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WEAK CONVERGENCE OF STOCHASTIC INTEGRALS WITH RESPECT
TO THE STATE OCCUPATION MEASURE OF A MARKOV CHAIN
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Abstract

Our aim is to find sufficient conditions for weak convergence of stochastic integrals with
respect to the state occupation measure of a Markov chain. First, we study properties of
the state indicator function and the state occupation measure of a Markov chain. In par-
ticular, we establish weak convergence of the state occupation measure under a scaling
of the generator matrix. Then, relying on the connection between the state occupation
measure and the Dynkin martingale, we provide sufficient conditions for weak conver-
gence of stochastic integrals with respect to the state occupation measure. We apply our
results to derive diffusion limits for the Markov-modulated Erlang loss model and the
regime-switching Cox–Ingersoll–Ross process.
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1. Introduction

Stochastic integrals with respect to the state occupation measure of a Markov chain arise
naturally in the analysis of queueing systems and diffusions under Markov modulation. We are
interested in the weak convergence properties of this type of stochastic integral, as they play a
key role in the derivation of scaling limits for such processes.

To make the problem concrete, we introduce some notation. Let Y·X denote the Itô integral
of Y with respect to X, and let ⇒ denote weak convergence. In addition, let Hn and Gn be
stochastic processes satisfying Hn ⇒ H and Gn ⇒ G, with Hn being a suitable integrand and
Gn denoting the (scaled and centered) state occupation measure of an irreducible continuous-
time Markov chain. We would like to find conditions under which the convergence

Hn·Gn ⇒ H·G (1.1)

holds as well.
Rather remarkably, this case does not seem to be covered by the known results dealing with

convergence as in (1.1). To guarantee convergence as in (1.1), it is typically required that Gn

is a martingale or that Gn has the so-called P-UT property (cf. [5, 6, 9, 16]). However, neither
of these requirements is satisfied if Gn is the state occupation measure of a Markov chain,
even though Gn has very nice convergence properties in this important case. An exception is
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[10], which considers a class of Markov-modulated ordinary differential equations that have
bounded integrands and feature the state occupation measure as an integrator. The proof there
relies on integration by parts under an appropriate differentiability condition, after which the
P-UT machinery can be utilized.

The goal of this paper is to formulate practical conditions that guarantee convergence as
in (1.1) and can be easily applied to relevant examples such as queueing systems and mean-
reverting diffusions under Markov modulation. Because the state occupation measure Gn is a
given, we have to impose restrictions on the integrand Hn to obtain convergence as in (1.1).
The key insight is that convergence of Hn·Gn is related to the behavior of the total variation
process of Hn. Under the condition that this total variation process does not grow too quickly,
we prove that (1.1) holds. Relying on tightness arguments, we extend this result and show weak
convergence of integral equations of the form

Yn(t) = Xn(t) +
∫ t

0
Hn(s) dGn(s) +

∫ t

0
�γn (Yn)(s) d 1√

n
Gn(s) +

∫ t

0
�δn (Yn)(s) ds,

where �γn and �δn are functions mapping right-continuous paths to right-continuous paths.
We demonstrate the relevance of these results by applying them to two examples, in which
we derive diffusion limits of the Erlang loss model and the Cox–Ingersoll–Ross (CIR) process
under Markov modulation.

The remainder of this paper is organized as follows. In Section 2, we introduce notation
and collect a number of basic results needed to prove the main results. In particular, we derive
properties of an irreducible, continuous-time Markov chain, its state occupation measure, and
its Dynkin martingale. We also establish weak convergence of the state occupation measure.
In Section 3, we state and prove the main results in two theorems. The first theorem concerns
weak convergence of stochastic integrals with respect to the state occupation measure Gn and
provides conditions under which (1.1) holds. The second theorem extends this to a class of
stochastic integral equations involving Gn. In Section 4, we apply the main results to derive
the diffusion limit for the Markov-modulated Erlang loss model and to establish a small-noise
limit for the Markov-modulated CIR process. In Section 5, we draw conclusions and point out
some directions for further research. The appendix explores the P-UT property and its relation
to Gn in some more detail. It also contains two technical lemmas that are important for proving
the main results.

2. Preliminaries

We consider stochastic processes X defined on the interval [0, ∞) and taking values in R
p.

We interpret vectors in R
p as column vectors and equip R

p with the usual Euclidian norm ‖·‖.
Unless stated otherwise, we assume that X is càdlàg, meaning that its paths are right-continuous
and admit finite left-hand limits. We denote the space of càdlàg paths on [0, ∞) with values
in R

p by D([0, ∞); Rp), and we assume that D([0, ∞); Rp) is equipped with the Skorokhod
J1 topology (cf. [5, Chapter VI]). Weak convergence is denoted by ⇒. We refer to uniform
convergence on compacts in probability as ucp convergence. The element in D([0, ∞); Rp)
that is identically equal to 0 is denoted by η0. We often refer to η0 as the zero process. We let
c be a positive constant that may change from line to line.

Throughout this paper, J denotes a right-continuous, irreducible, continuous-time Markov
chain with state space {1, . . . , d} for some d ∈N. We denote by Q the d × d generator matrix
corresponding to J. The state indicator function of J is the {0, 1}d-valued process K defined via
K(i; t) = 1{J(t)=i} for i ∈ {1, . . . , d} and t ≥ 0, so it takes values in the set of unit vectors. The
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process K is closely related to the state occupation measure, which is the Rd-valued stochastic
process L(t) = ∫ t

0 K(s) ds. On an intuitive level, the state indicator function K registers in which
state J is, while the state occupation measure L measures how much time J has spent in each
state up to a certain time.

2.1. Basic properties of the deviation matrix

Anticipating upcoming results, we present a number of equalities. Given the irreducible
generator matrix Q, we let the d × 1 column vector π denote its stationary distribution, so π

is the unique probability vector solving the equation π	Q= 0. Additionally, D denotes the
deviation matrix corresponding to Q; its entries are given by

Dij =
∫ ∞

0

(
P(J(s) = j | J(0) = i) − πj

)
ds.

The integral is well defined, because the irreducibility of Q implies that the probability P(J(t) =
j | J(0) = i) converges exponentially fast to πj as t → ∞ (cf. [3, p. 356]). Thus, the deviation
matrix D provides a measure for how much the Markov chain J deviates from its stationary
distribution if it starts in a fixed point.

Following [3], we define the ergodic matrix � = 1π	 and the fundamental matrix F = D +
�, where 1 denotes a d × 1 vector with each entry being 1. Some straightforward arguments
(cf. [3]) demonstrate that π	D = 0 and

QF = FQ= � − I = DQ=QD. (2.1)

Applying these identities, we find that

(QF)	diag(π )F = (QD)	diag(π )D + (QD)	diag(π )�,

while (QD)	diag(π )D = −diag(π )D and (QD)	diag(π )� = 0. This leads to the equality

F	(Q	diag(π ) + diag(π )Q)F = −(diag(π )D + D	diag(π )
)
. (2.2)

Given the irreducible generator matrix Q, the vectors and matrices 1, π , �, F, and D are
always as defined above.

2.2. The Dynkin martingale

Markov chains are closely connected to martingales via Dynkin’s formula. In the next result
(which follows from [1, Lemma 2.6.18] and [1, Lemma 3.8.5]), we define a martingale M that
is the Dynkin martingale corresponding to J. Additionally, we note that M is a locally square-
integrable martingale. For this class of martingales there are powerful convergence results
available, which often depend on the predictable quadratic variation process of such mar-
tingales converging in a suitable manner. One of these results is the martingale central limit
theorem (MCLT). We would like to invoke it later on, so we present the explicit form of the
predictable quadratic variation process of M as well.

Lemma 2.1. The process M defined via

M(t) = K(t) − K(0) −
∫ t

0
Q	K(s) ds (2.3)
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is a càdlàg, locally square-integrable martingale having predictable quadratic variation
process

〈M〉(t) =
∫ t

0
diag(Q	K(s)) ds −

∫ t

0
Q	diag(K(s)) ds −

∫ t

0
diag(K(s))Q ds.

We refer to the process M defined above as the Dynkin martingale associated with the Markov
chain J.

