Canad. Math. Bull. Vol 15 (4), 1972

INTEGRAL FUNCTIONALS IN THE DUALS OF L^{2} -SPACES(1)

BY H. W. ELLIS AND J. D. HISCOCKS

1. Introduction. Luxemburg and Zaanen [5] call an element φ of the topological dual of a normed or seminormed vector space V an integral if

$$(I\varphi)f_n \downarrow 0 \left(\text{i.e. } f_n \in V, f_n \ge f_{n+1}, \bigwedge_n f_n = 0 \right) \text{ implies } \lim_{n \to \infty} \varphi(f_n) = 0.$$

We denote the space of integrals by V^{I} . For the L^{λ} function spaces introduced by Ellis and Halperin [2] another Banach subspace of the dual emerges, namely the conjugate space L^{λ^*} which is the L^{λ} space determined by the conjugate length function $\lambda^{*} \cdot L^{\lambda^*}$ is contained in $(L^{\lambda})^{I}$ but need not coincide with it.

There are measure spaces in which, for $L^{\lambda} = L^1$, $L^{\lambda^*} \neq (L^{\lambda})^*$, $(L^{\lambda})^I$. In [3] Ellis and Snow characterized the dual of L^1 in terms of integrals with respect to collections of functions defined in terms of an arbitrary *ND*-decomposition of the measure space. The space of analogous collections of elements for an arbitrary L^{λ} will be denoted by $(L^{\lambda})^{\mathscr{A}}$ (§4 below). Always

$$L^{\lambda^*} \subset (L^{\lambda})^{\mathscr{A}} \subset (L^{\lambda})^I \subset (L^{\lambda})^*.$$

In §§3-5 the spaces L^{λ^*} , $(L^{\lambda})^{\mathscr{A}}$ and $(L^{\lambda})^I$ are related and conditions whereby each coincides with $(L^{\lambda})^*$ are given.

2. Definitions and notation. We consider an arbitrary complete measure space (X, S, μ) where S is a σ -algebra. We let M denote the measurable functions valued in the extended reals, $\mathbf{\bar{R}}$. In a partially ordered space (B, \leq) with a zero we denote by B_+ the elements $f \in B$ with $f \geq 0$. A function $\lambda: \mathbf{M}_+ \rightarrow \mathbf{\bar{R}}_+$ is called a length function [2] if

(L1) $\lambda(f) = 0$ if f(x) = 0 for almost all $x \in X$; (L2) $\lambda(f_1) \leq \lambda(f_2)$ if $f_1 \leq f_2$; (L3) $\lambda(f_1 + f_2) \leq \lambda(f_1) + \lambda(f_2)$; (L4) $\lambda(kf) = k\lambda(f)$, $k \in \mathbf{R}_+$; (L5) $f_i \uparrow_{i=1}^{\infty} f$ implies that $\lambda(f_i) \uparrow_{i=1}^{\infty} \lambda(f)$.

Received by the editors June 15, 1970 and, in revised form, January 18, 1971. ⁽¹⁾ Work supported in part by National Research Council Grant 3071. For $f \in \mathbf{M}$ we define $\lambda(f) = \lambda(|f|)$ and set $\mathscr{L}^{\lambda} = \{f \in \mathbf{M}^* : \lambda(f) < \infty\}$ (where \mathbf{M}^* denotes the finite real valued elements of \mathbf{M}). On \mathscr{L}^{λ} , (L1), (L3) and (L4) imply that λ defines a seminorm. Making identifications modulo λ -null functions gives a space L^{λ} which is a Banach space. With the usual pointwise order \mathscr{L}^{λ} is a vector lattice and (L2) implies that λ is monotone on the positive cone of \mathscr{L}^{λ} . When $f \in \mathscr{L}^{\lambda}$, (L5) is an analogue of the Lebesgue monotone convergence property in the space of integrable functions. Similar statements are true in L^{λ} ordered pointwise modulo λ -null functions. With conventional lack of precision we shall not always distinguish \mathscr{L}^{λ} and L^{λ} .

To each length function λ corresponds a conjugate length function λ^* defined on \mathbf{M}_+ by

$$\lambda^*(g) = \sup_{f:\lambda(f) \leq 1} \int fg \ d\mu \leq +\infty.$$

The space \mathscr{L}^{λ^*} is called the conjugate of \mathscr{L}^{λ} . If $g \in \mathscr{L}^{\lambda^*}$, defining $\varphi_g : \mathscr{L}^{\lambda} \to \mathbf{R}$ by

$$\varphi_g(f) = \int fg \ d\mu,$$
$$\|\varphi_g\| = \sup_{\lambda(f) \le 1} |\varphi_g(f)| = \sup_{\lambda(f) \le 1} \left| \int fg \ d\mu \right|$$
$$= \sup_{\lambda(f) \le 1} \int f |g| \ d\mu = \lambda^*(|g|) = \lambda^*(g)$$

and $\varphi_g \in (\mathscr{L}^{\lambda})^*$. Furthermore if $\{f_n\} \in \mathscr{L}^{\lambda}$ and $f_n \downarrow 0$ then $f_n g^+ \downarrow 0$, $f_n g^- \downarrow 0$ and the general Lebesgue convergence theorem implies that $(I\varphi_g)$ holds.

