

0.05

0.06

−0.02

−0.01

0.06

0.23

0.11

0.23

0.15

0.03

0.1

0.03

0.14

0.01

1

0.07

−0.04

0.01

0.26

0.1

0.45

0.15

0.3

0.07

0.13

0.11

0.31

0.27

0.29

0.12

1

−0.02

0.02

0

0.03

0.11

0.16

0.08

0.14

−0.01

0.03

0.14

0.16

0.1

0.12

0.07

0.44

1

0.04

−0.14

−0.12

0.06

0.11

0.22

0.17

0.23

0.2

0.09

0.12

0.13

0.06

0.07

0.03

0.15

0.21

1

0.18

0.01

−0.08

0.16

0.21

0.3

0.22

0.27

0.24

0.18

0.15

−0.01

0.07

0.05

0.04

0.17

0.19

0.67

1

0.22

−0.05

0.1

−0.02

0.15

0.33

0.27

0.39

0.26

0.22

0.13

0.31

0.13

0.15

0.07

0.26

0.31

0.41

0.31

1

0.03

−0.23

−0.13

0.06

0.2

0.48

0.29

0.49

0.31

0.27

0.22

0.22

0.17

0.26

0.2

0.32

0.21

0.49

0.35

0.56

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

RB
CK

1

SH
A
RP

IN

PY
CA

RD

D
KK

1

N
FS

1

TA
K1

CD
K1

CA
SP

8

CA
SP

6

FU
N
D
C1

FA
D
D

IR
F1

M
EF

V

N
LR

P3

TL
R9

TN
FA

IP
3

PS
TP

IP
2

RI
PK

1

M
A
PK

14

A
D
A
R

RN
F3

1

RBCK1

SHARPIN

PYCARD

DKK1

NFS1

TAK1

CDK1

CASP8

CASP6

FUNDC1

FADD

IRF1

MEFV

NLRP3

TLR9

TNFAIP3

PSTPIP2

RIPK1

MAPK14

ADAR

RNF31

(c)

Type
N
T

0.0

2.5

5.0

7.5

G
en

e e
xp

re
ss

io
n

***

***

***

***

***

***

***

***

***

***
***

***

***

***

***

***

***

***

**

**
*

A
D

A
R

CA
SP

6

CA
SP

8

CD
K1

D
KK

1

FA
D

D

FU
N

D
C1

IR
F1

TA
K1

M
A

PK
14

M
EF

V

N
FS

1

N
LR

P3

PS
TP

IP
2

PY
CA

RD

RB
CK

1

RI
PK

1

RN
F3

1

SH
A

RP
IN

TL
R9

TN
FA

IP
3

(d)

ADAR

TAK1

CASP8

SHARPIN

FADD

RBCK1

CDK1

FUNDC1

0.026

0.005

0.007

0.048

0.011

0.040

<0.001

0.008

pvalue

1.378 (1.039−1.826)

1.668 (1.171−2.376)

1.603 (1.140−2.255)

1.259 (1.002−1.583)

1.476 (1.092−1.995)

1.295 (1.011−1.657)

1.420 (1.206−1.672)

1.469 (1.105−1.953)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5 2.0

(e)

Figure 1: Identifcation of diferentially expressed prognostic genes in TCGA. (a) Heatmap of 21 diferentially expressed genes. (b) PPI
network of 21 DEGs. (c)Te correlation coefcient among the 21 DEGs. (d) Boxplot of the expression of 21 DEGs between HCC tissues and
normal liver tissues. (e) Forest plots of 8 genes signifcantly correlated with the OS.
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3.3. Construction and Validation of the PANoptosis-Related
Prognostic Model. To improve the accuracy and reduce the
complexity of the predictive signature, we used LASSO and
Cox stepwise regression analyses to build a prognostic model
(Figures 3(a) and 3(b)). After selection, 3 genes which had
a negative correlation with a survival rate for HCC cases
were enrolled into the formula of risk value calculation: risk
score� (TAK1× 0.3156) + (SHARPIN×

0.2255) + (CDK1× 0.2624) (Figure 3(c)). Based on the
median risk score, HCC cases were classifed into high- and
low-risk groups. Te distributions of patients in the two
groups were shown in Figures 3(d) and 3(e). Compared with
the low-risk group, high-risk patients had a higher ex-
pression level of PANoptosis-related DEGs (Figures 3(f ) and
3(g)). Figure 3(h) showed that there existed an evident
distinction between low- and high-risk groups. It was also
found that cluster 3 had higher risk scores than cluster 2
(Figure 3(i)). Te associations among cluster, risk groups,
and survival status were shown in the Sankey diagram
(Figure 3(j)).