2.3. Scaling the Markov chain

In the remainder of this paper we are mainly concerned with the Markov chain Jn, which
is a scaled version of J. Formally, we fix α > 0 and let Jn denote a continuous-time Markov
chain with state space {1, . . . , d} and generator matrix nαQ, where n ∈N. As usual, we assume
that Jn has right-continuous paths. Note that we may obtain Jn by applying the time scaling
Jn(t) = J(nαt), so Jn is essentially a sped-up version of J.

The state indicator function of Jn is Kn, while the corresponding state occupation measure
is Ln and the corresponding Dynkin martingale is Mn. We let Gn denote a scaled and centered
version of the state occupation measure Ln, with

Gn(t) = nα/2
∫ t

0
(Kn(s) − π ) ds. (2.4)

This process is connected to Mn via

Gn(t) = n−α/2F	Mn(t) − n−α/2F	(Kn(t) − Kn(0)), (2.5)

which follows from (2.1) and (2.3).
The process Gn in (2.4) is the process that we would like to use as an integrator. Therefore,

it is the most important object in this paper. For ease of exposition, we often abuse terminology
and refer to Gn as the state occupation measure, leaving out the fact that it is scaled and centered
in a specific way.

2.4. Weak convergence of the state occupation measure

A first step towards proving the main result is to derive the weak convergence of the Dynkin
martingale Mn and the state occupation measure Gn. We settle this in the next lemma. In par-
ticular, it shows that the fluctuations of Gn are well described by a Brownian motion whose
predictable quadratic variation process strongly depends on the deviation matrix D of the
underlying Markov chain. Its proof relies on a double application of the MCLT.

Lemma 2.2. For n → ∞, the stochastic process n−α/2Mn converges weakly to a Brownian
motion C having predictable quadratic variation process

〈C〉(t) = −(Q	diag(π ) + diag(π )Q)t.
Additionally, for n → ∞, the stochastic process Gn converges weakly to a Brownian motion B
having predictable quadratic variation process

〈B〉(t) = (
diag(π )D + D	diag(π )

)
t. (2.6)
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Proof. We first show how the second statement follows from the first. Suppose that
M̂n = n−α/2Mn converges weakly to the Brownian motion C. In this case, the process
−nα/2

∫ t
0 Q	Kn(s) ds must converge weakly to C as well, due to (2.5). Then the process

Gn(t) = nα/2
∫ t

0
(Kn(s) − π ) ds = −nα/2

∫ t

0
F	Q	Kn(s) ds

converges weakly to the Brownian motion B = F	C, so

〈B〉(t) = F	(− (Q	diag(π ) + diag(π )Q)t)F = (
diag(π )D + D	diag(π )

)
t.

For a justification of the last equality, see (2.2).
In view of the previous considerations, it suffices to prove that M̂n converges weakly to the

Brownian motion C. We would like to invoke the MCLT (cf. [16, Theorem 2.1]) to establish
this convergence. To this end, we have to verify several properties: we need ucp convergence of
the predictable quadratic variation process 〈M̂n〉 to 〈C〉, together with bounds on the maximum
jump sizes of M̂n and 〈M̂n〉.

As a first step, we use Lemma 2.1 to obtain that

〈M̂n〉(t) =
∫ t

0
diag(Q	Kn(s)) ds −

∫ t

0
Q	diag(Kn(s)) ds −

∫ t

0
diag(Kn(s))Q ds. (2.7)

Clearly, 〈M̂n〉 is continuous and the jumps of each entry of M̂n are bounded by n−α/2, so the
maximum jump size of M̂n and 〈M̂n〉 converges to 0 as n → ∞. In this case, the MCLT implies
that weak convergence of M̂n to C follows from 〈M̂n〉 converging ucp to 〈C〉.

The key to proving convergence of 〈M̂n〉 to 〈C〉 is the convergence of n−αMn to the
zero process η0. To establish the latter convergence, we again rely on the MCLT. Clearly,
〈n−αMn〉 = n−α〈M̂n〉 and 〈M̂n〉 is bounded on compact intervals, so 〈n−αMn〉 converges ucp to
η0. Additionally, the maximum jump size of n−αMn and 〈n−αMn〉 converges to 0 as n → ∞,
so the MCLT implies that n−αMn converges ucp to η0.

Recall that we aim to prove that 〈M̂n〉 converges ucp to 〈C〉. Because we showed that n−αMn

converges ucp to η0 and Kn is bounded by 1, it follows from the definition of Mn in (2.3) that

−
∫ t

0
F	Q	Kn(s) ds (2.8)

converges ucp to η0, too. From the matrix equalities related to the deviation matrix D and the
fundamental matrix F we get

F	Q	Kn(s) = (QF)	Kn(s) = (
π1	 − I

)
Kn(s) = π − Kn(s).

Combining this with the convergence of the process in (2.8), we conclude that the process∫ t
0 (Kn(s) − π ) ds converges ucp to η0. This implies that 〈M̂n〉 presented in (2.7) converges

ucp to∫ t

0
diag(Q	π ) ds −

∫ t

0
Q	diag(π ) ds −

∫ t

0
diag(π )Q ds = −(Q	diag(π ) + diag(π )Q)t.

The last equality is based on the fact that π	Q= 0. We conclude that 〈M̂n〉 converges ucp to
〈C〉, which establishes weak convergence of M̂n to C. �
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3. Main results

In this section we state and prove our main results, which we present in two theorems.
The first theorem concerns weak convergence of stochastic integrals with respect to the state
occupation measure Gn. The second theorem partly relies on the first and concerns weak con-
vergence for a rather general class of stochastic integral equations involving Gn. These results
are the key to deriving the diffusion limits for the Markov-modulated Erlang loss model and
the regime-switching CIR process, which we focus on in the next section.

3.1. Stochastic integrals with respect to the state occupation measure

Convergence of stochastic integrals with respect to a semimartingale Xn is a delicate subject
in general. Even if Hn and Xn are well-behaved deterministic processes converging uniformly
to the zero process, the integral Hn·Xn may not converge as n → ∞. Nevertheless, there are two
well-known cases in which the analysis simplifies considerably. The first case deals with Xn

being a martingale. Then Hn·Xn is typically a martingale, which may be analyzed using tools
such as the MCLT. The second case (partly covering the first) deals with Xn being P-UT. Then
(Hn, Xn) ⇒ (H, X) implies that Hn·Xn ⇒ H·X under mild conditions, according to [5, Theorem
VI.6.22].

However, if we integrate against the state occupation measure Gn, neither the first nor
the second case applies. Indeed, Gn is not a martingale and does not satisfy the P-UT prop-
erty, as we show in the appendix. We get around this problem by restricting the integrands
to be processes of finite variation that converge in a specific way. Under this restriction, we
exploit properties of both the Dynkin martingale and the state indicator function to prove weak
convergence of stochastic integrals with respect to Gn.

We proceed to develop this idea in the following theorem, which is the first main result of
this paper. The statement of the theorem also features an auxiliary process Zn. It is not relevant
for the proof, but its inclusion can be quite useful for applications.

Theorem 3.1. For fixed m ∈N, let H1,n, . . . , Hm,n, and Zn be càdlàg processes, with
H1,n, . . . , Hm,n taking values in R

a×d and Zn in R
b. Assume that these processes are adapted

to some underlying filtration with respect to which the Dynkin martingale Mn is still a mar-
tingale. Also assume that each entry of n−α/2Hk,n is a finite variation process whose total
variation process converges ucp to the zero process η0. If

(H1,n, . . . , Hm,n, Gn, Zn) ⇒ (H1, . . . , Hm, B, Z) (3.1)

for n → ∞, then

(H1,n·Gn, . . . , Hm,n·Gn, H1,n, . . . , Hm,n, Gn, Zn)

⇒ (H1·B, . . . , Hm·B, H1, . . . , Hm, B, Z)
(3.2)

for n → ∞. The process B is a Brownian motion whose predictable quadratic variation process
is given by (2.6).

