Oscillatory behaviour of an equation arising from an industrial problem

Alexander Tomaras

The oscillatory character of the solutions of a differential equation with retarded arguments, relevant to an industrial problem, is investigated. It is also proved that one can maintain the oscillatory properties of this equation under proper conditions, if a forcing term is added to it. The results obtained extend already known results on the subject.

1. Introduction

The scalar equation

$$
\begin{equation*}
y^{\prime}(t)=a y(\lambda t)+b y(t) \tag{1.1}
\end{equation*}
$$

arises as the mathematical idealisation and simplification of an industrial problem, involving wave motion in the overhead supply line to an electrified railway system [2], [7]. This equation has been discussed in detail in [1], [3], and [4], and its oscillatory behaviour (only for $b=0$) was mentioned in [6].

The oscillatory behaviour of the functional differential equation

$$
\begin{equation*}
y^{\prime}(t)=p(t) y(g(t))+q(t) y(t) \tag{1.2}
\end{equation*}
$$

which is of more general form than (1.1), was examined in [8], and results obtained for it were also extended there to the functional differential equation resulting from it by adding a forcing term, namely

$$
\begin{equation*}
y^{\prime}(t)=p(t) y(g(t))+q(t) y(t)+r(t) \tag{1.3}
\end{equation*}
$$

The purpose of the present paper is to extend further results,
Received 2 June 1975.
obtained in [8] for (1.2) and (1.3), by investigating the oscillatory behaviour of the functional differential equations

$$
\begin{equation*}
y^{\prime}(t)=\sum_{i=1}^{n} p_{i}(t) y\left(g_{i}(t)\right)+q(t) y(t) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}(t)=\sum_{i=1}^{n} p_{i}(t) y\left(g_{i}(t)\right)+q(t) y(t)+r(t), \tag{1.5}
\end{equation*}
$$

which are of more general form than (1.2) and (1.3) respectively.
In what follows, a solution $y(t)$ of (1.4) or (1.5) is said to be oscillatory, if it has arbitrarily large zeros, and nonoscillatory otherwise.

2. Unforced oscillation

Sufficient growth conditions on $p_{i}(t), g_{i}(t), i=1,2, \ldots, n$, and $q(t)$ are given here, to guarantee that every solution of (1.4) oscillates.

The following lemma will be needed, which is a modification of a corollary in [9].

LEMMA 2.1. Consider the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)+\sum_{i=1}^{n} f_{i}(t) x\left(F_{i}(t)\right)=0 \tag{2.1}
\end{equation*}
$$

subject to the following conditions:
(Cl) $f_{i}(t), F_{i}(t) \in C[[0, \infty), R], f_{i}(t) \geq 0$,

$$
i=1,2, \ldots, n ;
$$

(C2) $F_{i}(t) \leq t, \quad \lim _{t \rightarrow \infty} F_{i}(t)=\infty$, and $F_{i}^{\prime}(t) \geq 0$,

$$
i=1,2, \ldots, n
$$

If, in addition,

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\lim \sup } \sum_{i=1}^{n} \int_{K(t)}^{t} f_{i}(s) d s>1, \tag{2.2}
\end{equation*}
$$

where $K(t)=\max F_{i}(t), i=1,2, \ldots, n$, then every solution of (2.1) is oscillatory.

Now make the transformation $y(t) \exp \left(-\int q(t) d t\right)=z(t)$, to get (1.4) in the form

$$
\begin{equation*}
z^{\prime}(t)+\sum_{i=1}^{n} \tau_{i}(t) z\left(g_{i}(t)\right)=0 \tag{2.3}
\end{equation*}
$$

- where $Z_{i}(t)=-p_{i}(t) \exp \int_{t}^{g_{i}(t)} q(T) d T, i=1,2, \ldots, n-$ which is of the same form as (2.1), and for which Lemma 2.1 is true under proper modifications. Then, observing that if $z(t)$ oscillates, so does $y(t)$, we apply Lemma 2.1 to (2.3) to obtain the following result for (1.4).

THEOREM 2.1. Consider the functional differential equation (1.4), subject to the following conditions:

$$
\begin{aligned}
& \text { (i) } p_{i}(t), g_{i}(t) \in C[[0, \infty), R],-p_{i}(t) \geq 0, \\
& i=1,2, \ldots, n ; \\
& \text { (ii) } g_{i}(t) \leq t, \lim _{t \rightarrow \infty} g_{i}(t)=\infty, \text { and } g_{i}^{\prime}(t) \geq 0, \\
& i=1,2, \ldots, n ; \\
& \text { (iii) } q(t) \text { is continuous for any } t \neq 0 .
\end{aligned}
$$

If, in addition,

$$
\begin{equation*}
\lim \sup _{t \rightarrow \infty} \sum_{i=1}^{n} \int_{G(t)}^{t}-p_{i}(s)\left[\exp \int_{s}^{g_{i}^{(s)}} q(T) d T\right] d s>1, \tag{2.4}
\end{equation*}
$$

where $G(t)=\max g_{i}(t), i=1,2, \ldots, n$, then every solution of (1.4) is oscillatory.

REMARKS. The transformation used in [8] was also used here, and worked as well. Thus, "qualitatively", the theory in [4, paragraphs 4, 5, and 6] is completed further and results obtained in [6, p. 222] are also included in this presentation.

