Canad. Math. Bull. Vol 15 (4), 1972

INTEGRAL FUNCTIONALS IN THE
 DUALS OF L^{λ}-SPACES ${ }^{(1)}$

BY
H. W. ELLIS AND J. D. HISCOCKS

1. Introduction. Luxemburg and Zaanen [5] call an element φ of the topological dual of a normed or seminormed vector space V an integral if

$$
(I \varphi) f_{n} \downarrow 0\left(\text { i.e. } f_{n} \in V, f_{n} \geq f_{n+1}, \bigwedge_{n} f_{n}=0\right) \quad \text { implies } \lim _{n \rightarrow \infty} \varphi\left(f_{n}\right)=0 .
$$

We denote the space of integrals by V^{I}. For the L^{λ} function spaces introduced by Ellis and Halperin [2] another Banach subspace of the dual emerges, namely the conjugate space $L^{\lambda *}$ which is the L^{λ} space determined by the conjugate length function $\lambda^{*} \cdot L^{\lambda *}$ is contained in $\left(L^{\lambda}\right)^{I}$ but need not coincide with it.

There are measure spaces in which, for $L^{\lambda}=L^{1}, L^{\lambda *} \neq\left(L^{\lambda}\right)^{*},\left(L^{\lambda}\right)^{I}$. In [3] Ellis and Snow characterized the dual of L^{1} in terms of integrals with respect to collections of functions defined in terms of an arbitrary $N D$-decomposition of the measure space. The space of analogous collections of elements for an arbitrary L^{λ} will be denoted by $\left(L^{\lambda}\right)^{2 x}$ ($\S 4$ below). Always

$$
L^{\lambda^{*}} \subset\left(L^{\lambda}\right)^{\mathscr{L}} \subset\left(L^{\lambda}\right)^{I} \subset\left(L^{\lambda}\right)^{*} .
$$

In §§3-5 the spaces $L^{\lambda *},\left(L^{\lambda}\right)^{\mathscr{Q}}$ and $\left(L^{\lambda}\right)^{I}$ are related and conditions whereby each coincides with $\left(L^{\lambda}\right)^{*}$ are given.
2. Definitions and notation. We consider an arbitrary complete measure space (X, S, μ) where S is a σ-algebra. We let \mathbf{M} denote the measurable functions valued in the extended reals, $\overline{\mathbf{R}}$. In a partially ordered space (B, \leq) with a zero we denote by B_{+}the elements $f \in B$ with $f \geq 0$. A function $\lambda: \mathbf{M}_{+} \rightarrow \overline{\mathbf{R}}_{+}$is called a length function [2] if
(L1) $\lambda(f)=0$ if $f(x)=0$ for almost all $x \in X$;
(L2) $\lambda\left(f_{1}\right) \leq \lambda\left(f_{2}\right)$ if $f_{1} \leq f_{2}$;
(L3) $\lambda\left(f_{1}+f_{2}\right) \leq \lambda\left(f_{1}\right)+\lambda\left(f_{2}\right)$;
(L4) $\lambda(k f)=k \lambda(f), \quad k \in \mathbf{R}_{+}$;
(L5) $f_{i} \uparrow_{i=1}^{\infty} f$ implies that $\quad \lambda\left(f_{i}\right) \uparrow_{i=1}^{\infty} \lambda(f)$.

For $f \in \mathbf{M}$ we define $\lambda(f)=\lambda(|f|)$ and set $\mathscr{L}^{\lambda}=\left\{f \in \mathbf{M}^{*}: \lambda(f)<\infty\right\}$ (where \mathbf{M}^{*} denotes the finite real valued elements of \mathbf{M}). On $\mathscr{L}^{\lambda},(L 1)$, ($L 3$) and ($L 4$) imply that λ defines a seminorm. Making identifications modulo λ-null functions gives a space L^{λ} which is a Banach space. With the usual pointwise order \mathscr{L}^{λ} is a vector lattice and ($L 2$) implies that λ is monotone on the positive cone of \mathscr{L}^{λ}. When $f \in \mathscr{L}^{\lambda},(L 5)$ is an analogue of the Lebesgue monotone convergence property in the space of integrable functions. Similar statements are true in L^{λ} ordered pointwise modulo λ-null functions. With conventional lack of precision we shall not always distinguish \mathscr{L}^{λ} and L^{λ}.