Proof. We first summarize some known results. According to Lemma 2.2, the martingale
n−α/2Mn converges weakly to a Brownian motion C and the state occupation measure Gn

converges weakly to B = F	C, which has the predictable quadratic variation process given
by (2.6). We also note that Hk,n·Gn = H−

k,n·Gn, with X− being the left-hand limit of a càdlàg
process X.
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We have established a relation between Gn and n−α/2Mn in (2.5). This relation
implies that

(
H−

k,n·Gn
)
(t) =

∫ t

0
H−

k,n(s) dn−α/2F	Mn(s) + Rk,n(t),

where

Rk,n(t) = −
∫ t

0
n−α/2H−

k,n(s)F	 dKn(s).

We now verify that Rk,n converges weakly to η0. Its (i, j)th entry is given by

Rk,n,i,j(t) = −
∫ t

0
H̃k,n,i,j(s) d1{Jn(s)=j,

where H̃k,n,i,j is the (i, j)th entry of n−α/2H−
k,nF	. We denote the total variation process of

H̃k,n,i,j by Vk,n,i,j. The crucial observation here is that the process 1{Jn(s)=j} is right-continuous
and jumps between 0 and 1. Therefore, we can apply Lemma A.1 to get

sup
0≤s≤t

|
∫ s

0
H̃k,n,i,j(r) d1{Jn(r)=j}| ≤ Vk,n,i,j(t) + sup

0≤s≤t
|H̃k,n,i,j(s)|. (3.3)

The process Hk,n is of finite variation and converges weakly to Hk, while the total variation
process of n−α/2Hk,n converges ucp to η0. As a consequence, both H̃−

k,n and its total variation
process converge ucp to η0, too. Combining this with the inequality in (3.3), it follows that Rk,n

converges weakly to η0.
The previous arguments show that H−

k,n·Gn = H−
k,n·M̃n + Rk,n, where M̃n = n−α/2F	Mn.

The processes Rk,n converge weakly to η0, so it suffices to prove that

(H−
1,n·M̃n, . . . , H−

m,n·M̃n, H1,n, . . . , Hm,n, Gn, Zn) (3.4)

converges weakly to the limiting vector of stochastic integrals in (3.2).
We exploit the P-UT framework from [5, Theorem VI.6.22] to derive weak convergence of

the processes in (3.4). As a first step, recall that Mn is a locally square-integrable martingale
and that n−α/2Mn converges weakly to C, so M̃n = n−α/2F	Mn is a locally square-integrable
martingale that converges weakly to B. Moreover, the jumps of Mn are bounded by 1, so M̃n

has bounded jumps, too. Then, [5, Corollary VI.6.29] implies that the sequence of martingales
M̃n has the P-UT property.

For notational convenience, we define M̃k,n = M̃n and Bk = B for k = 1, . . . , m. For an
application of [5, Theorem VI.6.22], we have to verify that(

H1,n, . . . , Hm,n, M̃1,n, . . . , M̃m,n, Zn
)⇒ (

H1, . . . , Hm, B1, . . . , Bm, Z
)
. (3.5)

The validity of this weak convergence result follows from (2.5) and (3.1). With M̃n being
P-UT and having the convergence in (3.5) at our disposal, we invoke [5, Theorem VI.6.22]
to obtain the weak convergence of the vector of stochastic integrals in (3.4) to the limit vec-
tor of stochastic integrals in (3.2). As argued before, this establishes the weak convergence
in (3.2). �
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3.2. Stochastic integral equations involving the state occupation measure

The goal of this paper is to give practical conditions for weak convergence that can be easily
applied to relevant examples involving Markov modulation. Therefore, we also introduce the
stochastic integral equation

Yn(t) = Xn(t) +
∫ t

0
Hn(s) dGn(s) +

∫ t

0
�γn (Yn)(s) dḠn(s) +

∫ t

0
�δn (Yn)(s) ds, (3.6)

where we define Ḡn = n−α/2Gn. The process Yn takes values in R
p, while the functions �γn

and �δn map D([0, ∞),Rp) into D([0, ∞),Rp×d) and D([0, ∞),Rp), respectively; γn and δn

are parameters. We impose three natural conditions on �γn and �δn . First, we assume that these
functions are continuous with respect to the Skorokhod J1 topology. Second, we assume that
these functions are uniformly Lipschitz continuous with respect to the supremum norm, mean-
ing that sup0≤t≤T ‖�γn (x)(t) − �γn (y)(t)‖ ≤ c sup0≤t≤T ‖x(t) − y(t)‖ for all possible parameter
values γn. This implies in particular that (3.6) has a unique solution. Third, we assume that
these functions are continuous in their parameters in the sense that �γn (x) − �γ (x) → η0 in
D([0, ∞),Rp×d) if γn → γ .

The next theorem, which is the second main result of this paper, shows that Yn converges
weakly to the solution of the stochastic integral equation

Y(t) = X(t) +
∫ t

0
H(s) dB(s) +

∫ t

0
�δ(Y)(s) ds, (3.7)

provided that (Hn, Gn, Xn) ⇒ (H, B, X), γn → γ , δn → δ, and some additional mild conditions
are met. The proof relies on Theorem 3.1 as well as tightness arguments. We give examples of
the use of Theorem 3.2 in the next section.

Theorem 3.2. Impose the conditions of Theorem 3.1. Additionally, let Hn and Xn be càdlàg
processes, with Hn taking values in R

p×d and Xn in R
p. Assume that all processes involved

are adapted to some underlying filtration with respect to which the Dynkin martingale Mn

is still a martingale. Also assume that each entry of n−α/2Hn is a finite variation process
whose total variation process converges ucp to the zero process η0. If γn → γ , δn → δ, and
(H1,n, . . . , Hm,n, Hn, Gn, Xn, Zn) ⇒ (H1, . . . , Hm, H, B, X, Z) for n → ∞, then

(H1,n·Gn, . . . , Hm,n·Gn, Hn·Gn, H1,n, . . . , Hm,n, Hn, Gn, Xn, Yn, Zn)

⇒ (H1·B, . . . , Hm·B, H·B, H1, . . . , Hm, H, B, X, Y, Z),
(3.8)

for n → ∞, where Yn and Y are the unique solutions to (3.6) and (3.7), respectively. The
process B is a Brownian motion whose predictable quadratic variation process is given
by (2.6).

Proof. It follows from Theorem 3.1 that

(H1,n·Gn, . . . , Hm,n·Gn, Hn·Gn, H1,n, . . . , Hm,n, Hn, Gn, Xn, Zn)

⇒ (H1·B, . . . , Hm·B, H·B, H1, . . . , Hm, H, B, X, Z),
(3.9)

which is just the convergence in (3.8) without the processes Yn and Y . If we prove weak conver-
gence of Yn to Y , then joint convergence with (3.9) is a direct consequence of [5, Proposition
VI.2.2], because the jumps of Yn coincide with the jumps of Xn. Therefore, it remains to show
that Yn ⇒ Y .
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We complete the proof in two steps. In both steps, a crucial role is played by the stochastic
process Ŷn given by

Ŷn(t) = Xn(t) +
∫ t

0
Hn(s) dGn(s) +

∫ t

0
�γ (Ŷn)(s) dḠn(s) +

∫ t

0
�δ(Ŷn)(s) ds, (3.10)

which is the solution to (3.6) with γn replaced by γ and δn replaced by δ. In the first step, we
show that Yn is asymptotically equivalent to Ŷn if Ŷn converges weakly. In the second step, we
show that Ŷn ⇒ Y , which implies that Yn ⇒ Y due to the asymptotic equivalence.

For the first step, suppose that Ŷn converges weakly. To establish the asymptotic equivalence
of Yn and Ŷn, note that

∥∥∥Yn(t) − Ŷn(t)
∥∥∥≤

∥∥∥∥
∫ t

0

(
�γn (Yn)(s) − �γn (Ŷn)(s)

)
dḠn(s)

∥∥∥∥
+
∥∥∥∥
∫ t

0

(
�γn (Ŷn)(s) − �γ (Ŷn)(s)

)
dḠn(s)

∥∥∥∥
+
∥∥∥∥
∫ t

0

(
�δn (Yn)(s) − �δn(Ŷn)(s)

)
ds

∥∥∥∥
+
∥∥∥∥
∫ t

0

(
�δn (Ŷn)(s) − �δ(Ŷn)(s)

)
ds

∥∥∥∥
and thus ∥∥∥Yn(t) − Ŷn(t)

∥∥∥≤ I0,n(t) + c
∫ t

0

∥∥∥Yn(s) − Ŷn(s)
∥∥∥ ds

for every t ∈ [0, T], where

I0,n(t) =
∥∥∥∥
∫ t

0

(
�γn (Ŷn)(s) − �γ (Ŷn)(s)

)
dḠn(s)

∥∥∥∥+
∥∥∥∥
∫ t

0

(
�δn(Ŷn)(s) − �δ(Ŷn)(s)

)
ds

∥∥∥∥ .