3.4. Evaluation of the Tumor Microenvironment. To in-
vestigate the correlation between the genes composed of the
prognostic signature and immune cell infltration, the
TIMER2 online tool was utilized. CDK1 and TAK1 were
positively correlated with the extent of B-cells, CD8+ T-cells,
CD4+ T-cells, macrophage, neutrophil, and dendritic cells
(p< 0.05) (Supplementary Figure S2(a)). Te Wilcoxon test
was employed to compare the distribution of 22 types of
immune cells among risk subgroups. Te boxplot revealed
that memory B-cells, CD4 memory resting T-cells, CD4
memory activated T-cells, follicular helper T-cells, regula-
tory T-cells (Tregs), and M0 macrophages were upregulated
in the high-risk group of TCGA cohort, while activated
natural killer (NK) cells, monocytes, M2 macrophages, and
resting mast cells were signifcantly downregulated
(p< 0.05) (Figure 4(a)). Te validation cohort presented
similar results in which high-risk samples had a higher level
of regulatory T-cells (Tregs) and M0 macrophages with
lower extent of M2 macrophages (Supplementary
Figures S2(b) and S2(c)).

Based on ssGSEA analysis, it was observed that 14 im-
mune signatures displayed signifcant diferences among risk
groups (Figure 4(b)). As a result, high-risk patients hadmore
Tregs with lower NK cells and type I IFN response, sug-
gesting there were more immune-suppressive tumor mi-
croenvironments in high-risk population. Lower stromal
scores and higher tumor purity scores were observed in
high-risk population (Figures 4(c) and 4(d)). Similar to
TCGA, the same results of stromal and tumor purity scores
in ICGC and GSE14520 cohort are displayed in Supple-
mentary Figures S2(d) and S2(e).

Correlation analysis was carried out to investigate the
relationship between immune cell markers and the risk
score. Te expression of CD3D, CD86, CTLA4, GATA3,
HAVCR2, IFNG, ITGAM, LAG3, NRP1, PDCD1, STAT5A,
and TGFB1 was signifcantly higher in high-risk population,
suggesting that the risk model based on PANoptosis-related

genes was associated with HCC immune cell infltration
(Figure 4(e)).

3.5. Te Efcacy of ICI Terapy in Diferent Risk Subgroups.
To further compare the immune efcacy among diferent
risk subgroups, the expression of immune checkpoint
genes was enrolled into diference analysis. As a result,
most immune checkpoints were upregulated in the high-
risk subgroup, such as CD276, CTLA4, PDCD1, HAVCR2
(TIM3), LAG3, and TIGIT (Figure 5(a)). What is more,
the expression of inhibitory immune checkpoint markers
such as CTLA4, PDCD1, CD276, LAIR1, and HAVCR2
was also higher in high-risk population in the ICGC
cohort (Supplementary Figure S3(a)). Te IPS was an
essential immune response indicator to predict the re-
sponse to CTLA-4 and PD-1 inhibitors. Patients with
a higher IPS value had a better response to PD-1 and
CTLA-4 inhibitors, as the violin diagram showed that low-
risk samples had higher IPS which suggested that HCC
patients in the low-risk cohort could receive better im-
munotherapy efcacy (Figure 5(b)). Moreover, another
immune response indicator TIDE was also compared
among risk groups. It was found that patients in high-risk
population had a higher score of TIDE, revealing that
high-risk patients had more potential for immune escape
and patients with a low risk were more suitable for im-
mune checkpoint blockade, which was consistent with the
aforementioned discover based on IPS (Figure 5(c)). A
higher MSI score and a lower level of MDSC were ob-
served in low-risk population, which also implied better
response to immunotherapy. Additionally, we found that
the high-risk group had a higher level of T-cell exclusion
with a lower T-cell dysfunction score (Figure 5(c)).
Similarly, the scores of TIDE, MSI, MDSC, T-cell ex-
clusion, and T-cell dysfunction were signifcantly diferent
in diferent risk groups in ICGC and GSE14520 cohort,
which confrmed that high-risk patients had worse efcacy
in receiving immunotherapy (Supplementary
Figures S3(b) and S3(c)).