A function $f: X \to \mathbb{R}$ will be called a *step function* if $f = \sum_{i=1}^{n} c_i \chi e_i$, $e_i \in S$ (where χA denotes the characteristic function of A). With the added requirement that each e_i has finite measure f will be called a *simple function*. We denote by \mathcal{M} , M respectively the spaces of step functions and of simple functions and define $\mathcal{M}^{\lambda} = \mathcal{M} \cap \mathcal{L}^{\lambda}$; $M^{\lambda} = M \cap \mathcal{L}^{\lambda}$. $\overline{\mathcal{M}}^{\lambda}$ and $\overline{\mathcal{M}}^{\lambda}$ denote the closures of these spaces in \mathcal{L}^{λ} for the seminorm topology.

REMARK. If $f \in \mathcal{M}_+$ there is a sequence of step functions $f_n \in \mathcal{M}$ with $f_n \uparrow f$. If X is σ -finite there is a sequence of simple functions increasing to f.

3. The spaces $(\mathscr{L}^{\lambda})^{I}$. For an arbitrary measure space (X, S, v) we use the following approach to the integral.

If $f = \sum_{i=1}^{n} c_i \chi e_i \in \mathcal{M}_+$, we define

$$\int f \, d\nu = \sum_{1}^{n} c_i \nu(e_i) \in \mathbf{\bar{R}}.$$

490

1972] INTEGRAL FUNCTIONALS IN THE DUALS OF L^{λ} -SPACES

If $f \in \mathbf{M}_+$ we define

$$\int f \, d\nu = \sup \left\{ \int f_a \, d\nu, f_a \in \mathcal{M}_+, f_a \leq f \right\} \in \mathbf{\bar{R}}_+.$$

Finally if $f \in \mathbf{M}$ and $\int f^+ d\nu$ and/or $\int f^- d\nu < \infty$, we define

$$\int f \, d\nu = \int f^+ \, d\nu - \int f^- \, d\nu.$$

Then $\mathscr{L}^1(X, S, \nu) = \mathscr{L}^1(\nu) = \{f \in \mathbf{M} : \int f \, d\nu \in \mathbf{R}\}\$ is the usual space of integrable functions without identifications. If $f_n \in \mathbf{M}_+$ and $f_n \uparrow f \in \mathscr{L}^1$ then

$$\lim_{n\to\infty}\int f_n\,d\nu=\int f\,d\nu.$$

Given a space $\mathscr{L}^{\lambda}(X, S, \mu)$ and positive measure ν on S, we define

$$\lambda^*(\nu) = \sup \left\{ \int f \, d\nu, f \in \mathcal{M}^{\lambda}_+, \, \lambda(f) \leq 1 \right\} \leq +\infty.$$

(For $g \in M_+$, $dv = g \circ d\mu$, we have $\lambda^*(v) = \lambda^*(g)$.) Given $\mathscr{L}^{\lambda}(X, S, \mu)$, set $S^{\lambda} = \{e \in S : \chi e \in \mathscr{L}^{\lambda}\}$. For $\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$ define, on S^{λ} ,

$$\mu_{\varphi}(e) = \varphi(\chi e) \in \mathbf{R},$$

and extend the definition to all of S by

$$\mu_{\varphi}(e) = \sup\{\mu(e'), e' \in S^{\lambda}, e' \subset e\}.$$

Then $\mu_{\varphi}: S \to \overline{\mathbf{R}}_+$ and standard arguments show that μ_{φ} is a measure on S that is absolutely continuous with respect to μ .

If $f \in \mathscr{L}_{+}^{\lambda}$ and $f_n \uparrow f, f_n \in \mathscr{M}_{+}$, then $f_n \in \mathscr{M}_{+}^{\lambda}$ and $f - f_n \downarrow 0$. Hence, using $(I\varphi)$

(3.1)
$$\int f \, d\mu_{\varphi} = \lim_{n \to \infty} \int f_n \, d\mu_{\varphi} = \lim_{n \to \infty} \varphi(f_n) = \varphi(f),$$

and (3.1) remains valid in \mathscr{L}^{λ} since (3.1) holds for f^+ and f^- . Thus every $\varphi \in (L^{\lambda})_+^I$ can be expressed as an integral with respect to the corresponding measure μ_{φ} . Furthermore

$$\lambda^*(\mu_{\varphi}) \le \sup\left\{\int f \, d\mu_{\varphi}, \, \lambda(f) \le 1\right\} = \sup\{\varphi(f), \, \lambda(f) \le 1\} = \|\varphi\|.$$

If $f \in \mathscr{L}_{+}^{\lambda}$, $\lambda(f) \neq 0$, $\epsilon > 0$, $f_n \uparrow f, f_n \in \mathscr{M}_{+}^{\lambda}$, then for *n* sufficiently large,

$$\int f \, d\mu_{\varphi} \leq \int f_n \, d\mu_{\varphi} + \varepsilon;$$

$$\int \frac{f_n}{\lambda(f_n)} \, d\mu_{\varphi} \geq \int \frac{f_n}{\lambda(f)} \, d\mu_{\varphi} \geq \int \frac{f}{\lambda(f)} \, d\mu_{\varphi} - \frac{\varepsilon}{\lambda(f)}.$$

Since for $\varphi \in (L^{\lambda})^*_+$, $\|\varphi\| = \sup\{\varphi(f), f \ge 0, \lambda(f) \le 1\}$ it follows that $\lambda^*(\mu_{\varphi}) \ge \|\varphi\|$ and equality holds.