The last inequality above is based on the Lipschitz property of �γn and �δn . An application of
Gronwall’s lemma (cf. [8, pp. 287–288]) shows that

sup
0≤t≤T

∥∥∥Yn(t) − Ŷn(t)
∥∥∥≤

(
sup

0≤t≤T
I0,n(t)

)
ecT .

With Ŷn converging weakly and the functions �γn and �δn being continuous in their parame-
ters, it follows that sup0≤t≤T I0,n(t) converges to 0 in probability, so Yn and Ŷn are stochastically
equivalent if Ŷn converges weakly.

For the second step, we define

I1,n(t) =
∫ t

0
�γ (Ŷn)(s) dḠn(s), I2,n(t) =

∫ t

0
�δ(Ŷn)(s) ds

to ease notation. We aim to show that Ŷn ⇒ Y , which implies that Yn ⇒ Y in view of the
asymptotic equivalence of Yn and Ŷn. We take the classical tightness approach to prove that
Ŷn ⇒ Y . First, we establish that Ŷn is stochastically bounded (meaning that sup0≤t≤T ‖Ŷn(t)‖
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is tight for every T > 0). This implies stochastic boundedness of I1,n and I2,n. Using this, we
argue that I1,n and I2,n are C-tight, from which we derive the tightness of Ŷn. Finally, we prove
that every converging subsequence of Ŷn converges weakly to Y , demonstrating that Ŷn ⇒ Y .

We start by establishing stochastic boundedness of Ŷn. The Lipschitz property of �γ and
�δ implies that

‖Ŷn(t)‖ ≤ ‖Xn(t)‖ + ‖
∫ t

0
Hn(s) dGn(s)‖ +

∫ t

0

∥∥�γ (Ŷn)(s)(Kn(s) − π )
∥∥ ds

+
∫ t

0

∥∥�δ(Ŷn)(s)
∥∥ ds

≤ ‖Xn(t)‖ +
∥∥∥∥
∫ t

0
Hn(s) dGn(s)

∥∥∥∥+ c
∫ t

0

(
1 + sup

0≤u≤s

∥∥Ŷn(u)
∥∥) ds.

As before, an application of Gronwall’s lemma then leads to the inequality

sup
0≤t≤T

∥∥Ŷn(t)
∥∥≤

(
sup

0≤t≤T
‖Xn(t)‖ + sup

0≤t≤T

∥∥∥∥
∫ t

0
Hn(s) dGn(s)

∥∥∥∥+ cT

)
ecT ,

so

P

(
sup

0≤t≤T

∥∥Ŷn(t)
∥∥> a

)
≤ P

((
sup

0≤t≤T
‖Xn(t)‖ + sup

0≤t≤T

∥∥∥∥
∫ t

0
Hn(s) dGn(s)

∥∥∥∥+cT

)
ecT > a

)
.

The probability on the right-hand side can be made arbitrarily small uniformly in n by taking
a large enough, because Xn and Hn·Gn converge weakly and are therefore tight. Consequently,
sup0≤t≤T

∥∥Ŷn(t)
∥∥ is tight and thus Ŷn is stochastically bounded. The Lipschitz property of �γ

and �δ implies that �γ (Ŷn) and �δ(Ŷn) are stochastically bounded as well.
It also follows from the previous arguments that the processes I1,n and I2,n are stochastically

bounded. We now argue that these processes are C-tight. For ε > 0, note that

P

(
sup

t1,t2∈[0,T]
0<t2−t1<ε

‖I1,n(t2) − I1,n(t1)‖ > a

)
≤ P

(
sup

0≤t≤T

∥∥�γ (Ŷn)(t)
∥∥> b

)

+ P

(
sup

t1,t2∈[0,T]
0<t2−t1<ε

∫ t2

t1

∥∥�γ (Ŷn)(s)(Kn(s) − π )
∥∥ ds > a; sup

0≤t≤T

∥∥�γ (Ŷn)(t)
∥∥≤ b

)
.

Since �γ (Ŷn) is stochastically bounded, the first term on the right-hand side can be made
arbitrarily small uniformly in n by choosing b large enough. For fixed b, the second term
equals zero for each n for small enough ε. Consequently, the term on the left-hand side can be
made arbitrarily small uniformly in n by choosing ε small enough. Together with I1,n being
stochastically bounded, this means that I1,n is C-tight (cf. [5, Proposition VI.3.26]). Analogous
arguments show that I2,n is C-tight.

The next step is to derive the tightness of Ŷn. The processes Xn and Hn·Gn converge weakly
to X and H·B, so Xn and Hn·Gn are tight. Since Hn·Gn has a continuous limit by Theorem 3.1,
we know that Hn·Gn is also C-tight. With Xn being tight and Hn·Gn, I1,n, and I2,n being C-tight,
it follows from [5, Lemma VI.3.32] that Ŷn = Xn + (Hn·Gn) + I1,n + I2,n is tight with respect
to the Skorokhod J1 topology.
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Knowing that Ŷn is tight, it remains to verify that Y is the unique limit point of Ŷn. We take
an arbitrary weakly converging subsequence of Ŷn (which we also denote by Ŷn for simplicity)
having limit point Ỹ . Now consider the terms on the right-hand side of (3.10). By the J1 con-
tinuity of �γ and �δ , the processes �γ (Ŷn) and �δ(Ŷn) converge weakly to �γ (Ỹ) and �δ(Ỹ),
which implies that I2,n converges weakly to

∫ t
0 �δ(Ỹ)(s) ds, while I1,n converges weakly to η0

by Lemma A.2. Consequently, the right-hand side of (3.10) converges to the right-hand side
of (3.7) with Y replaced by Ỹ , which implies that the limit point Ỹ satisfies (3.7). Thus, every
limit point of Ŷn satisfies (3.7). Because the integral equation (3.7) has a unique solution, we
conclude that Ŷn converges weakly to the unique solution Y of (3.7). �

4. Applications

In this section we present two applications of our main results as formulated in Theorems
3.1 and 3.2. The purpose of these examples is to demonstrate that the main results can be
applied to a wide range of models. The first example establishes diffusion limits for the
Markov-modulated Erlang loss model as well as related models, which are finite-variation pro-
cesses with a reflecting boundary. The second example establishes a small-noise limit for the
Markov-modulated Cox–Ingersoll–Ross (CIR) process, which is not a finite-variation process.
Our main results are instrumental in proving both diffusion limits: each example requires weak
convergence of a stochastic integral Hn·Gn to H·G, as well as weak convergence of the solution
of (3.6) to the solution of (3.7). The assumptions of the main results are readily verified in both
examples.

We use the following notation and conventions throughout this section. Given a function
λ : {1, . . . , d} →R, we identify it with a d-dimensional column vector that we also denote
by λ. Additionally, we define λπ = λ	π . This quantity may be interpreted as a time-averaged
version of λ, because

∫ t
0 λ(Jn(s)) ds converges to λπ t by Lemma 2.2.

4.1. Markov-modulated many-server queues with finite waiting room

We are interested in a class of many-server queues with a finite or infinite waiting room.
An important example is the Erlang loss model, which is the special case in which there is no
waiting room. We study such systems under Markov modulation, meaning that the parameters
depend on an independently evolving Markov chain (also referred to as the background pro-
cess). The background process represents an external environment to which the system reacts,
for instance by having an extremely large arrival rate if the environment is in some emergency
state.

