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AN INEQUALITY WITH APPLICATION
TO A DIFFERENCE EQUATION

J O N G - Y I CHEN AND YUNSHYONG CHOW

In this paper we shall prove that for any 0 < d ̂  2,

-(d/2) n+1 ,n+l .. -d/2

E ( E )

As an application, we shall then show that the following recursively defined se-
quence

n / n \ —d/2

n = 1 and ^ ( Y^ TS ] = 1 for n ^ 2

satisfies

n / n \

lim r B / » ^ - = (I) > (./sin ^ ) V ' for 0 < d < 2.
n-too \ 2 / V 2 /

The difference equation above originates from a heat conduction problem studied
by Myshkis (J. Difference Equ. Appl. 3(1997), 89-91).

1. INTRODUCTION AND RESULTS

The main purpose of this paper is to show the following inequality.

THEOREM 1 . 1 . Let 0 < d ^ 2 be fixed. Then

-d/2 n+1 ,n+l x -d/2

(1.1) EfXy 2 ^ 1 ) f)

Equation (1.1) is trivial for d = 2. It does not seem obvious for the remaining cases.
We shall first prove a series of elementary inequalities some of which are interesting by
themselves.

Received 5th January, 2004
The authors were partially supported by the National Science Council, Repubic of China. Thanks to
an anonymous referee for pointing out the usage of Beta function and Gamma function. This improves
greatly the statement of Theorem 1.3.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 SA2.00+0.00.

519

https://doi.org/10.1017/S0004972700036285 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036285


520 J-Y. Chen and Y. Chow [2]

n
LEMMA 1 . 2 . Let a ^ 1 be fixed and An = J2 s""1 . Then for n € N ,

s=l

-<A < (n+1)
2 ' " 1

(n+l)*-n* ^ ^ n ^ (n + ff- (r

•»+!

(v) both sequences < —1_/1/a\ - An > and

decreasing in n,

(vi) the positive sequence < Aj^ ( "*- J - An" > is decreasing in n for

each integer k ^ 1,

(vii) the sequence < ( J2 A^_1 I /An > is increasing in n for each integer
I Vj=i / ' J

Assuming Lemma 1.2 tentatively, we can prove Theorem 1.1 easily. Obviously.
(1.1) is equivalent to showing Dn, the sum on the left of (1.1), is increasing in n. Let

Ao = 0 and An = £ sW~l for n ^ 1. Using £ s(
2/d)-i = An - A,_i and the

Binomial Theorem,

= ± {An - ̂
fc=o

Since ( - l ) f c ( ) > 0 for k ^ 0, (1.1) follows immediately from Lemma 1.2 (vii)
\ k J

with CT there replaced by 2/d. This verifies Theorem 1.1.
As an application of Theorem 1.1, we consider the following difference equation:

n / n s-d/2

(1.2) n = 1 and Y"( Y"rs) =1 for n ^ 2.

The asymptotic behaviour of the sequence {rn} for 0 < d < 2 is answered as follows.
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THEOREM 1 . 3 . lim ^ / n ' 2 ^ ) - 1 = (d/lY^'^ U/sm{dit/2))Vd for 0 < d

The difference equation (1.2) originates from the following heat conduction problem
studied by Myshkis [4]: Let u(x,t) be the temperature at position x = (xi,x2, •• -,Zd)
and time t of a homogeneous medium filling up all of R d . Suppose u = 0 at t = 0 and
a heat impulse of size b is applied at x = 0 and the temperature there is increased to
above a fixed temperature uo > 0. When the temperature at the origin decays to the
value uo at time t\, a heat impulse of the same size is applied again at the origin. This
process of applying heat impulses so the temperature at the origin never goes below u 0

is repeated indefinitely.

Denote by to = 0, t\, t2, • • - the sequence of consecutive times that a heat impulse
of size b is applied at x = 0. By solving the heat equation

where a is the heat conduction coefficient of the medium, it is not difficult to obtain

that for n ^ 0 and tn < t ̂  t n + 1 ,

d/2

Define rn = 47ra(tn - tn-i)(uo/b)2' for n ^ 1. Since u(0,tn) = UQ, a simple compu-
tation leads to (1.2). The sequence {rn} is thus recursively defined. Yet it is difficult to
solve (1.2) for rn . Myshkis [4] proposed as an open problem the asymptotic expression
for rn not only for d = 1 but also for more general settings. Note that sequence {rn}
is well defined for any d > 0. Chen, Chow and Hsieh [2] proved that lim,, rn/n = n2/2
for d = 1, a special case of Theorem 1.3, by first establishing the following lemma.