To evaluate the potential clinical efcacy of immu-
notherapy in diferent risk groups, the prognostic sig-
nature was also employed in the anti-PD-L1 cohort
(GSE78220) and anti-PD-L1 and CTLA4 cohort
(GSE91061). A longer OS and better therapeutic response
were observed in the low-risk group, indicating that low-
risk population could beneft more from immune
checkpoint inhibitor (ICI) therapy (Figures 6(a), 6(b),
6(d) and 6(e)). As the ROC curve showed, the risk score
had a certain degree of predictive value for the immune
response rate (Figure 6(c) and 6(f )). Moreover, ROC
analysis of the risk score, TIDE, and MSI was imple-
mented simultaneously to compare their predictive value
for OS. Te results showed that the AUCs for the risk
score were greater than those for TIDE and MSI, sug-
gesting that the risk score based on the PANoptosis-
related prognostic model may be more suitable for pre-
diction of prognosis of HCC patients under ICI therapy
(Figure 6(g) and 6(h)).
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Figure 2: HCC clustering based on the diferentially expressed PANoptosis-related genes. (a) Identifcation of three HCC clusters by
consensus clustering analyses. (b) A good distinction between two clusters is shown in PCA. (c) KM analysis of the two clusters.
(d) Heatmaps showed the relationship between the two clusters and DEGs’ expression. (e) Boxplot of the expression of DEGs between the
clusters. (f ) GSEA for the KEGG pathways activated in clusters 3 and 2.
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3.6. Prediction and Validation of Chemotherapeutic Agents.
In order to predict suitable drugs for HCC patients, the IC50
of 198 chemotherapeutic drugs was calculated and com-
pared among risk subgroups based on PANoptosis-related
prognostic signature. We found that the IC50 values of
axitinib, AZD6482, AZD8055, BI-2536, JQ1, NU7441, lin-
sitinb, PD0325901, ribociclib, RO-3306, and sorafenib were
signifcantly lower in low-risk population, indicating that
patients with a low risk were more sensitive to the 11
chemotherapeutic drugs (Figure 7(a)). By contrary, the
PIK3CA inhibitor, taselisib, had a lower IC50 value in the
high-risk group, indicating that high-risk patients had better
drug sensitivity to taselisib (Figure 7(a)). Moreover, the
expression of PIK3CA and its potential downstream mol-
ecule, AKT, were all found to be upregulated in the high-risk
group (Supplementary Figure S4(a)), suggesting that there
might be a close correspondence between the elevated
sensitivity to taselisib and the high expression level of the
target genes in the high-risk population.

TACE cohort (GSE104580) and sorafenib cohort
(GSE109211) were utilized to verify the relationship between
the risk score and sensitivity of drugs. A lower risk score was
observed in TACE- and sorafenib-response groups, while
low-risk population had a higher proportion of response to
chemotherapeutic drugs (Figures 7(b), 7(c), 7(e) and 7(f)),
revealing that low-risk HCC patients could obtain better
efcacy from TACE and sorafenib therapy. Te AUCs for
response to TACE and sorafenib were 0.719 and 0.795 which
indicated that the risk score had a good predictive value for

predicting the response to TACE and sorafenib (Figures 7(d)
and 7(g)). Tese results also confrmed the reliability of the
prediction of chemotherapeutic responses in diferent risk
groups, implying that low-risk HCC patients may beneft
more from chemotherapy, while high-risk cases had a cer-
tain degree of chemotherapy resistance.