Conversely for an arbitrary countably additive measure ν on S with $\lambda^*(\nu) < \infty$, define

$$\varphi_{\nu}(f) = \int f \, d\nu, \qquad f \in \mathscr{L}^{\lambda}.$$

If $f_n \uparrow f$ with $f_n \in \mathscr{M}_+^{\lambda}$ for all n and $f \in \mathscr{L}_+^{\lambda}$, then

$$\int f \, d\nu = \lim_{n \to \infty} \int f_n \, d\nu \leq \lim_{n \to \infty} \lambda(f_n) \lambda^*(\nu) \leq \lambda(f) \lambda^*(\nu) < \infty.$$

Considering f^+ and f^- it follows that if $f \in \mathscr{L}^{\lambda}$ then $f \in \mathscr{L}^1(\nu)$ and $(I\varphi_{\nu})$ is implied by the general Lebesgue convergence theorem. Thus $\varphi_{\nu} \in (\mathscr{L}^{\lambda})^I_+$.

Writing $\varphi' = \varphi_{\nu}$, φ' determines a positive measure $\mu_{\varphi'}$ with $\varphi_{\nu}(f) = \int f d\mu_{\varphi'}$ for all f in \mathscr{L}^{λ} . Since the integrals with respect to ν and $\mu_{\varphi'}$ coincide on $\mathscr{M}^{\lambda}_{+}$,

$$\lambda^*(v) = \lambda^*(\mu_{\varphi'}) = \|\varphi_v\|.$$

Dropping the assumption that φ is positive, if $\varphi \in (\mathscr{L}^{\lambda})^{I}$, then $\varphi = \varphi^{+} - \varphi^{-}$ with φ^{+} , φ^{-} and $|\varphi| = \varphi^{+} + \varphi^{-}$ in $(\mathscr{L}^{\lambda})^{I}_{+}$. Since \mathscr{L}^{λ} is a seminormed vector lattice, $\|\varphi\| = \| |\varphi| \|$ for every $\varphi \in (\mathscr{L}^{\lambda})^{*}$. We set $\mu_{\varphi} = \mu_{\varphi^{+}} - \mu_{\varphi^{-}}$ where it is defined (which includes S^{λ}), define

 $\mathscr{L}^{1}(\mu_{a}) = \mathscr{L}^{1}(\mu_{a}),$

and write

$$\int f\,d\mu_{\varphi} = \int f\,d\mu_{\varphi^+} - \int f\,d\mu_{\varphi^-}, \qquad f \in \mathscr{L}^1(\mu_{\varphi}).$$

Since $\mathscr{L}^{\lambda} \subset \mathscr{L}^{1}(\mu_{|\varphi|})$ this is finite for every $f \in \mathscr{L}^{\lambda}$ and

$$\int f d\mu_{\varphi} = \varphi^+(f) - \varphi^-(f) = \varphi(f).$$

We set $\lambda^*(\mu_{\varphi}) = \lambda^*(\mu_{|\varphi|})$. Using the above results for $(\mathscr{L}^{\lambda})^I_+$,

$$\lambda^*(\mu_{\varphi}) = \lambda^*(\mu_{|\varphi|}) = \||\varphi|\| = \|\varphi\|.$$

THEOREM 3.1. To each $\varphi \in (\mathscr{L}^{\lambda})^{I}$ corresponds measures $v_{1} = \mu_{\varphi^{+}}, v_{2} = \mu_{\varphi^{-}}$ on S, determined by φ^{+} and φ^{-} , with

(3.2)
$$\varphi(f) = \int f \, d\nu_1 - \int f \, d\nu_2$$

and $\|\varphi\| = \lambda^*(\mu_{\varphi}) = \lambda^*(\nu_1 + \nu_2)$. Conversely if ν_1 and ν_2 are measures on S with $\lambda^*(\nu_i) < \infty$, i=1, 2, then (3.2) gives $\varphi \in (\mathscr{L}^{\lambda})^I$ with $\|\varphi\| = \lambda^*(\nu_1 + \nu_2)$.

THEOREM 3.2. [5]. $(L^{\lambda})^{I} = (L^{\lambda})^{*}$ if and only if $(I^{\lambda}) f_{n} \downarrow 0, f_{n} \in \mathscr{L}^{\lambda}$, implies that $\lim_{n \to \infty} \lambda(f_{n}) = 0$.

Proof. Since $|\varphi(f_n)| \leq ||\varphi|| \lambda(f_n)$, (I^{λ}) implies $(I\varphi)$ for every $\varphi \in (L^{\lambda})^*$. Conversely if $(I\varphi)$ holds for every $\varphi \in (L^{\lambda})^*$, (I^{λ}) holds [5, p. 671, Lemma 22.6].

1972] INTEGRAL FUNCTIONALS IN THE DUALS OF L^{2} -SPACES 493

THEOREM 3.3. If $(L^{\lambda})^{I} = (L^{\lambda})^{*}$ then $\overline{\mathcal{M}}^{\lambda} = L^{\lambda}$.

Proof. \mathcal{M}^{λ} is a vector subspace of L^{λ} . Assuming that $\overline{\mathcal{M}}^{\lambda} \neq L^{\lambda}$, let $f' \in L^{\lambda} - \overline{\mathcal{M}}^{\lambda}$. A corollary of the Hahn-Banach theorem then shows that there exists $\varphi \in (L^{\lambda})^*$ with $\varphi(f)=0, f \in \mathcal{M}^{\lambda}, \varphi(f')\neq 0$. Since

$$\varphi(f') = \varphi^+(f'^+) - \varphi^+(f'^-) - \varphi^-(f'^+) + \varphi^-(f'^-)$$

we can assume that φ , f' > 0. Then

$$\varphi(f) = \int f \, d\mu_{\varphi}, \qquad f \in L^{\lambda}.$$

There exists a sequence $f_n \in M^{\lambda}$ with $f_n \uparrow f'$. Using the countable additivity of φ and the Lebesgue monotone convergence theorem, $0 < \varphi(f') = \lim_{n \to \infty} \int f_n d\mu_{\varphi} = 0$, a contradiction.