To each length function λ corresponds a conjugate length function λ^{*} defined on \mathbf{M}_{+}by

$$
\lambda^{*}(g)=\sup _{f: \lambda(f) \leq 1} \int f g d \mu \leq+\infty
$$

The space $\mathscr{L}^{\lambda *}$ is called the conjugate of \mathscr{L}^{λ}. If $g \in \mathscr{L}^{\lambda^{*}}$, defining $\varphi_{g}: \mathscr{L}^{\lambda} \rightarrow \mathbf{R}$ by

$$
\begin{gathered}
\varphi_{g}(f)=\int f g d \mu, \\
\left\|\varphi_{g}\right\|=\sup _{\lambda(f) \leq 1}\left|\varphi_{g}(f)\right|=\sup _{\lambda(f) \leq 1}\left|\int f g d \mu\right| \\
=\sup _{\lambda(f) \leq 1} \int f|g| d \mu=\lambda^{*}(|g|)=\lambda^{*}(g)
\end{gathered}
$$

and $\varphi_{g} \in\left(\mathscr{L}^{\lambda}\right)^{*}$. Furthermore if $\left\{f_{n}\right\} \in \mathscr{L}^{\lambda}$ and $f_{n} \downarrow 0$ then $f_{n} g^{+} \downarrow 0, f_{n} g^{-} \downarrow 0$ and the general Lebesgue convergence theorem implies that ($I \varphi_{g}$) holds.

A function $f: X \rightarrow \mathbf{R}$ will be called a step function if $f=\sum_{i=1}^{n} c_{i} \chi e_{i}, e_{i} \in S$ (where χA denotes the characteristic function of A). With the added requirement that each e_{i} has finite measure f will be called a simple function. We denote by \mathscr{M}, M respectively the spaces of step functions and of simple functions and define $\mathscr{M}^{\lambda}=$ $\mathscr{M} \cap \mathscr{L}^{\lambda} ; M^{\lambda}=M \cap \mathscr{L}^{\lambda} . \overline{\mathcal{M}}^{\lambda}$ and \bar{M}^{λ} denote the closures of these spaces in \mathscr{L}^{λ} for the seminorm topology.

Remark. If $f \in \mathscr{M}_{+}$there is a sequence of step functions $f_{n} \in \mathscr{M}$ with $f_{n} \uparrow f$. If X is σ-finite there is a sequence of simple functions increasing to f.
3. The spaces $\left(\mathscr{L}^{2}\right)^{I}$. For an arbitrary measure space (X, S, v) we use the following approach to the integral.

If $f=\sum_{1}^{n} c_{i} \chi e_{i} \in \mathscr{M}_{+}$, we define

$$
\int f d v=\sum_{1}^{n} c_{i} v\left(e_{i}\right) \in \overline{\mathbf{R}} .
$$

If $f \in \mathbf{M}_{+}$we define

$$
\int f d v=\sup \left\{\int f_{a} d v, f_{a} \in \mathscr{M}_{+}, f_{a} \leq f\right\} \in \overline{\mathbf{R}}_{+} .
$$