3.7. Molecular Characteristics of Diferent Risk Subgroups.
To elucidate the function diferences among risk groups, we
performed GO and KEGG enrichment analysis. According
to the GO enrichment analysis, 21 DEGs upregulated in the
high-risk group involved in the biological process of I-
kappaB/NF-kappaB signaling, the cellular component of
infammasome complex, and the molecular function of
cysteine-type endopeptidase/peptidase activity (Figure 8(a)).
Te KEGG enrichment analyses showed that these DEGs
participated in the NOD-like receptor signaling pathway,
TNF signaling pathway, IL-17 signaling pathway, and Toll-
like receptor signaling pathway (Figure 8(b)). Tese path-
ways were closely related to tumor development and me-
tastasis [13, 14], implying that the poor outcome of high-risk
patients may result from aggressive cancer growth. To ex-
plore the signaling mechanisms of risk signature, GSEA was
employed which was annotated by KEGG databases and
included 48773 DEGs which were selected between high-
and low-risk subgroups. It was found that high-risk pop-
ulation was mainly enriched in base excision repair (BER),
cell cycle, mismatch repair, and other pathways
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Figure 4: Te characteristics of immune infltration in diferent risk groups. (a) Comparison of immune cell abundance in diferent risk
groups according to CIBERSORT analysis. (b) Relationship between the risk score and the 29 immune signatures according to ssGSEA
analysis. (c-d) Correlation between the risk score and immune-related scores. (e) Te relationship between immune cell markers and the
risk score.
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(Figure 8(c)), while the low-risk group was mainly enriched
in drug metabolism-cytochrome P450, fatty acid degrada-
tion, primary bile acid biosynthesis, tryptophan and tyrosine
metabolism, and other pathways (Figure 8(d)). Tree rep-
resentative genes (NEIL2, OGG1, and APEX1) of BER were
upregulated in high-risk population [15], confrming that
patients with a high risk had more enriched BER activity
(Supplementary Figure S4(b)).

As the gene mutation analysis showed, the mutation of
the TP53 gene was more common in the high-risk subgroup,
while low-risk population had higher proportion of the
mutation of CTNNB and TTN genes (Figure 8(e)). Te
relationship between the risk score and TMB was in-
vestigated which showed that the risk score was not sig-
nifcantly correlated with TMB (Supplementary
Figure S4(c)).

3.8. Estimation and Validation of the Prognostic Model.
As shown in the ROC curves, the areas under the curves
(AUCs) for one-, two-, and three-year survival were 0.722,
0.675, and 0.645, respectively (Figure 9(a)). Te KM curve
was drawn to reveal that a lower survival probability oc-
curred in high-risk population (Figure 9(b)). To test the
capacity of the signature as an independent prognostic in-
dicator which was diferent from traditional clinical ele-
ments, the variables of the risk score, age, AFP, gender,
grade, and stage were enrolled into Cox regression analysis.
Te results uncovered that the risk score and TNM stage
were independent risk factors for OS in TCGA (Figure 9(c)
and 9(d)). Tus, we used the risk score and stage to develop

a nomogram model (Figure 9(e)). To assess the predictive
accuracy of the nomogram, calibration plots were drawn. As
exhibited in Figure 9(f), the nomogram-predicted survival
probabilities were remarkably close to the actual survival
outcomes. To evaluate the predicted value of the nomogram
model, the ROC curve was plotted which showed that the
nomogram model had a larger AUC value at 1 year, 2 year,
and 3 years than the prognostic model based on the risk
score (Figure 9(g)), indicating that uniting the risk score and
TNM stage to build the nomogram model to predict OS was
more accurate and had a greater predictive value.