4. The spaces $(\mathscr{L}^{\lambda})^{\mathscr{A}}$. In [3] Zorn's lemma was used to show that in an arbitrary measure space (X, S, μ) there exists a decomposition

$$X = X_1 \cup X_2,$$

with $X_1 \cap X_2 = \phi$; $X_2 = \bigcup_{a \in \mathscr{A}} e_a$, $0 < \mu(e_a) < \infty$, $a \in \mathscr{A}$; $\mu(e_a \cap e_{a'}) = 0$, $a \neq a'$, and such that if $e' \in S$, $e' \subset X_1$ then either $\mu(e') = 0$ or $\mu(e') = +\infty$. For each $e \in S$ with $0 < \mu(e) < \infty$, there is then a countable collection of subscripts $\{a_i\}$ with

$$\mu(e) = \sum_{1}^{\infty} \mu(e \cap e_{a_i}).$$

Such a decomposition was called an ND-decomposition.

When X is σ -finite, X_1 and X_2 are measurable, $\mu(X_1)=0$ and X_2 is expressed as a union of sets of finite positive measure with null intersections.

Fixing an ND-decomposition, where (e_a, S_a, μ) is the restriction of (X, S, μ) to e_a , we set

$$\mathbf{M}^{\mathscr{A}} = \prod_{a \in \mathscr{A}} \mathbf{M}(e_a, S_a, \mu),$$

and denote points by $g_{\mathscr{A}} = \{g_a \in \mathbf{M}(e_a, S_a, \mu); a \in \mathscr{A}\}.$

If $E \in S$ is σ -finite, then $\mu(E \cap e_a) = 0$ except for a countable collection $\{a_i\}$. Defining

$$g_E = (\sup_i g_{a_i})\chi_E \quad \text{if} \quad \mu(E \cap e_a) \neq 0 \text{ for at least one } a \in \mathscr{A},$$
$$g_E = 0 \quad \text{if} \quad \mu(E \cap e_a) = 0 \quad \text{for all} \quad a \in \mathscr{A},$$

we have $g_E \in \mathbf{M}(X, S, \mu)$. For an arbitrary length function λ on (X, S, μ) we define

$$\lambda^*(g_{\mathscr{A}}) = \sup\{\lambda^*(g_E), E \in S, E \text{ σ-finite}\},\$$

and denote by $(\mathscr{L}^{\lambda})^{\mathscr{A}}$ the elements $g_{\mathscr{A}} \in \mathbf{M}^{\mathscr{A}}$ with $\lambda^*(g_{\mathscr{A}}) < \infty$. Then $(\mathscr{L}^{\lambda})^{\mathscr{A}}$ is a vector subspace of $\mathbf{M}^{\mathscr{A}}$ on which λ^* is a seminorm; a norm with identifications modulo λ^* -null functions. We note that

$$(\mathscr{L}^{\lambda})^{\mathscr{A}} \subseteq \prod_{a \in \mathscr{A}} \mathscr{L}^{\lambda^{*}}(e_{a}, S_{a}, \mu).$$

LEMMA 4.1. If $\lambda^*(g_{\mathscr{A}}) < \infty$, $f_0 \in \mathscr{L}^{\lambda}$, then for at most countably many $a \in \mathscr{A}$

(4.1)
$$\int f_0 g_a \, d\mu \neq 0.$$

Proof. There is no loss of generality in assuming that each $g_a \ge 0$ almost everywhere in e_a and that $f_0 > 0$, $\lambda(f_0) = 1$. Suppose that (4.1) holds for uncountably many $a \in \mathcal{A}$. There then exists d > 0 and $\{a_i\}$ with

$$\int f_0 g_{a_i} d\mu > d, \qquad i = 1, 2, \ldots.$$

If $E = \bigcup e_{a_i}$,

$$\lambda^*(g_{\mathscr{A}}) \geq \lambda^*(g_E) \geq \int f_0 g_E \, d\mu = \sum_{1}^{\infty} \int f_0 g_{a_0} \, d\mu = +\infty,$$

giving a contradiction.

DEFINITION. For each $g_{\mathscr{A}} \in (\mathscr{L}^{\lambda})^{\mathscr{A}}, f \in \mathscr{L}^{\lambda}$ define

$$e(g_{\mathscr{A}},f)=e(f)=\cup\Big\{e_a,a\in\mathscr{A}:\int|fg_a|\,d\mu>0\Big\}.$$

Set $g_f = g_{e(f)}$ if $e(f) \neq \phi$; =0 if $e(f) = \phi$. Then $e(f) \in S$, is σ -finite and $g_f \in \mathbf{M}$. We denote the complement of e(f) by $\tilde{e}(f)$.

LEMMA 4.2. If $\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$ and μ_{φ} is the corresponding measure on S, then each set $e_{a}, a \in \mathscr{A}$, is $\mu_{\varphi} \sigma$ -finite.