LEMMA 1.4. [2]

(i) The sequence {rn} defined in (1.2) is increasing for any fixed d > 0.
-1/2n fn \ -! /2 n + 1 / n + 1 \

E £* ^E £*
j=l\s=j J j=l\s=j /

The increasing property of the sequence {T>,} shown in Lemma 1.4 (i) is also crucial
in this paper. The inequality (1.1) is a generalisaion of that in Lemma 1.4 (ii). Recently
Chang, Chow and Wang [1] proved that

(1.3) l i m n r n / l o g n = l for d=2

https://doi.org/10.1017/S0004972700036285 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036285


522 J-Y. Chen and Y. Chow [4]

by a clever method which unfortunately seems valid only for d = 2. Note that (1.3)
can also be proved by first establishing the following inequality

N - 1 n+1 ,n+l v —1

(

oo
Let C(«) = H fc~s De the Riemann zeta function. It follows easily from Lemma

1.4 (i) that
limn rn = C(d/2)2/d for d > 2.

So in this paper we need only to consider the case 0 < d < 2. It is not known
whether (1.2) for non-integer d bears any physical meaning. Still, it is interesting
mathematically to see how one can obtain analytic results for such highly nonlinear
difference equations.

Lemma 1.2 is proved in Section 2. As shown above the inequality (1.1) follows
easily as a consequence. It takes the place of the inequality in Lemma 1.4 (ii). Finally
Theorem 1.3 is shown in Section 3 by following the same arguments in Chen, Chow and
Hsieh [2] for the case d = 1.

2. PROOF OF LEMMA 1.2

PART (i). Denote both terms inside the bracket by r(a,n) and r)(a,n) respectively.
Let /(x) = zlog(z/(x+ 1)). A simple calculation shows f'(x) = l / ( i + 1) + log(l
- ( l / i + 1)) ^ 0 for x > 0. Hence f(n + 1) ^ f(n). That is

(2.D (n

Using ((n + l)/(n + 2))""1 ^ (n/{n + I))""1 ^ 0, we get from (2.1) that

)

which means — (a,n) ^ 0. Hence T(a,n) ^ T(1,TI) = 1 as desired. Introducing
oo

f(x) = (x + l)log((x + l ) /x) , we can show in the same way that -^-(a,n) ^ 0 and

thus r](a, n) ^ r?(l,n) = 1. The details is omitted.

Note that r(a,n) ^ 1 is the same as n + 1 - (na)/((n + I)""1) ^ n + 2

- (n + \)"/{{n + 2))""1. Or equivalently,
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By expansion, T?(CT,S) ^ 1 implies (s + l)s"(s + 2)" - s(s+ if" s£ s°(s + lf.

Replacing the term sa(s + if above by s"(s + l)a+1 - sa+1{s + 1)" , a simple rear-
rangement shows s(s + lf({s 4- lf-s") ^ s°{s + l)((s + 2f-(s + 1)"). Multiplying
both sides by s~1(s + I)17"1, we shall get

(s + 2f-(s + lf ' (s + lf-s° ~ (s + lf~s-'a -*«*•-

PART (ii). Since Ai = 1 ^ (2<7~1)/(2a - 1), the first inequality holds for n = 1.
Suppose it holds for n . By induction it suffices to check it for n + 1. Using A n + 1

= An + (n + lf~1 and (2.2),

n + 1 " {n+lf-n- ' v ' ' [n + lf-n- ' (n + 2f-(n+lf

as desired. Using telescoping cancellation, the second inequality follows from adding up
(2.3) for 1 ^ s ̂  n.

PART (iii). The first inequality is shown as follows:

n n

(n + lf~1An —
s=l s=l

Using An+i = An+(n + lf X, a simple rearrangement shows the other two inequalities
are equivalent to

(n + lf-n- ** " ^ (n + 2f -(n+l)a>

which follows immediately from Part (ii).