To verify these results, the ROC curve, KM analysis, and
nomogram were also performed in the two independent
validation cohorts. In ICGC, AUCs were 0.754, 0.738, and
0.755 at 1 year, 2 years, and 3 years, respectively, while the
AUCs were 0.637, 0.610, and 0.705 at 1 year, 2 years, and
3 years in GSE14520 (Figures 9(h) and 9(k)), suggesting that
the risk score was a reliable prognostic indicator. KM
analysis uncovered that high-risk patients had higher
mortality in both ICGC and GSE14520 cohorts (Figures 9(i)
and 9(l)). Cox regression analysis and nomogram in vali-
dation cohorts confrmed that the TNM stage and the risk
score were valuable independent prognostic factors for OS
(Supplementary Figures S5(a), S5(b), S5(d), and S5(e)). Te
calibration plots implied the high accuracy of this nomo-
gram model (Supplementary Figures S5(c) and S5(f )).
Figures 9(j) and 9(m) also suggested that the nomogram
model based on the TNM stage and risk score had a better
predictive efect with a greater AUC value in validation
cohorts, which was in accordance with the results of TCGA.
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4. Discussion

PANoptosis, a newly recognized pathway of programmed
infammatory cell death driven by PANoptosome, combined
the main features of pyroptosis, apoptosis, and necroptosis
[16]. In recent years, PANoptosis had become a research
hotspot in malignant tumors. ADAR1 facilitated the pro-
liferation of tumor cells by inhibiting PANoptosis [17]. NFS1
defciency could trigger PANoptosis to increase the sensi-
tivity of colorectal cancer cells to oxaliplatin [18]. Karki et al.
also found that IRF1 regulated PANoptosis to suppress the
growth of colorectal cancer [19]. However, the role of
PANoptosis in HCC still remained unclear. Previous studies
reported there existed a close connection between PAN-
optosis and innate immune, especially infammatory im-
mune response [20]. It was found that ZBP1, the component
of PANoptosome, was a critical innate immune sensor, while
the regulation of PANoptosis by RIPK1 was essential for
infammatory immune responses. In addition, it was also
reported that sorafenib resistance was closely related to the
inhibition of pyroptosis, apoptosis, and necroptosis
[10, 11, 21]. Tus, using PANoptosis-related genes to predict
the efcacy of immunotherapy and sorafenib treatment
might be a good option.

Due to the substantial immunosuppressive activity in
HCC, the immune-based treatments for this difcult-to-
treat cancer were promising [22]. Currently, immunother-
apy has become a non-negligible treatment option for HCC
patients, but the efect of immunotherapy is closely related to
the tumor microenvironment (TME) [23, 24]. In this study,
patients with a high risk had a higher level of immuno-
suppressive cells such as MDSCs, M0 macrophages, and
Tregs, with lower infltration of cytotoxic immune cells, such
as NK cells. Treg cells suppress antitumor immunity through
suppressing antigen presenting cells (APCs) to further

prevent activation of T-cells, which facilitate immune eva-
sion [25]. Previous studies reported that Tregs predicted
poor survival in HCC patients [26]. Similarly, MDSCs in-
duced immune escape through expressing immunosup-
pressive factors [27]. A high level of MDSCs was also closely
related to poor prognosis in HCC [28]. Tus, it was no
surprise that the TIDE score was higher in high-risk pop-
ulation, suggesting that high-risk patients had greater im-
mune escape potentiality and worse response to
immunotherapy. Te worse prognosis of high-risk patients
might result from the immunosuppressive TME.

Inhibitory immune checkpoints (ICPs) could reduce the
immunogenicity of tumor cells, thereby avoiding immune
surveillance [28]. What is more, inhibitory immune
checkpoints could stimulate Tregs diferentiation, while
Tregs could also express inhibitory ICPs especially CTLA4.
Te close cooperation between Tregs and inhibitory ICPs
confered a strong immunosuppressive activity and caused
a worse efect for immunotherapy [29]. Here, we found that
high-risk patients had a higher level of inhibitory immune
checkpoints including CTLA4, PDCD1, TIGHT, LAG3, and
TIM3, which represented greater immune evasion and
worse immunotherapeutic efects in high-risk population.
Lower response to immunotherapy in high-risk population
might be due to immunosuppression and immune evasion.