Proof. Let $\{e_b, b \in B\}$ denote the measurable subsets of e_a satisfying

$$0 < \mu_{\varphi}(e_b) < \infty, \qquad 0 < \mu(e_b) \le \mu(e_a).$$

Order collections of disjoint subsets from $\{e_b\}$ by inclusion. Each chain then has an upper bound so that Zorn's lemma implies the existence of a maximal collection which is countable since $\mu(e_a) < \infty$. Let e'_a denote the union of the sets in this maximal collection. Then $e_a - e'_a \in S$. If $\mu(e_a - e'_a) = 0$, $\mu_{\varphi}(e_a - e'_a) = 0$. If $\mu(e_a - e'_a) > 0$, $\mu_{\varphi}(e_a - e'_a) = 0$ or $+\infty$ as does e^* for any $e^* \in S$, $e^* \subset e_a - e'_a$. Thus $e_a - e'_a$ is either μ_{φ} null or μ_{φ} purely infinite. Since the definition of μ_{φ} does not permit purely infinite sets we conclude that $\mu_{\varphi}(e_a - e'_a) = 0$ and thus e_a is $\mu_{\varphi} \sigma$ -finite. If $\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$ then for each e_{a} , $a \in \mathscr{A}$, μ_{φ} is absolutely continuous with respect to μ on e_{a} , e_{a} is μ -finite and μ_{φ} σ -finite and the Radon-Nikodym theorem gives $g_{a}:e_{a} \rightarrow \mathbb{R}^{+}$ with $g_{a} \in \mathbb{M}$ and such that

$$\mu_{\varphi}(e) = \int_{e}^{e} g_{a} d\mu, \quad e \in S, \quad e \subset e_{a}.$$

It then follows that for each $f \in \mathscr{L}^{\lambda}$,

(4.2)
$$\varphi(f_e) = \int_e^{f} d\mu_{\varphi} = \int_e^{f} g_a \, d\mu, \quad e \in S, \quad e \subset e_a, \quad a \in \mathscr{A}.$$

Set $g_{\mathscr{A}} = \{g_a, a \in \mathscr{A}\}$. Then

$$\lambda^*(g_{\mathscr{A}}) = \sup \left\{ \int_E f \, d\mu_{\varphi}; E \, \sigma \text{-finite, } \lambda(f) \leq 1 \right\} \leq \lambda^*(\mu_{\varphi}) = \|\varphi\|.$$

Thus to each $\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$ corresponds $g_{\mathscr{A}} \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$ related by (4.2). It follows from (4.2) that if $f \in \mathscr{L}^{\lambda}$,

$$\varphi(|f| \chi e_a) \neq 0,$$

iff $e_a \subset e(g_a, f) = e(f)$, and in particular for at most a countable collection of subscripts *a*. For an arbitrary $\varphi \in (\mathscr{L}^{\lambda})_{+}^{I}$,

$$e(\varphi, f) = \bigcup \{ e_a, a \in \mathscr{A} : \varphi(|f| \ \chi e_a) \neq 0 \}$$

will coincide with $e(g_{\mathcal{A}}, f)$ for the $g_{\mathcal{A}}$ determined by φ and will also be denoted by e(f).

THEOREM 4.1. There is an isometric isomorphism between $(\mathcal{L}^{\lambda})^{\mathscr{A}}$ (with identifications) and the subspace of $(\mathcal{L}^{\lambda})^{I}$ of different elements φ with $\varphi(f\chi\tilde{e}(f))=0$ for each $f \in \mathcal{L}^{\lambda}$. To each $g_{\mathscr{A}}$ corresponds φ by

(4.3)
$$\varphi(f) = \int fg_f \, d\mu, \qquad f \in \mathscr{L}^{\lambda}.$$

Proof. Let $g_{\mathscr{A}} \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$. Defining φ by (4.3),

$$\varphi(f)| \leq \lambda(f)\lambda^*(g_f) \leq \lambda(f)\lambda^*(g_{\mathscr{A}}) < \infty,$$

and $\varphi: \mathscr{L}^{\lambda} \to \mathbf{R}$.

Since e(af) = e(f), $a \neq 0$; $e(f+f') \subseteq e(f) \cup e(f')$, (a countable union of sets $e_a, a \in \mathscr{A}$). It is easy to verify that $(f+f')g_{f+f'} = fg_f + f'g_{f'}$ almost everywhere and φ is linear and so in $(\mathscr{L}^{\lambda})^*_+$. To see that $\varphi \in (\mathscr{L}^{\lambda})^I_+$ let $f_n \in \mathscr{L}^{\lambda}$, $f_n \downarrow 0$. Since $e(f_n) \subseteq e(f_1)$,

$$\varphi(f_n) = \int f_n g_{f_n} d\mu = \int f_n g_{f_1} d\mu, \qquad n = 1, 2, \dots$$

The Lebesgue general convergence theorem then implies that $\lim_{n} \varphi(f_n) = 0$.

Finally we observe that $\int f\chi \tilde{e}(f)g_a d\mu = 0$ for every $a \in \mathscr{A}$ which implies that $\varphi(f\chi \tilde{e}(f))=0$ for each f in \mathscr{L}^{λ} .