PART (iv). Using An+1 =An + (n+ lf~l and An+2 = An + (n + if'1 + (n + 2)""1,
the inequality is equivalent to

An (An + (n + If'1 + (n + 2f~1) = AnAn+2 ^ A2
n+1 = Un + (n + lf

By expansion, that is the same as

(n+1)2""2 _ ( n + 1 ) 2 - 1

" " (n + 2)"-1 - (n + I ) ' " 1 (n + 1/n + 2)(n + 2f - (n + if

which follows immediately from the second inequality in Part (ii).
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PART ( V ) . The first assertion follows from Part (iii) and the fact that

+ i n i - d / " ) (n + lV7-1 _ An+1 - An _ An+1 _ 1/a

An ) An1-^ A*1-™ A^l/o) n '

By using An+\ = An + (n + I ) " " 1 and the Binomial Theorem, we have

An ^ l) \ k ) \ An

\ < 7 - l

n+1

Because 0 < I/a ̂  1, (—1) +1(1{a) ^ 0 for k > 1, the second assertion follows from
Part (iii).

PART (vi). Because An is increasing in n, each term of the sequence is obviously
positive. For k = 1 we have

(An+i\ 1/a _ (An+in+i\ 1/a _ (

An ) An ~ \ A n \An+l An )) + { An
 An

which is decreasing by Part (v). Suppose it holds for k = I. For k = £ + 1 we have

Since all three terms on the right hand side above are positive and decreasing in n by
Parts (iv), (v) and the induction hypothesis, this verifies the case k = £ + 1 and thus
completes the proof by induction.

PART (vii). Denote the sequence by {cv,}. The case A; = 0 follows immediately from
taking the a th root of the second inequality in Part (iii). For a fixed A; ^ 1 it suffices
to prove by induction on n that

(2.4)

A simple calculation after multiplying both sides by -<4n+i shows (2.4) is equivalent
to

(2.5)
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Since c,, ^ 0 and C\ = 0 as AQ = 0 by convention, (2.4) holds for n = 1. Suppose
(2.4) and thus (2.5) hold for n. Then by (2.5) for n and Part (vi),

n+l

"V

- o

which means (2.5) and thus (2.4) hold for n + l . This completes the proof by induction.

3. PROOF OF THEOREM 1.3

Let r = d/2, ff = £ TS and Tf = £ s(Vr)-i. W i t h t h e inequality (1.1) at hand,
s=j s=j

we can follow the same arguments used in Chen, Chow and Hsieh [2] for the case d = 1.
The proof is divided into four steps:

(a) If n € Sc then m € Sc for all m ^ n, where

Sc = {k e N : A; ^ 1 and f/ ^ c T/ for j = 1,2,... , jfc}.

(b) lim infB rn /n(1/ r )-1 = sup{c : Sc # 0} ^ 1.
(c) limsupnTn/n(1/r>-1 = liminfnTw/nW11)-1. Hence limnrn/n(1/r)-1

exists in (0, oo].
(d) l i m n r j n t 1 ^ - 1 = r-1+(1/r)(7r/sinr7r)1/r.

STEP (a). Using Tj1"1"1 = Tn+i + f? and (1.2), we have

(3.1)

Define h(x) = x~r - (1 + x)" r for x > 0. By multiplying < + 1 to both sides of (3.1),

n
(3.2) ^ / i ( f ; 7 T n + 1 ) = 1 for n £ 1.
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Repeating the same to the sequence {T"} and using the inequality (1.1), we get

n
(3.3) J2 h(T?/(n + l ) ( 1 / r M ) ^ 1 for n > 1.

i=i

It suffices to show n+l € Sc as we shall have successively n+2 e 5C, n+3 € 5 C , . . . ,
and so on. Since n € Sc by assumption,

(3.4) f j 1 ^ c TJ1 holds for j = 1,2,... , n.

It is easy to see that ft is a decreasing function. By (3.2), (3.3) and (3.4),

n
Certainly ]£ h(xT?) is decreasing in z. The inequality above implies r n + i / c

^ (n + l ) 0 7 0 " 1 . That is r n + 1 ^ c(n + l ) ( 1 / r ) ~ 1 . Using 7;n+1 = rn+1 + If and

Tn+i _ Tn + ( n + 1)(i/'-)-i w e conciU(je from (3.4) that n+ 1 6 Sc. This completes

the proof of (a). In particular, rm = f,J£ ^ cT™ = cm<1/r'-1 for aU m ̂  n. Hence

(3.5) liminfn ^/n^1/1")-1 ^ sup{c : 5C / <£} ^ 1.