In our study, the higher level of IPS and MSI and the
lower TIDE score in the low-risk subgroup revealed that
patients with a low risk had better response to PD-1 and
CTLA-4 inhibitor therapy. In the cohorts of anti-PD-1
and anti-CTLA-4, low-risk patients had a lower mortality
rate and better therapeutic response, suggesting that
patients with a low risk could acquire a better curative
efect of anti-PD-1 and anti-CTLA-4 treatment. Com-
pared with TIDE and MSI, the risk score had larger AUCs,
revealing that the predictive value of the risk score for ICI
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Figure 6:Te prediction efcacy of immunotherapy based on the risk score. (a) KM curve for high- and low-risk subgroups in the anti-PD-
L1 and anti-CTLA4 cohort (GSE91061). (b) Te proportion of immune response (CR: complete response; PR: partial response; SD: stable
disease; and PD: progressive disease) between two groups in GSE91061. (c) ROC analysis of the risk score on the response rate in GSE91061.
(d) KM curve for high- and low-risk subgroups in the anti-PD-L1 (GSE78220). (e) Te proportion of immune response (CR, PR, SD, and
PD) between two groups in GSE78220. (f ) ROC analysis of the risk score on the response rate in GSE78220. (g) ROC analysis of the risk
score, MSI, and TIDE on OS at 1-, 2-, and 3-year follow-up in GSE91061. (h) ROC analysis of the risk score, MSI, and TIDE on OS at 1-, 1.5-,
and 2.5-year follow-up in GSE78220.
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Figure 7: Efcacy prediction of chemotherapy drugs. (a) IC50 of 12 chemotherapy agents in diferent risk groups. (b) Comparison of the risk
score between response and nonresponse subgroups in TACE cohort (GSE104580) (c)Te proportion of chemotherapy response (response
and nonresponse) in TACE cohort. (d) ROC analysis of the risk score on the response rate in TACE cohort. (e) Comparison of the risk score
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Genetics Research 19

https://doi.org/10.1155/2023/6879022
Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.43, on 28 Apr 2024 at 17:15:46, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1155/2023/6879022
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


BP
CC

M
F

0.0 2.5 5.0 7.5 10.0

tumor necrosis factor−mediated signaling pathway
regulation of DNA−binding transcription factor activity

positive regulation of NF−kappaB transcription factor activity
toll−like receptor signaling pathway

positive regulation of I−kappaB kinase/NF−kappaB signaling
regulation of tumor necrosis factor−mediated signaling pathway

regulation of response to cytokine stimulus
regulation of cytokine−mediated signaling pathway

I−kappaB kinase/NF−kappaB signaling
regulation of I−kappaB kinase/NF−kappaB signaling

membrane region
membrane microdomain

membrane raf
ubiquitin ligase complex

transferase complex, transferring phosphorus−containing groups
endosome membrane

protein kinase complex
serine/threonine protein kinase complex

infammasome complex

MAP kinase kinase kinase activity
receptor serine/threonine kinase binding

cysteine−type endopeptidase activity
cysteine−type peptidase activity

tumor necrosis factor receptor superfamily binding
cytokine receptor binding

ubiquitin−like protein binding
ubiquitin binding

death receptor binding
cysteine−type endopeptidase activity involved in apoptotic process

0.04
0.03
0.02
0.01

p.adjust

(a)

Legionellosis
Hepatitis C

Apoptosis − multiple species
Toxoplasmosis

Coronavirus disease − COVID−19
NF−kappa B signaling pathway

Human cytomegalovirus infection
Tuberculosis

Hepatitis B
Apoptosis

Chagas disease
Infuenza A

Pertussis
Alcoholic liver disease

Yersinia infection
Lipid and atherosclerosis

Human immunodefciency virus 1 infection
Epstein−Barr virus infection

C−type lectin receptor signaling pathway
IL−17 signaling pathway

Measles
Pathogenic Escherichia coli infection
Toll−like receptor signaling pathway

Salmonella infection
Shigellosis

RIG−I−like receptor signaling pathway
TNF signaling pathway

Cytosolic DNA−sensing pathway
Necroptosis

NOD−like receptor signaling pathway

0.020
0.015
0.010
0.005

p.adjust

0.0 2.5 5.0 7.5 10.0 12.5

(b)

Low riskHigh risk

10000 20000
Rank in Ordered Dataset

30000

0.8

0.6

0.4

0.2

0.0

Ru
nn

in
g 

En
ric

hm
en

t S
co

re

3

2

1

0

–1

–2

–3

Ra
nk

ed
 L

ist
 M

et
ric

Base excision repair
Cell cycle
DNA replication

Fanconi anemia pathway
Mismatch repair

(c)