Let $g_{\mathscr{A}} \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$ and define φ by (4.3). Then $\|\varphi\| \leq \lambda^{*}(g_{\mathscr{A}})$. As shown after Lemma 4.2, φ determines $g'_{\mathscr{A}} \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$ with $\lambda^{*}(g'_{\mathscr{A}}) \leq \|\varphi\|$ and with (4.2) holding. Thus if $f \in \mathscr{L}^{\lambda}$, $a \in \mathscr{A}$,

$$\int f(g_a - g'_a) \, d\mu = \varphi(f) - \varphi(f) = 0.$$

This implies that $\lambda^*(g_{\mathscr{A}} - g'_{\mathscr{A}}) = 0$ and thus

$$\lambda^*(g_{\mathscr{A}}) = \lambda^*(g'_{\mathscr{A}}) \le \|\varphi\| \le \lambda^*(g_{\mathscr{A}})$$

so that $\|\varphi\| = \lambda^*(g_{\mathscr{A}}).$

On the other hand if we start with $\varphi \in (\mathscr{L}^{\lambda})_{+}^{I}$, φ determines $g'_{\mathscr{A}} \in (\mathscr{L}^{\lambda})_{+}^{\mathscr{A}}$ with $\lambda^{*}(g'_{\mathscr{A}}) \leq ||\varphi||$. As in the preceding paragraph, $g'_{\mathscr{A}}$ determines φ' with $||\varphi'|| = \lambda^{*}(g'_{\mathscr{A}})$. Furthermore for every $f \in \mathscr{L}^{\lambda}$,

$$\varphi'(f) = \varphi'(f\chi e(f)) = \varphi(f\chi e(f)),$$

It follows that $\varphi = \varphi'$ if and only if $\varphi(f\chi \tilde{e}(f)) = 0$ for every $f \in \mathcal{L}^{\lambda}$.

We next consider the behavior of the functionals in $(\mathscr{L}^{\lambda})^{I}_{+}$ on the sets $\tilde{e}(f)$, $f \in \mathscr{L}^{\lambda}_{+}$. Since e(f) is σ -finite, $\tilde{e}(f) \in S$. There are three possibilities

(i) $\mu(\tilde{e}(f))=0$. Then, setting $f^0=f\chi\tilde{e}(f)$, $\lambda(f^0)=0$ and so $\varphi(f^0)=0$;

(ii) $0 < \mu(\tilde{e}(f)) < \infty$. Then $\tilde{e}(f)$ is the union of a null set and an at most countable collection of sets e_a , $a \in \mathscr{A}$. If $\mu(\tilde{e}(f) \cap e_a) \neq 0$, e_a is not contained in e(f) and $\varphi(f^0 \chi e_a) = \int fg_a d\mu = 0$. It follows again that $\varphi(f^0) = 0$.

(iii) $\mu(\tilde{e}(f)) = +\infty$. If X_1 contains a purely infinite set $s \in S$ with $\varphi(f_s) \neq 0$, $\varphi(f_s \chi \tilde{e}(f_s)) \neq 0$ and φ has no isometric correspondent in $(\mathscr{L}^{\lambda})^{\mathscr{A}}$. A simple example is given by taking $X = \{a, b\}$, $S = \mathscr{P}(X)$, $\mu\{a\} = 1$, $\mu\{b\} = +\infty$, $\lambda(f) = \max\{f(a), f(b)\}$, $X_1 = \{b\}$, $X_2 = \{a\}$. Then $(\mathscr{L}^{\lambda})^{\mathscr{A}}$ coincides with the functionals vanishing at b and is different from $(\mathscr{L}^{\lambda})^{I} = (\mathscr{L}^{\lambda})^{*}$.

On the other hand if $\tilde{e}(f)$ is σ -finite it follows as in (ii) that $\varphi(f^0)=0$.

THEOREM 4.2. If
$$\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$$
 then $\varphi \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$ if and only if for every $s \in S^{\lambda}$,

(4.4)
$$\varphi(\chi s) = \mu_{\varphi}(s) = \sup\{\varphi(\chi s') = \mu_{\varphi}(s'), s' \subset s, \, \mu(s') < \infty\}$$

Proof. Consider $f \in \mathscr{L}_{+}^{\lambda}$, $f^{0} = f\chi \tilde{e}(f)$. There then exists $\{f_{n}\} \in \mathscr{M}_{+}^{\lambda}$, $f_{n}\uparrow f^{0}$ with

$$p(f^0) = \int f^0 \ d\mu_{\varphi} = \lim_{n \to \infty} \int f_n \ d\mu_{\varphi}$$

Now $f_n = \sum_i^n c_i \chi s_i$ with each $s_i \in S^{\lambda}$, $s_i \subset \tilde{e}(f)$. If $s \subset s_i$, $\mu_{\varphi}(s) < \infty$ then $s \in S^{\lambda}$,

$$\mu_{\varphi}(s) = \varphi(\chi s) \leq \frac{1}{c_i} \varphi(f \chi s) = 0,$$

as in (i) and (ii) above. It follows that $\int f_n d\mu_{\varphi} = 0$ for each *n* and therefore $\varphi(f^0) = 0$.

[December

Conversely if $\varphi \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$ and $s \in S^{\lambda}$, then

$$\varphi(\chi s) = \varphi(\chi s \cap e(\chi s)) = \varphi\left(\chi \bigcup_{1}^{\infty} s \cap e_{a_i}\right)$$

for certain $a_i \in \mathscr{A}$. Then (4.4) follows from $(I\varphi)$.

THEOREM 4.3. $(\mathcal{L}^{\lambda})^{\mathscr{A}} = (\mathcal{L}^{\lambda})^{I}$ if and only if (4.4) holds for every $\varphi \in (\mathcal{L}^{\lambda})^{I}_{+}$. If the simple functions are dense in \mathcal{L}^{λ} , (4.4) holds for every $\varphi \in (\mathcal{L}^{\lambda})^{I}_{+}$. $(\mathcal{L}^{\lambda})^{\mathscr{A}} = (\mathcal{L}^{\lambda})^{*}$ if and only if (I^{λ}) holds and $\overline{M}^{\lambda} = \mathcal{L}^{\lambda}$.

