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SOME FUNCTIONAL STABLE LIMIT THEOREMS 

BY 

D. R. BEUERMAN 

1. Introduction. Let Xl9 Xz, Z 3 , . . . be a sequence of independent and identi­
cally distributed (i.i.d.) random variables which belong to the domain of attraction 
of a stable law of index a7*1. That is, 

(1) S-^^Yx(l), 
On 

where 

and 

n Â " a " |0, 0 < a < If 

Bn = n1/aL(n), 

where L(ri) is a function of slow variation; also take S0=0, J90=l. 
In §2, we are concerned with the weak convergence of the partial sum process 

to a stable process and the question of centering for stable laws and drift for stable 
processes. §3 deals with Cesaro sums of i.i.d. random variables. The final section is 
concerned with several related problems. I would like to thank Dr. C. C. Heyde for 
his help in this work. 

2. Stable processes and centering. 

LEMMA. Under the conditions summarized by equation (7), 

(2) y„(o=5[" i l;["']C'-^ya(o, 

where Ya(t) is a stable process whose one-dimensional distributions are characterized 
by 

(3) Ya(t) 4 t1/aYx(l) 

Proof. By Theorem 2.7 of Skorokhod [9], this follows immediately from the 
convergence of the one-dimensional distributions, which we obtain as follows. 

(4) 
1 1 tlla t1,a 

Bn n^Un) (ntf'Lint) Blnû 

Received by the editors June 9,1971 and, in revised form, December 3,1971. 

2 173 

https://doi.org/10.4153/CMB-1973-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-031-4


174 D. R. BEUERMAN [June 

Then, from (1) and (4), we have 

Slntl-lnt]Cg ^^^Infj-lntl^a 1/g I/ay ... 

Bn Blntl 

Q.E.D. 

We have centered Sn with nca; a more general centering is with An. Since 
(Sn—nca)[Bn converges in distribution Sn—An[Bn will converge in distribution if 
and only if 

(5) An = nea-dBn+o(Bn). 

If we write (Sn—An)lBn—>Za{\) and Za(t) is the corresponding stable process, then 
we will see that the constant d is the centering parameter for the stable law Za(l) 
and Z a(0 has drift dt. 

THEOREM 1. Let Ya(t) be as in the Lemma. Then 

(6) log £{exp(m7a(0)} = A(u) |u|a t, 

where l(u) is linear in sgn(w). 

REMARKS. For an exact representation of A(w), see Lukacs [7]; the above is 
sufficient for our purposes. The content of this result is that, for nca centering, the 
corresponding stable process has zero drift. 

Proof. From Proposition 14.18 of Breiman [4], we have 

(7) log E{exp(iu7a(0)} = t log E{exp(it* Ya(l))}. 

From (3), we have 

(8) log £{exp(iWya(0)} = log £{exp(m*1/a7a(l))}. 

From Theorem 5.7.3, Lukacs [7], we also have 

(9) log £{exp(îtt7a(l))} = Mu) \u\*+i du. 

Now, (7), (8), and (9) imply 

X{u) \u\a t+i dut = A(w) \u\a t+i dut1/a
9 

which, in turn, implies that d=0; hence (6) holds. Q.E.D. 

The following is immediate. This result about stable laws comes from considera­
tion of the corresponding stable processes. 

COROLLARY. If(Sn—nca)lBn—>Ya(l), then 

log£{exPaW7a(l))} = A(u)|u|a. 
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In other words, if we center with An=nca, we obtain as limit distributions stable 
laws in the restricted sense (Cf. [7, pp. 102-103]), with characteristic functions 
(ch.f.) exp{A(w) \u\a}. 

For a random variable Y with ch.f. exp{£ du+À(u) \u\*}, where <x> 1, it is easily 
seen that E{Y}=d; for a process with ch.f. exp{z dut+À(u) \u\a i}, the drift is dt. 
Since 

7.(1) and E{^J^J =0 = £(7a(l)), 

one might suppose that the above results on centering follow from convergence 
of moments. Two counter-examples are instructive in this connection. 

d 

Even if Xn—>X and E(Xn)=0 we cannot conclude that E(Xn)-+E(X), as the 
following example illustrates. Let Xn have probability density function 

— n < x < n\ 

\x\> n ) 

wheref(x) is a stable density with ch.f.=exp{—|w|a}, a < l , and A(ri)=$Znf(x) dx. 
If we suppose that X has the density/(*) then Xn-?-+X, E(Xn)=0, but E(X) fails 
to exist. 

Even when E(X) exists, E(Xn)=0, xJ->X does not imply E(Xn)->E(X), as the 
following example illustrates. Take 

f n ^ , a = d 

P{Xn = a}=[ % a = d_n 

n 
0, otherwise 

where 0<|i |<oo. Then Xn-^X, concentrated at d, E(Xn)=0 and E(X)=d. So, 
clearly, E(Xn)-+E(X) fails to hold. 

We henceforth assume that the Xt have been properly centered; i.e., A^—cx is 
used beyond this point. Thus we may write 

(10) ^ - ^ ( D 

and 

(il) % * - ^ 1K0 

3. Cesaro sums of random variables. The Cesaro sums corresponding to Sn are 
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given by 

(12) On = -ÏSk. 

njc=i 

(Cf. [1, p. 378]) 

THEOREM 2. Under the conditions summarized by (10), 

Proof. We first obtain the invariance principle 

(14) ^^\\a(t)dt 
Bn Jo 

by applying the measurable mapping theorem [3, Theorem 5.1] with the continuous 
function h given by 

h(x) = x(0 dt. 

and noting that 
n fk/n __i 

*(*„«])= 2 V i dt=n—^an_x 
fc=l Jk-l/n ft 

By the invariance principle (14), we can take Bn=n1/a and 

(15) log E{Qxp(iuXk)} = X(u) \u\a, 

without loss of generality. Now, observe that 

(16) «*„ = S S* = Î (n+l-k)Xk 4 JfcX*. 
JC=1 J c = l J c = l 

From (15) and (16), the ch.f. of <rjn1/a is given by 

(17) e x p f f ^ ) \u\" k'n-{1+a)) = expf^w) \u\* • ± £ (-Y) 

Now, we note that 

as) ii(-Y—fV^=-4-
n ic=i\n/ Jo 1+a 

Hence, from (17) and (18), the limiting ch.f. of ajn1/a is 

(19) e x p ^ i O M ^ l + a r 1 } , 

the ch.f. of 7a(l/l + oc). By invariance, the result follows. Q.E.D. 
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4. Some related results. From (11) and the measurable mapping theorem, we 
have for any continuous functional h: 

(20) h(^f}-^KYx(t)). 

In addition to the above result on Cesaro sums, some examples are 

(i) h(x)= sup x(t)— inf x(i), 
0<*<1 0<t<l 

which yields 

B-1! max Sk- min S^\ -±+ sup Ya(0~ inf Ya(t) 
\0<fc<n 0<k<n J 0<*<1 0<*<1 

(ii) (h(x))(t)=X(t)-tX(l), 

which yields 
B-\Sintl-lnt,Z)^ Ya(t)-tYa(l) = Y°a(t), 

and 

(iii) h(x)= sup (X(t)/tfi), with ô and /S positive, which yields 

0n-l Sk d v ^a(0 
n̂ Bn max — —> sup ——. 

dn<k<n kP ô<t<l V 

The first of these is related to the extent of a random walk ([5], [6]), the second to 
adjusted range and tied-down stable process [6] and the last to some problems 
relating to the time of first passage over a curvilinear boundary ([2], [8]). 
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