The last inequality is due to the fact that n = 1, which implies 1 € Sc where c = 1.

STEP (b). Let a = liminfn Tn/n^^T">~1. By (3.5), it remains to show

(3.6) a^sup{c:Sc^4>}.

For any e > 0, there exists no ^ 1 such that

(3.7) rm ^ (a - e j m ^ - 1 for m ^ n0.

It suffices to show 5Q_2£ 7̂  <̂ - By (3.7), fj1 ^ (a - 2e)Tjl holds for j ^ n0. Moreover,

fn
n
0 - (a - 2e)TZQ 2 ^ holds for n > n0.

For 1 ̂  j < n0,

f"0"1 - (a - 2e)T"°~1 ^ - ( a - 2e)TJ
n°-1 ^ - ( a - 2£)ri

n°-1.

We obtain, by adding up these two formulas above, that T" ^ (a — 2e)T" holds for

j < n0 as well if n is taken so large that e7£0 ^ (a - 2e)T1
n°~1. Note that limnT^

= oo. Hence n e Sa-2e by definition. In particular, 5a_2£ 7̂  >̂. This verifies (3.6) and

thus (b).
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S T E P (C). Suppose the contrary that P = limsupnTn/ra*1/1")-1 > l i m i n f n r n / n ( 1 / r ) - 1

= a . In the following we only consider ft < oo. The case 0 — oo can be dealt with
similarly. Choose 1 < 6 < (P/a)r/{1~r). So p - a ^ 1 ^ " 1 > 0. Note that 0 < r < 1 as
r — d/2 and 0 < d < 2. Now choose e > 0 such that

(3.8) (08 - e) - (a + e)^1/ ')"1) (0 - 1) Ss 2e.

In particular, /3 - £ ^ (a + e ) ^ 1 / ^ " 1 . By definition of /?,

(3.9) rm ^ (0 - e)m(1/r)~1 holds for infinitely many m.

We know from (a) and (b) that there exists no ^ 1 such that

(3.10) fp ^ (a - e)Tp for m ^ n0 and 1 < j < m.

Now choose rn satisfying (3.9) and n - 1 ̂  no- By Lemma 1.4 (i),

(3.11) rm > rn ^ (P - e)nWr)~1 holds for m^n.

We claim that

(3.12) f/8nJ ^ (a + e ) ^ " - 1 for all 1 < j < [6n\.

Once it is done, we have \6n\ € Sa+£. That is SQ + £ ^ (p. By (b),
a = liminfn rTl/n(1 ' / r)~1 ^ a + e and a contradiction follows.

Since P - e ^ (a + e)^(1/ '-)-i ; ( 3 . n ) implies that for n ^ m ^ [^nj,

Hence, (3.12) for n ^ j ^ \9n\ holds trivially. Moreover,

- (a + e)TnL
enJ ^ ((/3 - e)nW-1 - (a + e j ^n j 1 1 ^" 1 ) (L^J - n + l)

^ ((^ - e) - (a + e)6»(1/r)-1)(0 - l)n( 1 / r ) ^ 2en(1/r>

by (3.8) and the inequality that x - 1 ^ [xj ^ x. We have from (3.10) that for j < n,

) - 1 • n = -2en{1/r\

Adding up these two formulas above, we immediately obtain (3.12) for 1 ̂  j < n. This
completes the proof of (3.12) and thus (c). D
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S T E P (d). By (c), l im n T n /n< 1 / r ) - 1 = a € (0,oo). Hence rn w an'1/1"'"1 for n no less
than some number n0 • Therefore,

S^/r)-!^ = a r fnl/r _ jl/A

= ar(l-(j/n)1/ r)n1/ r for j ^ n0.

Since max (ff) * sj ( r " ) r sj {(n - n^r^ -A 0 by Lemma 1.4 (i), (1.2)

implies

~ i X (or)' (1 - tf/^'Tn ^ )

It implies a < 00 in particular. Letting y = x1^ on the right above, we have ([3])

(f (1 - y^y^dy) == a = r-
l+W (f (1 - y^y^dy) = r-

1+Wr> (5(1 - r,
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