Finally if $f \in \mathbf{M}$ and $\int f^{+} d \nu$ and/or $\int f^{-} d \nu<\infty$, we define

$$
\int f d v=\int f^{+} d v-\int f^{-} d v
$$

Then $\mathscr{L}^{1}(X, S, v)=\mathscr{L}^{1}(v)=\left\{f \in \mathbf{M}: \int f d v \in \mathbf{R}\right\}$ is the usual space of integrable functions without identifications. If $f_{n} \in \mathbf{M}_{+}$and $f_{n} \uparrow f \in \mathscr{L}^{1}$ then

$$
\lim _{n \rightarrow \infty} \int f_{n} d v=\int f d \nu
$$

Given a space $\mathscr{L}^{\lambda}(X, S, \mu)$ and positive measure v on S, we define

$$
\lambda^{*}(v)=\sup \left\{\int f d v, f \in \mathscr{M}_{+}^{\lambda}, \lambda(f) \leq 1\right\} \leq+\infty .
$$

(For $g \in M_{+}, d v=g \circ d \mu$, we have $\lambda^{*}(v)=\lambda^{*}(g)$.)
Given $\mathscr{L}^{\lambda}(X, S, \mu)$, set $S^{\lambda}=\left\{e \in S: \chi e \in \mathscr{L}^{\lambda}\right\}$. For $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ define, on S^{λ},

$$
\mu_{\varphi}(e)=\varphi(\chi e) \in \mathbf{R}
$$

and extend the definition to all of S by

$$
\mu_{\varphi}(e)=\sup \left\{\mu\left(e^{\prime}\right), e^{\prime} \in S^{\lambda}, e^{\prime} \subset e\right\}
$$

Then $\mu_{\varphi}: S \rightarrow \overline{\mathbf{R}}_{+}$and standard arguments show that μ_{φ} is a measure on S that is absolutely continuous with respect to μ.

If $f \in \mathscr{L}_{+}^{\lambda}$ and $f_{n} \uparrow f, f_{n} \in \mathscr{M}_{+}$, then $f_{n} \in \mathscr{M}_{+}^{\lambda}$ and $f-f_{n} \downarrow 0$. Hence, using (I φ)

$$
\begin{equation*}
\int f d \mu_{\varphi}=\lim _{n \rightarrow \infty} \int f_{n} d \mu_{\varphi}=\lim _{n \rightarrow \infty} \varphi\left(f_{n}\right)=\varphi(f), \tag{3.1}
\end{equation*}
$$

and (3.1) remains valid in \mathscr{L}^{λ} since (3.1) holds for f^{+}and f^{-}. Thus every $\varphi \in\left(L^{\lambda}\right)_{+}^{I}$ can be expressed as an integral with respect to the corresponding measure μ_{φ}. Furthermore

$$
\lambda^{*}\left(\mu_{\varphi}\right) \leq \sup \left\{\int f d \mu_{\varphi}, \lambda(f) \leq 1\right\}=\sup \{\varphi(f), \lambda(f) \leq 1\}=\|\varphi\|
$$

If $f \in \mathscr{L}_{+}^{\lambda}, \lambda(f) \neq 0, \epsilon>0, f_{n} \uparrow f, f_{n} \in \mathscr{M}_{+}^{\lambda}$, then for n sufficiently large,

$$
\begin{gathered}
\int f d \mu_{\varphi} \leq \int f_{n} d \mu_{\varphi}+\varepsilon \\
\int \frac{f_{n}}{\lambda\left(f_{n}\right)} d \mu_{\varphi} \geq \int \frac{f_{n}}{\lambda(f)} d \mu_{\varphi} \geq \int \frac{f}{\lambda(f)} d \mu_{\varphi}-\frac{\varepsilon}{\lambda(f)}
\end{gathered}
$$

Since for $\varphi \in\left(L^{\lambda}\right)_{+}^{*},\|\varphi\|=\sup \{\varphi(f), f \geq 0, \lambda(f) \leq 1\}$ it follows that $\lambda^{*}\left(\mu_{\varphi}\right) \geq\|\varphi\|$ and equality holds.