Low riskHigh risk

10000 20000
Rank in Ordered Dataset

30000

Ru
nn

in
g 

En
ric

hm
en

t S
co

re

3

2

1

0

–1

–2

–3

Ra
nk

ed
 L

ist
 M

et
ric

0.00

–0.25

–0.50

–0.75

Drug metabolism - cytochrome P450
Fatty acid degradation
Primary bile acid biosynthesis

Tryptophan metabolism
Tyrosine metabolism

(d)
Figure 8: Continued.

20 Genetics Research

https://doi.org/10.1155/2023/6879022
Downloaded from https://www.cambridge.org/core. IP address: 18.118.254.43, on 28 Apr 2024 at 17:15:46, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1155/2023/6879022
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


therapy was greater than TIDE and MSI, and the risk score
based on PANoptosis-related prognostic signature might
be a better predictor of OS for HCC patients under ICI
therapy.

Te lower IC50 values denoted the greater sensibility to
chemotherapeutic drugs. Here, we identifed 12 signifcant
chemotherapeutic drugs for HCC treatment based on IC50
and found that almost all of them had a lower IC50 value in
low-risk population expect for taselisib.Te results indicated
that chemotherapeutic agents including axitinib, AZD6482,
AZD8055, BI-2536, JQ1, NU7441, linsitinb, PD0325901,
ribociclib, RO-3306, and sorafenib could provide good ef-
fcacy for low-risk patients, suggesting that low-risk patients
might have a better response to chemotherapy. As for pa-
tients in the high-risk subgroup, the PIK3CA inhibitor,
taselisib, had better efcacy and provided more beneft.
Besides, we found that PIK3CA and its downstream mol-
ecule, AKT, were upregulated in the high-risk group, re-
vealing that high-risk cases had elevated activity of the PI3K/
AKT pathway. Kaklamani et al. reported that individuals
with high activity of the PIK3CA pathway were more
sensitive to taselisib [30]; therefore, taselisib may be more
suitable for patients in high-risk population. As for
intermediate-stage HCC patients, TACE was the standard
therapy which achieved a good efect [31]. Sorafenib was the
efective frst-line therapy for advanced HCC cases, but the
drug resistance to sorafenib was becoming more common
[32]. Here, we utilized cohorts of TACE treatment and
sorafenib therapy for HCC patients to explore the capability
of the risk score to predict the efcacy of TACE and sor-
afenib therapy. Te results indicated that HCC patients with
a low risk had a better response to TACE and sorafenib.
Moreover, the AUCs of the risk score had a great value,
which implied that the risk score had a satisfactory pre-
dictive value for predicting the response to TACE and
sorafenib. Terefore, HCC patients with a low risk should

receive TACE and sorafenib therapy, and the risk score
based on the PANoptosis-related prognostic model could be
a predictive marker for TACE treatment and sorafenib
therapy to guide clinical practice.

In addition, GSEA analysis revealed that high-risk cases
had increased base excision repair (BER) activity. BER could
preserve the integrity of DNA caused by cellular oxidative
stress and exogenous insults [33]. However, tumor cells
generally utilized BER to repair DNA damage and reduced
the efcacy of radiotherapy and chemotherapy. High activity
of BER was one of the main reasons for chemoresistance
[34]. Recently, targeting BER enzymes had achieved a good
efect in clinical trials [35, 36]. Tus, chemotherapy in
combination with BER enzyme inhibitors might be a better
option for cancer with strong chemotherapy resistance. In
our study, the low sensitivity to chemotherapeutic drugs in
the high-risk groupmight be partly attributed to the elevated
activity of BER. Combination chemotherapy with targeting
BERmay be a good choice for the treatment of HCC patients
with a high risk, which needs further research.