We now describe the model in more detail. We consider a queueing system with n ∈N

servers and a waiting room of size mn ∈ {0} ∪N∪ {∞}. We focus on the scenario in which the
parameters of the queueing system are influenced by an independent background process Jn,
where Jn is the usual Markov chain with state space {1, . . . , d}, irreducible generator matrix
nQ, and stationary distribution π . While the background process is in state i, jobs arrive at the
system according to a Poisson process with rate λn(i) and servers work at speed μ(i). Each job
has an independent service requirement that has an exponential distribution with unit mean. If
a job arrives and there are less than n jobs in service, then it goes into service immediately. If
all servers are busy when a new job arrives, then there are two possible cases. In the first case,
there are less than mn jobs waiting and the new job enters the system to wait for service. In
the second case, there are already mn jobs waiting and the new job is rejected from the system.
Once a job finishes service, it leaves the system. If there are jobs waiting for service when a
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job finishes service, then one of those jobs is sent to the corresponding server on a first-come,
first-served basis.

We denote the number of jobs in the system with n servers at time t by Qn(t) and
represent it as

Qn(t) = Qn(0) + A

( ∫ t

0
λn(Jn(s)) ds

)
− S

( ∫ t

0
μ(Jn(s))(Qn(s) ∧ n) ds

)
− Un(t).

Here, Qn(0) is an independent random variable denoting the initial number of jobs in the sys-
tem, while A and S are independent, unit-rate Poisson processes. The loss process Un records
the number of arrivals if there are mn jobs waiting for service. It may be interpreted as the
downward-reflecting barrier at n + mn for Qn, meaning that Un is the unique, nonnegative,
nondecreasing stochastic process such that Qn(t) ≤ n + mn and

∫∞
0 1{Qn(s)<n+mn} dUn(s) = 0

(cf. [12]).
We consider this system in the quality-and-efficiency-driven (QED) or Halfin–Whitt regime

(cf. [12]), suitably modified to incorporate the Markov modulation (cf. [2, 7, 11]). More
specifically, we impose the following condition.

Condition 4.1. As n → ∞, the initial condition
√

n
( 1

n Qn(0) − 1
)

converges in distribution to

a random variable X (0). Additionally, λn(i)
n → λ̄(i) for every i ∈ {1, . . . , d}, and

√
n

d∑
i=1

(
μ(i) − λn(i)

n

)
π (i) → γμπ, (4.1)

where γ ∈R is fixed. The waiting room mn satisfies mn√
n

→ κ for some κ ∈ [0, ∞].

This condition reduces to the standard QED regime if there is no modulation and thus d = 1.
Indeed, in that case, (4.1) states that

√
n
(
μ − λn

n

)→ γμ for certain real-valued variables λn,
μ, and γ , which implies in particular that λ̄ = μ.

The convergence in (4.1) trivially holds if the system operates in the standard QED regime
for any state of the background process, meaning that

√
n
(
μ(i) − λn(i)

n

)
converges to a constant

for every i ∈ {1, . . . c, d}. However, (4.1) may also hold if the system does not operate in the
standard QED regime for certain states of the background process. This is the most interesting
scenario, because the system switches between QED behavior and non-QED behavior.

We now derive the diffusion limit for the scaled and centered queue content process Q̂n =√
n
( 1

n Qn − 1
)

in the QED regime formulated in Condition 4.1, utilizing the main results. The
limit coincides with the usual diffusion limit for nonmodulated many-server queues in the
QED regime (cf. [12]) if the system operates in the standard QED regime for any state of the
background process. However, if the system does not operate in the standard QED regime for
a certain state of the background process, then the limit includes an additional Brownian term
capturing the extra variability introduced by the modulation.

Theorem 4.1. Under Condition 4.1, the process Q̂n converges weakly to the solution of the
stochastic integral equation

Q̂(t) = X(0) − γμπ t +
√

λ̄π + μπ W(t) +
∫ t

0
(λ̄ − μ)	 dB(s) −

∫ t

0
μπ (Q̂ ∧ 0) ds − Û(t),

where Û is the downward-reflecting barrier at κ for Q̂. The processes B and W are independent
Brownian motions, where W is a standard Brownian motion and the predictable quadratic
variation process of B is given by (2.6).
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Proof. The first step is to rewrite Q̂n in the form required for an application of Theorem 3.2.
Observe that

√
n

(
1

n
Qn(t) − 1

)
= √

n

(
1

n
Qn(0) − 1

)

+ √
n

(
1

n
A

(
n
∫ t

0

λn(Jn(s))

n
ds

)
−
∫ t

0

λn(Jn(s))

n
ds

)

+ √
n

( ∫ t

0

λ	
n

n
Kn(s) ds −

∫ t

0

λ	
n

n
π ds

)
+ √

n
∫ t

0

λ	
n

n
π ds

− √
n

(
1

n
S

(
n
∫ t

0
μ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds

)

−
∫ t

0
μ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds

)

− √
n

( ∫ t

0
μ(Jn(s))

(
1

n
Qn(s) ∧ 1

)
ds −

∫ t

0
μ(Jn(s)) ds

)

− √
n

( ∫ t

0
μ	Kn(s) ds −

∫ t

0
μ	π ds

)

− √
n
∫ t

0
μ	π ds − 1√

n
Un(t),

so

Q̂n(t) = Xn(t) +
∫ t

0

(
λn

n
− μ

)	
dGn(s) −

∫ t

0
(Q̂n(s) ∧ 0)μ	 dḠn(s)

−
∫ t

0
μπ (Q̂n(s) ∧ 0) ds − 1√

n
Un(t)

with

Xn(t) = Q̂n(0) + Ân(τ1,n(t)) − Ŝn(τ2,n(t)) + √
n

(
λn

n
− μ

)	
π t.

Here, we denote Ân(t) = √
n
( 1

n A(nt) − t
)

and Ŝn(t) = √
n
( 1

n S(nt) − t
)
. The random time

changes τ1,n and τ2,n are given by τ1,n(t) = ∫ t
0

λn(Jn(s))
n ds and τ2,n(t) = ∫ t

0 μ(Jn(s))( 1
n Qn(s) ∧ 1

)
ds.

Theorem 3.2 is not directly applicable to Q̂n, due to the presence of the process 1√
n

Un. We
get around this issue via the application of a standard method (cf. [12, 14]). The key observa-
tion here is that 1√

n
Un is the downward-reflecting barrier at κ̂n = mn√

n
for Q̂n, since Un is the

downward-reflecting barrier at n + mn for Qn.
Define the functions �δ and �δ mapping D([0, ∞),R) into D([0, ∞),R) via �δ(x)(t) =

sup0≤s≤t ((x(s) − δ) ∨ 0) and �δ(x)(t) = x(t) − �δ(x)(t). Both �δ and �δ are Lipschitz
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continuous in the supremum norm and in the J1 metric for a fixed boundary level δ (cf. [15,
Theorem 13.5.1]). A minor variation on the arguments in [14] establishes that

Yn(t) = Xn(t) +
∫ t

0

(
λn

n
− μ

)	
dGn(s) −

∫ t

0
(�κ̂n(Yn)(s) ∧ 0)μ	 dḠn(s)

−
∫ t

0
μπ (�κ̂n(Yn)(s) ∧ 0) ds

is a well-defined stochastic process and that �κ̂n (Yn) = Q̂n. If Yn converges weakly to some
limiting process Y , then �κ̂n (Yn) converges weakly to �κ (Y), since κ̂n → κ and the map �δ(x)
is continuous both in δ and in x. Consequently, to prove weak convergence of Q̂n, it suffices to
prove weak convergence of Yn.

The process Yn has exactly the form required for an application of Theorem 3.2. Clearly, Yn

satisfies (3.6) with Hn = (
λn
n − μ

)	, �γn = �κ̂n = (�κ̂n ∧ 0)μ	, and �δn = �κ̂n = μπ (�κ̂n∧0).
The continuity properties of �γn and �δn follow from [15, Chapter 13], so it remains to
verify weak convergence of (Hn, Gn, Xn). Since Hn converges to the constant λ̄ − μ by
Condition 4.1, we only have to show weak convergence of (Gn, Xn).

We prove the required weak convergence of (Gn, Xn) as follows. The intial condition Q̂n(0)
is independent and converges to some random variable X (0), while

√
n
(

λn
n − μ

)	
π converges

to a constant. Therefore, weak convergence of (Gn, Xn) follows from weak converges of (Ân ◦
τ1,n, Ŝn ◦ τ2,n, Gn), which in turn follows from weak convergence of (Ân, τ1,n, Ŝn, τ2,n, Gn)
by the continuous mapping theorem (CMT) if Ân and Ŝn converge to continuous processes
(cf. [15, Theorem 13.2.2]).