Proof. The first statement follows from Theorem 4.2.

If $\overline{M}^{\lambda} = \mathscr{L}^{\lambda}$ and $s \in S^{\lambda}$ then, given $\varepsilon > 0$, there exists $f = \sum_{1}^{m} c_{i} \chi s_{i} \in M^{\lambda}$ with $\lambda(\chi s - f) < \varepsilon$. If $s' = \{x: f(x) > 0\} \cap s$, $\mu(s') < \infty$ and

$$\lambda(\chi s - \chi s') \leq \lambda(\chi s - f) < \varepsilon.$$

Thus for any $\varphi \in (\mathscr{L}^{\lambda})_{+}^{I}$,

$$\varphi(\chi s) - \varphi(\chi s') \leq \|\varphi\| \ \lambda(\chi s - \chi s') < \|\varphi\| \ \varepsilon,$$

which implies (4.4).

If $\overline{M}^{\lambda} = \mathscr{L}^{\lambda}$, $(\mathscr{L}^{\lambda})^{\mathscr{A}} = (\mathscr{L}^{\lambda})^{I}$ and, if (I^{λ}) holds

$$(\mathscr{L}^{\lambda})^{\mathscr{A}} = (\mathscr{L}^{\lambda})^{I} = (\mathscr{L}^{\lambda})^{*}$$

by Theorem 3.3.

Now assume that $(\mathscr{L}^{\lambda})^{\mathscr{A}} = (\mathscr{L}^{\lambda})^{*}$. Since $(\mathscr{L}^{\lambda})^{\mathscr{A}} \subset (\mathscr{L}^{\lambda})^{I} \subset (\mathscr{L}^{\lambda})^{*}$ it follows from Theorem 3.3 that (I^{λ}) holds and $\overline{M}^{\lambda} = \mathscr{L}^{\lambda}$. Assuming that $\overline{M}^{\lambda} \neq \mathscr{L}^{\lambda}$, an argument similar to that in Theorem 3.3 gives the existence of $\varphi \in (\mathscr{L}^{\lambda})^{\mathscr{A}}_{+}$, $f \in \mathscr{L}^{\lambda}_{+}$ with $\varphi(f) > 0$ and $\varphi(g) = 0$ for every g in M^{λ} . Then $\varphi(f) = \varphi(f\chi e(f))$ with e(f) σ -finite. Since there then exists $\{g_n\} \subset M^{\lambda}$ with $g_n \uparrow f\chi e(f)$,

$$\varphi(f) = \lim_{n \to \infty} \varphi(g_n) = 0,$$

giving a contradiction.

We observe that the spaces \mathscr{L}^{∞} with X not finite gives examples where

$$(\mathscr{L}^{\lambda})^{\mathscr{A}} \neq (\mathscr{L}^{\lambda})^{I} = \mathscr{L}^{1} \text{ with } \overline{M}^{\lambda} \neq \mathscr{L}^{\lambda}.$$

Note that in this case $(\mathscr{L}^{\lambda})^{\mathscr{A}} \neq (\mathscr{L}^{\lambda})^{*}$.

5. The spaces \mathscr{L}^{λ^*} . If $\varphi \in \mathscr{L}^{\lambda^*}_+$ there exists $g \in \mathbf{M}_+$ with $\lambda^*(g) = ||\varphi||$ and

$$\varphi(f) = \int fg \ d\mu \in \mathbf{R}, \qquad f \in \mathscr{L}^{\lambda}.$$

It is clear that $\varphi \in (\mathscr{L}^{\lambda})^{I}_{+}$ with $\mu_{\varphi}(s) = \int_{s} g \, d\mu, \, s \in S^{\lambda}$.

For an arbitrary *ND*-decomposition define $g_{\mathscr{A}} = \{g \chi e_a; a \in \mathscr{A}\}$. If $s \in S^{\lambda}, g \in \mathscr{L}^1(s), \{x \in s: g(x) \neq 0\}$ is σ -finite and (4.4) follows easily. Thus $\mathscr{L}^{\lambda^*} \subset (\mathscr{L}^{\lambda})^{\mathscr{A}}$ and, in general,

(5.1)
$$\mathscr{L}^{\lambda^*} \subset (\mathscr{L}^{\lambda})^{\mathscr{A}} \subset (\mathscr{L}^{\lambda})^I \subset (\mathscr{L}^{\lambda})^*.$$

On the other hand if $\varphi \in (L^{\lambda})^{\mathscr{A}}$, then $\varphi \in L^{\lambda^*}$ if and only if there exists $g \in \overline{\mathbf{M}}$ with $\lambda^*[(g-g_a)\chi e_a]=0$ for every $a \in \mathscr{A}$.

We observe that if X is σ -finite or if every $f \in L^{\lambda}$ has σ -finite support then $L^{\lambda^*} = (L^{\lambda})^{\mathscr{A}} = (L^{\lambda})^I$.

Speaking loosely, if $\varphi \in (L^{\lambda})^{\mathscr{A}}$ then φ will be in L^{λ^*} if it is possible to piece the g_a together to form a measurable function g on X. Examples are given in [3] for L^1 where the $\{g_a\}$ determine a function g which is not measurable and where there can be no function g equal to each g_a almost everywhere in e_a , $a \in \mathscr{A}$.