It can be easily verified on the other hand that Theorem 2.1 in [8] is a special case of Theorem 2.1 here, for $n=1$; particularly
interesting is the extension of the relationship (2.4).

3. Forced oscillation

Sufficient growth conditions on $p_{i}(t), g_{i}(t), i=1,2, \ldots, n$, $q(t)$, and $r(t)$ are given here, to assure that every solution of (1.5) oscillates. For this purpose, in addition to the transformations made in Section 2, set $r(t) \exp \left(-\int q(t) d t\right)=m(t)$, to obtain

$$
\begin{equation*}
z^{\prime}(t)+\sum_{i=1}^{n} \tau_{i}(t) z\left(g_{i}(t)\right)=m(t) \tag{3.1}
\end{equation*}
$$

Now, taking account of a theorem in [5, p. 274] and of Lemma 2.1, given in Section 2, we modify properly Theorem 3.1 in [8, p. 429] by the same technique used there, to establish the following result for (1.5).

THEOREM 3.1. Consider the functional differential equation (1.5), subject to the following hypotheses:
(Hㄱ) $p_{i}(t), r(t) \in C[[0, \infty), R],-p_{i}(t) \geq 0$,

$$
i=1,2, \ldots, n ;
$$

(H2)

$$
\begin{aligned}
& g_{i}(t) \in C^{1}[[0, \infty), R], \quad g_{i}(t) \leq t, \quad \lim _{t \rightarrow \infty} g_{i}(t)=\infty \\
& g_{i}^{\prime}(t) \geq 0, \quad i=1,2, \ldots, n ;
\end{aligned}
$$

(H3) $q(t)$ is continuous for any $t \neq 0$;
(H4) $\underset{t \rightarrow \infty}{\lim \sup } \sum_{i=1}^{n} \int_{G(t)}^{t}{ }^{-p_{i}(s)}\left[\exp \int_{s}^{g_{i}(s)} q(T) d T\right] d s>1$;
(H5) there exists a function $Q(t) \in C^{1}[[0, \infty), R]$, such that $Q^{\prime}(t)=r(t) \exp \left(-\int q(t) d t\right), \quad t \geq 0$, and either
(I) $\lim _{t \rightarrow \infty} Q(t)=0$, or
(II) there exist constants q_{1}, q_{2} and sequences $\left\{t_{m}^{\prime}\right\},\left\{t_{m}^{\prime \prime}\right\}$, such that $\lim _{m \rightarrow \infty} t_{m}^{\prime}=\lim _{m \rightarrow \infty} t_{m}^{\prime \prime}=\infty \quad$ and

$$
Q\left(t_{m}^{\prime}\right)=q_{1}, \quad Q\left(t_{m}^{\prime \prime}\right)=q_{2}, \quad q_{1} \leq Q(t) \leq q_{2}, \quad t \geq 0
$$

Then, if (I) holds, every solution $y(t)$ of (I.5) oscillates or $\lim y(t)=0$, while if (II) holds, every solution $y(t)$ of (I.5) $t \rightarrow \infty$ oscillates.

This result includes Theorem 3.1 in [8, p. 429] as special case for $n=1$, and accomplishes the purpose of this paper.

Finally, the open question in [8, pp. 429-430] can be posed now for the higher-order retarded differential equations

$$
\begin{equation*}
y^{(n)}(t)=\sum_{i=1}^{n} p_{i}(t) y\left(g_{i}(t)\right)+q(t) y(t) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{(n)}(t)=\sum_{i=1}^{n} p_{i}(t) y\left(g_{i}(t)\right)+q(t) y(t)+r(t) \tag{3.3}
\end{equation*}
$$

respectively, for $n>1$.

References

[1] Janet Dyson, "Some topics in functional differential equations", (D. Phil. Thesis, Oxford, 1973).
[2] L. Fox, D.F. Mayers, J.R. Ockendon and A.B. Tayler, "On a functional differential equation", J. Inst. Math. AppI. 8 (1971), 271-307.
[3] Tosio Kato, "Asymptotic behaviour of solutions of the functional differential equation $y^{\prime}(x)=a y(\lambda x)+b y(x)$ ", Delay and functional differential equations and their applications, 197-217 (Proc. Conf. Park City, Utah, 1972. Academic Press, New York, London, 1972).
[4] Tosio Kato and J.B. McLeod, "The functional-differential equation $y^{\prime}(x)=a y(\lambda x)+b y(x)$ ", Bull. Amer. Math. Soc. 77 (1971), 891-937.
[5] T. Kusano and H. Onose, "Oscillations of functional differential equations with retarded argument", J. Differential Equations 15 (1974), 269-277.
[6] G. Ladas, V. Lakshmikantham, and J.S. Papadakis, "Oscillations of higher~order retarded differential equations generated by the retarded argument", Delay and functional differential equations and their applications, 219-231 (Proc. Conf. Park City, Utah, 1972. Academic Press, New York, London, 1972).
[7] J.R. Ockendon and A.B. Tayler, "The dynamics of a current collection system for an electric locomotive", Proc. Roy. Soc. London A 322 (1971), 447-468.
[8] Alexander Tomaras, "Oscillations of an equation relevant to an industrial problem", Bull. Austral. Math. Soc. 12 (1975), 425-431.
[9] Alexander Tomaras, "Oscillations of higher-order retarded differential equations caused by delays", Rev. Roumaine Math. Pures Appl. (to appear).

Mathematical Institute,
University of Oxford,
St Giles,
Oxford,
England.