Tis signature was made up of three genes, TAK1,
CDK1, and SHARPIN. Transforming growth factor beta-
activated kinase 1 (TAK1), a fundamental component of
innate and adaptive immune signaling, acted as a master
switch for PANoptosis quiescence [16]. Inhibition of TAK1
generally caused the activation of PANoptosis and facilitated
infammatory immune responses [37]. It was reported that
TAK1 was essential for survival and maintenance of pe-
ripheral T-cells, and TAK1 could regulate NK cell-mediated
cytotoxicity [38]. In HCC, TAK1 facilitated tumor metas-
tasis and progression, indicating an unfavorable outcome
[39, 40]. As for cyclin dependent kinase 1 (CDK1), playing
a crucial role in the control of the cell cycle, could regulate
PANoptosis negatively through the ZBP1-dependent way
[41]. Previous studies revealed that CDK1 which could
induce tumor proliferation was also positively correlated
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with CD4⁺ T-cells and CD8⁺ T-cells in HCC [42, 43]. Be-
sides, PANoptosome activation was also inhibited by
SHARPIN (SHANK-associated RH domain interactor) [44].
Tanaka et al. found that SHARPIN promoted HCC pro-
gression via the Wnt/β-catenin pathway [45]. Similarly,
recent studies uncovered that SHARPIN could regulate the
pathways of NF-κB and interferon antiviral, which was
regarded as a novel modulator of immune responses [46].
Tus, there was a close relationship between the tumor
immune microenvironment and this prognostic signature
based on TAK1, CDK1, and SHARPIN. Moreover, it was
noteworthy that the three genes could enhance the sorafenib
resistance and therefore reduced the efcacy of chemo-
therapy [47–49]. Tese fndings were in accordance with the
results of IC50, suggesting that high-risk patients might
beneft less from sorafenib treatment. In summary, this

prognostic signature was closely related to immune response
and tumor progression.

Te functional analysis revealed that there were more
tumor metastasis-related pathways in the high-risk sub-
group. TP53 mutation acted as drivers of tumor progression
which were involved in the tumor metastasis-related signals
[50]. A higher level of TP53 mutation and immunosup-
pressive cells were displayed in high-risk population. In this
study, a shorter survival time was observed in the high-risk
group, which might result from immunosuppressive TME
and more metastasis-related pathways. To better apply the
signature to the clinical practice, we evaluated its forecast
efect. Te great value of AUCs proved the signature had
well-prediction efciency for OS. Te nomogram model
based on the risk score displayed a better predictive efect,
suggesting that combining the risk score and stage may
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Figure 9: Evaluation and validation of the prognostic signature. (a) AUC of time-dependent ROC curves in TCGA at 1 year, 2 years, and 3
years. (b) K-M analysis of the risk score in TCGA. (c, d) Forest plot of the univariate and multivariate regression analysis in TCGA cohort.
(e) Nomogram based on the risk score and other clinical features for predicting 1- to 3-year OS in TCGA. (f ) Calibration graphs investigated
that whether the nomogram predicted survival rates were close to the actual survival rates. (g) ROC analysis of the nomogram model in
TCGA (h) AUC of time-dependent ROC curves in ICGC at 1 year, 2 years, and 3 years. (i) K-M analysis of the risk score in the ICGC cohort.
(j) ROC analysis of the nomogram model in ICGC. (k) AUC of time-dependent ROC curves in GSE14520 at 1 year, 2 years, and 3 years. (l)
K-M analysis of the risk score in the GSE14520 cohort. (m) ROC analysis of the nomogram model in GSE14520.
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predict prognosis with higher accuracy. Te above-
mentioned prognostic analysis was also employed in vali-
dation cohorts which showed good results, indicating that
the prognostic signature we developed had a well-predicted
value with high reliability and accuracy.

5. Conclusions

Our study demonstrated that the prognostic signature based
on PANoptosis-related genes had a well-predictive efcacy
for OS in HCC. HCC patients in low-risk population could
acquire more beneft from ICI, TACE, and sorafenib ther-
apy. Tus, ICI, TACE, and sorafenib therapy were more
suitable for low-risk patients, while taselisib or combination
of BER inhibitors and chemotherapy might be a better
option for patients with a high risk. Tese fndings suggested
that this signature could be used as a biomarker to predict
the efcacy of ICI therapy and chemotherapy to aid clinical
therapeutic decision-making, which needs further research.
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