THEOREM 5.1. If $L^{\lambda *} = (L^{\lambda})^*$ then (I^{λ}) holds and $\overline{M}^{\lambda} = L^{\lambda}$. If (I^{λ}) holds, if $\overline{M}^{\lambda} = L^{\lambda}$ and (5.2) to each $\varphi \in (L^{\lambda})^*$ corresponds a σ -finite set E with $\varphi(f\chi E) = \varphi(f)$ for every $f \in L^{\lambda}$, then $L^{\lambda *} = (L^{\lambda})^*$.

Proof. The first part is given by Theorem 4.2 since $L^{\lambda^*} = (L^{\lambda})^*$ implies that $L^{\lambda^*} = (L^{\lambda})^{\mathscr{A}}$.

Assuming (I^{λ}) and $\overline{M}^{\lambda} = L^{\lambda}$, then $(L^{\lambda})^{\mathscr{A}} = (L^{\lambda})^*$ by Theorem 4.2. To $\varphi \in (L^{\lambda})^*$ corresponds $g_{\mathscr{A}}$ with $\lambda^*(g_{\mathscr{A}}) = \|\varphi\|$. By (5.2) $\varphi(f) = \varphi(f\chi E)$ for every $f \in L^{\lambda}$ where E is σ -finite, $\mu(E \cap e_a) = 0$ for all but a countable set of subscripts in \mathscr{A} , say $a_i, i = 1, 2, \ldots$ If $g = \sum_{1}^{\infty} g_{a_i}$ then

$$\varphi(f) = \int fg_f \, d\mu = \int fg \, d\mu,$$

for every $f \in L^{\lambda}$ and $\lambda^*(g) = ||\varphi||$. We conclude that $L^{\lambda^*} = (L^{\lambda})^{\mathscr{A}} = (L^{\lambda})^*$.

That (5.2) is not a necessary condition is shown by the following

EXAMPLE. Let X=(0, 1), $S=\mathscr{P}(X)$, $\mu(e)=$ number of points in $e(= +\infty$ if e is infinite); $\lambda(f)=\int f d\mu$, $f \in \mathbf{M}_+$. Then $L^{\lambda}=L^1$. An ND decomposition of X is given by $X_1=\phi$, $X_2=\bigcup_{a\in(0,1)} \{a\}$ (where the sets are disjoint). Since (I^{λ}) holds in L^1 and $\overline{M}^{\lambda}=L^1$; $(L^1)^*=(L^1)^{\mathscr{A}}=L^{\infty}$. Clearly each g determines $g=\sum g_a \in M$ so that $(L^1)^*=L^{\lambda^*}$. However $\chi X \in (L^{\lambda})^*$ without (5.2) holding.

Halperin [4] has solved the problem of necessary and sufficient conditions for the reflexivity of L^{λ} . His conditions (1.3), (1.3)* correspond to (5.2) for (L^{λ}) * and (L^{λ^*}) * with $\mu(e_i)$ replaced by $\lambda(\chi e_i)$, $\lambda^*(\chi e_i)$. The condition (I^{λ}) together with $\overline{M}^{\lambda} = L^{\lambda}$ imply his (1.1) and $\overline{M}^{\lambda^*} = L^{\lambda^*}$ is his (1.2). We sketch a proof in the present context. It shows that when L^{λ} is reflexive (5.2) is a necessary condition. THEOREM 5.2. L^{λ} is reflexive if and only if

(i) (I^{λ}) and (I^{λ^*}) hold in L^{λ} and L^{λ^*} ;

(ii) $\overline{M}^{\lambda} = L^{\lambda}, \ \overline{M}^{\lambda*} = L^{\lambda*};$

(iii) (5.2) holds in $(L^{\lambda})^*$ and in $(L^{\lambda^*})^*$;

(iv) Every $f \in \mathbf{M}$ can be expressed as $f=f_1+f_2$ with $\lambda^{**}(f)=\lambda(f_1), \lambda^{**}(f_2)=0$.

499

Proof. Necessity. By [4, Lemma 3.3] if $L^{\lambda} = (L^{\lambda})^{**}$ then $(L^{\lambda})^* = L^{\lambda^*}$ and $(L^{\lambda^*})^* = L^{\lambda^{**}} = L^{\lambda}$. By Theorem 5.1 (i) and (ii) are necessary. (5.2) is then a consequence of (ii) in L^{λ^*} and $L^{\lambda^{**}} = L^{\lambda}$. As in [4] (iv) is also necessary.

Sufficiency. (i), (ii) and (iii) imply that $L^{\lambda^*} = (L^{\lambda})^*$ and $L^{\lambda^{**}} = (L^{\lambda^*})^*$ by Theorem 5.1. As in [4] (1.4) implies that $L^{\lambda^{**}} = L^{\lambda}$ and completes the proof.

References

1. S. Banach, Théorie des opérations linéaires, Monografje Matematyczne Warsaw, 1932.

2. H. W. Ellis and Israel Halperin, Function spaces determined by a levelling length function, Canad. J. Math. 5 (1963), 576-592.

3. H. W. Ellis and D. O. Snow, On $(L^1)^*$ for general measure spaces, Canad. Math. Bull. 6 (1963), 211-230.

4. Israel Halperin, Reflexivity in the L^λ function spaces, Duke Math. J. 21 (1954), 205-208.
5. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces, Proc. Acad. Science, Amsterdam, (Indag. Math). Note V, A. 66 (1963), 496-504; Note VI, A. 66 (1963), 655-668.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO UNIVERSITY OF LETHBRIDGE, LETHBRIDGE, ALBERTA