The processes Ân and Ŝn are independent, scaled, and centered standard Poisson pro-
cesses, so they converge jointly to two independent, standard Brownian motions W1 and
W2. Additionally, Gn converges to a Brownian motion B that is independent of W1 and W2.
Therefore, the required convergence of (Ân, τ1,n, Ŝn, τ2,n, Gn) follows if τ1,n and τ2,n both
converge ucp to a deterministic limit.

To prove this convergence of τ1,n and τ2,n, we apply Theorem 3.2 to the process Ȳn = 1√
n

Yn.

Writing κ̄n = 1√
n
κ̂n, we get

Ȳn(t) = 1√
n

Q̂n(0) + 1√
n

Ân(τ1,n(t)) − 1√
n

Ŝn(τ2,n(t)) +
(

λn

n
− μ

)	
π t

+
∫ t

0

1√
n

(
λn

n
− μ

)	
dGn(s) −

∫ t

0
(�κ̄n(Ȳn)(s) ∧ 0)μ	 dḠn(s)

−
∫ t

0
μπ (�κ̄n(Ȳn) ∧ 0) ds.

The processes 1√
n

Ân and 1√
n

Ŝn both converge ucp to η0. With τ1,n and τ2,n being bounded

on compact intervals, it follows that 1√
n

Ân ◦ τ1,n and 1√
n

Ŝn ◦ τ2,n converge ucp to η0, too.

Condition 4.1 implies that 1√
n

Q̂n(0) converges to 0 in probability, and that both
(

λn
n − μ

)	
π

and 1√
n

(
λn
n − μ

)
converge to 0. Also, κ̄n converges to 0. Consequently, Theorem 3.2 guarantees

weak convergence of Ȳn to the unique process Ȳ satisfying Ȳ(t) = − ∫ t
0 μπ (�0(Ȳ) ∧ 0) ds. The

zero process is the unique solution of this equation, so Ȳ = η0 and Ȳn converges ucp to η0.
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Recall that we aim to prove that τ1,n and τ2,n both converge ucp to a deterministic limit in
order to obtain weak convergence of (Ân, τ1,n, Ŝn, τ2,n, Gn). By Condition 4.1 and Lemma 2.2,
the process τ1,n converges ucp to the deterministic function τπ

1 with τπ
1 (t) = λ̄π t. It follows

from Lemma 2.2 and Ȳn converging ucp to η0 that the process τ2,n converges ucp to the
deterministic function τπ

2 with τπ
2 (t) = μπ t.

We conclude that (Ân, τ1,n, Ŝn, τ2,n, Gn) converges weakly to (W1, τπ
1 , W2, τπ

2 , B). This

implies weak convergence of (Ân ◦ τ1,n, Ŝn ◦ τ2,n, Gn) to (W1 ◦ τπ
1 , W2 ◦ τπ

2 , B) by the CMT,

where we note that W1 ◦ τπ
1 and W2 ◦ τπ

2 have the same law as
√

λ̄π W1 and
√

μπ W2. As argued
before, this proves weak convergence of (Gn, Xn) to (B, X), where the process X is given
by X(t) = X(0) +

√
λ̄π W1 − √

μπ W2 − γμπ t. Then, Theorem 3.2 implies that Yn converges
weakly to the process Y satisfying

Y(t) = X(t) +
∫ t

0
(λ̄ − μ)	 dB(s) −

∫ t

0
μπ (�κ (Y) ∧ 0) ds.

Here, the process B is the Brownian motion given in the theorem and X (0), W1, W2, and B are
independent.

Deriving the weak convergence of the scaled and centered queue content process Q̂n =
�κn (Yn) is now a simple matter of applying the CMT. It follows that Q̂n converges weakly to
the process Q̂ = �κ (Y), so Q̂ satisfies the stochastic integral equation

Q̂(t) = X(t) +
∫ t

0
(λ̄ − μ)	 dB(s) −

∫ t

0
μπ (Q̂ ∧ 0) ds − Û(t),

with Û being the downward-reflecting barrier at κ for Q̂. �

4.2. The Markov-modulated CIR process

The previous example concerns the Markov-modulated Erlang loss model, which is a
finite-variation stochastic process with reflection. In the next example, we focus on a pro-
cess that does not have sample paths of finite variation, namely the CIR process under Markov
modulation.

In interest rate models, the CIR process is often used to model the short rate. The CIR
process R is defined via the stochastic integral equation

R(t) = x + λt − μ

∫ t

0
R(s) ds + σ

∫ t

0

√
R(s) dW(s),

where λ and μ are positive constants and σ is some real number. The process W is a standard
Brownian motion. This conventional CIR process with fixed parameters may be enhanced with
a modulating process that makes the parameters change stochastically over time. In a financial
context, this is often referred to as regime switching. An example is switching from a bull
market (good economic conditions) to a bear market (bad economic conditions), which may
influence the volatility of the short rate, for instance. Another example may be an influential
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person tweeting messages at random: parameters change if a tweet is posted, but go back to
their original values once the tweet loses its effect.

In this example, we consider the following Markov-modulated CIR process with small noise
and study its scaling limit. Let λ, μ, and σ be real-valued functions on {1, . . . , d}, with λ and
μ taking positive values. Let x ≥ 0 be the initial condition and fix α > 0. We are interested in
the process Rn defined via

Rn(t) = x +
∫ t

0
(λ(Jn(s)) − μ(Jn(s))Rn(s)) ds + 1√

n

∫ t

0
σ (Jn(s))

√
Rn(s) dW(s),

where Jn is the usual Markov chain with state space {1, . . . , d}, irreducible generator matrix
nαQ, and stationary distribution π . A well-known property of the nonmodulated CIR process
is that it is nonnegative if it starts from a nonnegative position (cf. [4]). Clearly, this property
carries over to its Markov-modulated version, so Rn is nonnegative.

We use the parameter α to reflect that the background process may operate on a different
time scale than the CIR dynamics. For instance, switches between a bull market and a bear
market occur on a much slower time scale than fluctuations in the interest rate, which can be
modeled by taking α < 1. The value of α has a significant influence on the behavior of Rn.
Roughly speaking, the fluctuations of Rn are dominated by the dynamics on the slowest time
scale. If α < 1, then the background process operates on the slowest time scale and the fluctu-
ations of Rn are dominated by the fluctuations of Jn. If α > 1, then the CIR dynamics operates
on the slowest time scale and dominates the fluctuations of Rn, with the background process
averaging out. The boundary case α = 1 incorporates the effects of both the CIR dynamics and
the background process, leading to the most complicated behavior.

As mentioned, our aim is to find a scaling limit for the Markov-modulated CIR process Rn.
We consider the case in which n becomes large, so the noise term becomes small and the back-
ground process switches states relatively rapidly. The next theorem presents the corresponding
diffusion limit for Rn. In its proof, we first show that Rn converges ucp to the unique solution r
of the integral equation

r(t) = x + λπ t − μπ

∫ t

0
r(s) ds.

We then proceed by studying the fluctuations of Rn around this limit and prove via an applica-
tion of the main results that R̂n = nβ (Rn − r) converges weakly to a diffusion process, where
β = min{1/2, α/2}.

We apply the scaling factor nβ instead of the usual
√

n to account for the influence of the
background process. As indicated earlier, the time scale of the background process is relatively
slow compared to the time scale of the CIR dynamics if α < 1, in which case the fluctuations of
Rn are dominated by the fluctuations of the background process. Because the fluctuations of the
background process are of order n−α/2, we have to use the scaling nβ to obtain a nondegenerate
limit.

The limiting diffusion of R̂n depends explicitly on properties of the background process and
on the value of α. If α < 1, then the small-noise term disappears and the diffusion part of the
limiting process is completely determined by the fluctuations of the background process. If
α > 1, then the background process averages out and the diffusion part arises from the small-
noise term. As explained earlier, the boundary case α = 1 incorporates both effects.
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Theorem 4.2. The process R̂n converges weakly to the Ornstein–Uhlenbeck process Y
satisfying

Y(t) = 1{α≤1}
∫ t

0
(λ − r(s)μ)	 dB(s)

+ 1{α≥1}
∫ t

0

√
σ	diag(π )σ

√
r(s) dW(s) − μπ

∫ t

0
Y(s) ds,

(4.2)

The processes B and W are independent Brownian motions, where W is a standard Brownian
motion and the predictable quadratic variation process of B is given by (2.6).

Proof. We start by showing that Rn converges ucp to r. Given Rn, it is convenient to define

R∗
n(t) = x +

∫ t

0
(λ(Jn(s)) − μ(Jn(s))Rn(s)) ds,

R†
n(t) = 1√

n

∫ t

0
σ (Jn(s))

√
Rn(s) dW(s),

so Rn may be represented as Rn = R∗
n + R†

n. We also define R̄n = Rn − r. Then, for fixed T > 0,
some straightforward calculations lead to the inequality

E sup
0≤s≤t

|R̄n(s)| ≤EĪ(1)
n (T) +EĪ(2)

n (T) +E sup
0≤s≤t

|R†
n(s)| + c

∫ t

0
E sup

0≤u≤s
|R̄n(u)| ds (4.3)

for each t ∈ [0, T], where

Ī(1)
n (t) = sup

0≤s≤t

∣∣∣∣
∫ s

0
(λ(Jn(u)) − λπ ) du

∣∣∣∣ ,
Ī(2)
n (t) = sup

0≤s≤t

∣∣∣∣
∫ s

0
r(u)(μ(Jn(u)) − μπ ) du

∣∣∣∣ .

The expectations EĪ(1)
n (T) and EĪ(2)

n (T) converge to 0, due to Theorem 3.1 and the fact that
both random variables are bounded. We use here that r is of finite variation.

We would like to get a bound on E sup0≤s≤t |R†
n(s)|, so that we can apply Gronwall’s lemma

(cf. [8, pp. 287–288]) to the inequality in (4.3). To this end, we rely on the Burkholder–Davis–
Gundy inequalities (cf. [8, Theorem 3.3.28]) as well as Jensen’s inequality to obtain that

E sup
0≤s≤t

|R†
n(s)| ≤ c√

n

√∫ t

0
r(s) +E

∫ t

0
|R̄n(s)| ds

≤ c√
n

(
1 +

∫ t

0
r(s) +

∫ t

0
E sup

0≤u≤s
|R̄n(u)| ds

)
.

Plugging this in into (4.3) and applying Gronwall’s lemma, we conclude that the expecta-
tion E sup0≤s≤t |R̄n(s)| =E sup0≤s≤t |Rn(s) − r(s)| converges to 0 as n → ∞. This implies in
particular that Rn converges ucp to r.

The next step is to study the fluctuations of the Markov-modulated CIR process Rn around
its limit r. More precisely, we would like to characterize the asymptotic behavior of R̂n =
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nβ (Rn − r). Recall that the state occupation measure Gn related to the background process Jn

converges weakly to a Brownian motion B with predictable quadratic variation process 〈B〉
given by (2.6). Because the background process and the Brownian motion W are independent,
we may assume that B and W are independent.

To study the fluctuations of Rn around r, we consider the process R̂n = nβ (Rn − r), which
satisfies

R̂n(t) = nβ−1/2
∫ t

0
σ (Jn(s))

√
Rn(s) dW(s) + nβ−α/2

∫ t

0

(
λ − r(s)μ

)	 dGn(s)

−
∫ t

0
R̂n(s)μ	 dḠn(s) − μπ

∫ t

0
R̂n(s) ds.

To be able to apply Theorem 3.2 to R̂n, it suffices to show weak convergence of (Hn, Gn, Xn),
where

Hn(t) = nβ−α/2(λ − r(t)μ)	, Xn(t) = nβ−1/2
∫ t

0
σ (Jn(s))

√
Rn(s) dW(s).

We first observe that Hn is a deterministic process of finite variation and converges uniformly
on compacts to the process H given by H(t) = 1{α≤1}(λ − r(t)μ)	. Therefore, we only have
to prove weak convergence of (Xn, Gn), which follows from a straightforward application of
Theorem 3.1 combined with the MCLT, as we demonstrate next.

We know from (2.5) that Gn is equal to the locally square-integrable martingale n−1/2F	Mn

plus a term that converges uniformly to η0, so it suffices to show that (Xn, n−1/2F	Mn)
converges weakly. This is a local martingale whose maximum jump size converges to 0,
so weak convergence of (Xn, n−1/2F	Mn) follows from its predictable quadratic covariation
process converging ucp to a deterministic function (cf. [16]). Since Xn is a stochastic inte-
gral with respect to W and the processes W and n−1/2F	Mn are independent, we know that
〈Xn, n−1/2F	Mn〉 = η0, so we only have to show convergence of 〈Xn〉 and 〈n−1/2F	Mn〉.
In Lemma 2.2 we established ucp convergence of 〈n−1/2F	Mn〉 to 〈B〉. It remains to prove
convergence of 〈Xn〉.

Note that Xn is a continuous local martingale with 〈Xn〉 given by

〈Xn〉(t) = n2β−1
∫ t

0
σ	diag(Kn(s))σRn(s) ds

= n2β−1
∫ t

0
σ	diag(Kn(s))σ (Rn(s) − r(s)) ds + n2β−1

∫ t

0
σ	diag(Kn(s))σ r(s) ds.

The penultimate integral above converges ucp to η0, due to Rn converging ucp to r. The last
integral above converges ucp to

1{α≥1}
∫ t

0
σ	diag(π )σ r(s) ds, (4.4)

due to Theorem 3.1 and 2β − 1 being equal to min{0, (α − 1)/2}. We use here that r is of
finite variation. Consequently, 〈Xn〉 converges ucp to the process in (4.4), too. The MCLT then
implies that Xn converges weakly to a Brownian motion whose predictable quadratic variation
process is given by (4.4).

The previous arguments establish weak convergence of (Xn, Gn). Now applying Theorem
3.2 to R̂n, we conclude that R̂n converges weakly to the process Y given by (4.2). �
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5. Summary and concluding remarks

We investigated weak convergence of stochastic integrals with respect to the state occu-
pation measure of a Markov chain. The motivation behind this was that standard results do
not apply to this elementary yet important case. Indeed, the state occupation measure is not a
martingale nor has the P-UT property. One of the underlying problems turned out to be that
the total variation of the integrand may grow too quickly. Relying on this insight, we formu-
lated a condition for the total variation of the integrand. In the first main result, we proved
that stochastic integrals with respect to the state occupation measure converge weakly under
this condition. We extended this to a class of stochastic integral equations in the second main
result.

We demonstrated the relevance of these results by applying them to two examples. The first
concerned a finite-variation process with a reflecting boundary, whereas the second concerned
a diffusion process whose sample paths were not of finite variation. Clearly, the main results
can also be used to investigate a large class of related models involving Markov modulation,
such as single-server queues, networks of many-server queues, and multidimensional diffusion
processes.

There are several other possible directions for further research. An interesting question is
whether it is possible to derive similar results in the Skorokhod M1 topology, which is weaker
than the Skorokhod J1 topology. The results in this paper require, for instance, that the arrival
process for the Erlang loss model converges weakly in the J1 topology, but convergence in
the M1 topology is more natural for certain applications (cf. [13]). This appears to be a little-
explored area and may necessitate a different approach. Finally, we remark that the main results
are only valid for finite-dimensional processes. Since many models feature infinite-dimensional
processes, it would also be interesting to see whether the main results can be extended to that
setting.

Appendix A. Auxiliary results

Weak convergence of stochastic integrals Hn·Gn is the central problem of this paper. As
indicated earlier, the so-called P-UT property is often the key to establishing such convergence
results. In this appendix we explore the P-UT property and its relation to the problem at hand.
First, we give a formal definition of the P-UT property. Second, we sketch an example showing
that Gn does not have the P-UT property. This example also indicates why Gn does not have
the P-UT property. Third, we derive a bound for a class of Lebesgue–Stieltjes integrals that
are closely connected to integrals with respect to Gn. This bound provides another perspective
on the reason why Gn does not have the P-UT property. Moreover, it suggests what conditions
we have to impose on the integrand Hn to guarantee weak convergence of Hn·Gn. We end this
appendix with a continuity result for state occupation measures.

A.1. The state occupation measure and the P-UT property

Let Xn be a sequence of one-dimensional semimartingales relative to a filtration F. We say
that Xn has the P-UT property, or simply that Xn is P-UT, if the collection {|(Hn·Xn)(t)| : n ∈
N, Hn is F-predictable with |Hn| ≤ b} is tight for all t > 0 and b > 0. We say that a sequence
Xn of d-dimensional semimartingales is P-UT if each of its components is P-UT (cf. [5, p. 377]
and [5, p. 381]). The acronym P-UT stands for ‘predictably uniformly tight’; see [5, 6, 9] for
more details.
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The main reason for introducing the P-UT property can be found in [5, Theorem VI.6.22].
Loosely speaking, this result states that Hn·Xn ⇒ H·X if (Hn, Xn) ⇒ (H, X) and Xn is P-UT.
This is exactly the type of result we are interested in, with the semimartingale Xn being the
state occupation measure Gn. However, Gn is not P-UT, so this result is not applicable if we
integrate against Gn.

The following arguments demonstrate that the state occupation measure Gn is not P-UT.
Recall the connection between Gn and n−α/2Mn established in (2.5). The process n−α/2Mn is a
locally square-integrable martingale with bounded jumps and converges weakly to a Brownian
motion by Lemma 2.2, so n−α/2Mn is P-UT according to [5, Corollary VI.6.29]. In turn, this
implies that Gn is P-UT if and only if n−α/2Kn is P-UT (cf. [5, p. 377]).

Knowing this, we aim to show that n−α/2Kn (and thus Gn) is not P-UT by finding an inte-
gral H	

n ·n−α/2Kn that grows without bound as n → ∞, even though Hn is a bounded and
predictable process as in the definition of the P-UT property. Define Hn as the left-continuous
version of 1 − Kn, so Hn(0) = 1 − Kn(0) and Hn(t) = 1 − Kn(t−) for t > 0. Because Hn is
bounded and predictable, the family {(H	

n ·n−α/2Kn)(t) | n ∈N} must be tight for each t > 0
if n−α/2Kn is P-UT. However, the random variable (H	

n ·Kn)(1) counts the number of jumps
that Jn makes in the time interval [0, 1]. Because Jn is a Markov chain with generator matrix
nαQ, its number of jumps in [0, 1] is of order nα . Consequently, (H	

n ·n−α/2Kn)(1) is of order
nα/2, so it does not converge and {(H	

n ·n−α/2Kn)(1) | n ∈N} is not tight. We conclude that Gn

cannot be P-UT.
The underlying problem here is that a Lebesgue–Stieltjes integral may not converge if the

total variation of the integrand or the integrator grows without bound. Because the total vari-
ation of the integrator Gn is a given, this suggests that we have to put restrictions on the total
variation of the integrand Hn if we want the stochastic integral Hn·Gn to converge.

A.2. A bound for Lebesgue–Stieltjes integrals

Here, we derive an upper bound for a class of Lebesgue–Stieltjes integrals. This result is
closely related to the previous insight, which connects Gn not being P-UT to the behavior
of Lebesgue–Stieltjes integrals. The upper bound is important in two ways. First, it indicates
what type of restrictions we should impose on the supremum and on the total variation of an
integrand Hn if we would like the stochastic integral Hn·Gn to converge. Second, we use this
result to prove Theorem 3.1, which concerns weak convergence of stochastic integrals with
respect to Gn.

Lemma A.1. Let y : [0, ∞) →R be a function of bounded variation and let x : [0, ∞) →
{0, 1} be a right-continuous function. Then the Lebesgue–Stieltjes integral y·x satisfies

sup
0≤t≤T

∣∣∣∣
∫ t

0
y(s) dx(s)

∣∣∣∣≤ vy(T) + sup
0≤t≤T

|y(t)|

for every fixed T > 0, where vy denotes the total variation function of y.

Proof. To prove the lemma, it suffices to show that∣∣∣∣
∫ t

0
y(s) dx(s)

∣∣∣∣≤ vy(t) + sup
0≤s≤t

|y(s)| (A.1)

for every fixed t ≥ 0. Note that x has alternating jumps of size +1 and −1, and is constant
between jumps. Thus, if x has at most one jump in [0, t], then (A.1) holds trivially.
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Suppose that x has exactly 2m jumps in [0, t] (where m ∈N) and denote the jump times
by 0 < s1 < . . . < s2m ≤ t. If the first jump equals +1, then

∫ t
0 y(s) dx(s) =∑m−1

k=0 (y(s2k+1) −
y(s2k+2)), so

∣∣∣∣
∫ t

0
y(s) dx(s)

∣∣∣∣≤
m−1∑
k=0

|y(s2k+2) − y(s2k+1)| ≤ vy(t). (A.2)

If the first jump equals −1, then
∫ t

0 y(s) dx(s) =∑m−1
k=0 ( − y(s2k+1) + y(s2k+2)), so (A.2) holds

in this case, too. Hence, (A.1) holds if x has an even number of jumps.
Suppose that x has exactly 2m + 1 jumps in [0, t] (where m ∈N) and denote the jump

times by 0 < s1 < . . . < s2m < s2m+1 ≤ t. Taking δ = (s2m+1 − s2m)/2, we get
∫ t

0 y(s) dx(s) =∫ s2m+δ

0 y(s) dx(s) + ∫ t
s2m+δ

y(s) dx(s) and

∣∣∣∣
∫ s2m+δ

0
y(s) dx(s) +

∫ t

s2m+δ

y(s) dx(s)

∣∣∣∣≤ vy(s2m) + |y(s2m+1)| ≤ vy(t) + sup
0≤s≤t

|y(s)|.

Consequently, (A.1) also holds if x has an odd number of jumps. �

A.3. A convergence result for deterministic state occupation measures

Here, we state an elementary convergence result for deterministic state occupation measures
and outline its proof, which is closely related to well-known results for absolutely continuous
functions. We denote by V ⊂D([0, ∞); R) the collection of all absolutely continuous functions
f that admit a representation f (t) = ∫ t

0 g(s) ds, where g ∈W . The collection W comprises all
functions g ∈D([0, ∞); R) with g(t) ∈ [ − 1, 1]. To each f ∈ V corresponds a unique g ∈W
such that f (t) = ∫ t

0 g(s) ds, and we denote this unique function g by ḟ . In the special case that ḟ
takes values in {0, 1}, we may interpret ḟ as a state indicator function and f as the corresponding
state occupation measure.

Lemma A.2. Let f , f1, f2, . . . ∈ V and h, h1, h2 ∈D([0, ∞); R). If fn → f in V and hn → h in
D([0, ∞); R) in the Skorokhod J1 topology as n → ∞, then

sup
0≤t≤T

∣∣∣∣
∫ t

0
ḟn(s)hn(s) ds −

∫ t

0
ḟ (s)h(s) ds

∣∣∣∣→ 0 (A.3)

as n → ∞ for each T > 0.

Proof. Since the functions f , f1, f2, . . . are continuous, convergence of fn → f in the
Skorokhod J1 topology is equivalent to fn → f under the supremum norm. In turn, this implies
that (A.2) holds if hn = h and h is a step function.

If hn = h but h is not a step function, then there exist step functions h̃m that converge uni-
formly to h for m → ∞. Decomposing ḟnh − ḟ h = (ḟn − ḟ )(h − h̃m) + (ḟn − ḟ )h̃m and using that
(ḟn − ḟ )(h − h̃m) converges uniformly to 0 as m → ∞, it follows that (A.3) also holds if hn = h
and h is not necessarily a step function.

Finally, in the general case that hn → h in D([0, ∞); R), we note that ḟnhn − ḟ h = ḟn(hn −
h) + (ḟnh − ḟ h). Since ḟn(hn − h) converges pointwise to 0 at all continuity points of h and is
bounded uniformly in n on compact sets, we may use the previous considerations to conclude
that (A.3) is also valid in this case. �
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This lemma is useful if we have a sequence of stochastic processes Yn ⇒ Y in D([0, ∞); R)
and a sequence of state occupation measures Xn ⇒ X in V , where X is a deterministic limit. In
this case, the CMT and the lemma together imply that Yn·Xn ⇒ Y·X.
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