Conversely for an arbitrary countably additive measure v on S with $\lambda^{*}(\nu)<\infty$, define

$$
\varphi_{v}(f)=\int f d v, \quad f \in \mathscr{L}^{\lambda}
$$

If $f_{n} \uparrow f$ with $f_{n} \in \mathscr{M}_{+}^{\lambda}$ for all n and $f \in \mathscr{L}_{+}^{\lambda}$, then

$$
\int f d v=\lim _{n \rightarrow \infty} \int f_{n} d v \leq \lim _{n \rightarrow \infty} \lambda\left(f_{n}\right) \lambda^{*}(v) \leq \lambda(f) \lambda^{*}(v)<\infty
$$

Considering f^{+}and f^{-}it follows that if $f \in \mathscr{L}^{\lambda}$ then $f \in \mathscr{L}^{1}(v)$ and $\left(I \varphi_{v}\right)$ is implied by the general Lebesgue convergence theorem. Thus $\varphi_{v} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$.

Writing $\varphi^{\prime}=\varphi_{v}, \varphi^{\prime}$ determines a positive measure $\mu_{\varphi^{\prime}}$ with $\varphi_{v}(f)=\int f d \mu_{\varphi^{\prime}}$ for all f in \mathscr{L}^{λ}. Since the integrals with respect to ν and $\mu_{\varphi^{\prime}}$ coincide on $\mathscr{M}_{+}^{\lambda}$,

$$
\lambda^{*}(\nu)=\lambda^{*}\left(\mu_{\varphi^{\prime}}\right)=\left\|\varphi_{v}\right\| .
$$

Dropping the assumption that φ is positive, if $\varphi \in\left(\mathscr{L}^{2}\right)^{I}$, then $\varphi=\varphi^{+}-\varphi^{-}$with φ^{+}, φ^{-}and $|\varphi|=\varphi^{+}+\varphi^{-}$in $\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$. Since \mathscr{L}^{λ} is a seminormed vector lattice, $\|\varphi\|=\||\varphi|\|$ for every $\varphi \in\left(\mathscr{L}^{\lambda}\right)^{*}$. We set $\mu_{\varphi}=\mu_{\varphi^{+}}-\mu_{\varphi^{-}}$where it is defined (which includes S^{λ}), define

$$
\mathscr{L}^{1}\left(\mu_{\varphi}\right)=\mathscr{L}^{1}\left(\mu_{|\varphi|}\right),
$$

and write

$$
\int f d \mu_{\varphi}=\int f d \mu_{\varphi^{+}}-\int f d \mu_{\varphi^{-}}, \quad f \in \mathscr{L}^{1}\left(\mu_{\varphi}\right)
$$

Since $\mathscr{L}^{\lambda} \subset \mathscr{L}^{1}\left(\mu_{|\varphi|}\right)$ this is finite for every $f \in \mathscr{L}^{\lambda}$ and

$$
\int f d \mu_{\varphi}=\varphi^{+}(f)-\varphi^{-}(f)=\varphi(f)
$$

We set $\lambda^{*}\left(\mu_{\varphi}\right)=\lambda^{*}\left(\mu_{|\varphi|}\right)$. Using the above results for $\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$,

$$
\lambda^{*}\left(\mu_{\varphi}\right)=\lambda^{*}\left(\mu_{|\varphi|}\right)=\||\varphi|\|=\|\varphi\| .
$$

THEOREM 3.1. To each $\varphi \in\left(\mathscr{L}^{\lambda}\right)^{I}$ corresponds measures $\nu_{1}=\mu_{\varphi^{+}}, v_{2}=\mu_{\varphi}$ - on S, determined by φ^{+}and φ^{-}, with

$$
\begin{equation*}
\varphi(f)=\int f d v_{1}-\int f d v_{2} \tag{3.2}
\end{equation*}
$$

and $\|\varphi\|=\lambda^{*}\left(\mu_{\varphi}\right)=\lambda^{*}\left(\nu_{1}+\nu_{2}\right)$. Conversely if ν_{1} and ν_{2} are measures on S with $\lambda^{*}\left(v_{i}\right)<\infty, i=1,2$, then (3.2) gives $\varphi \in\left(\mathscr{L}^{\lambda}\right)^{I}$ with $\|\varphi\|=\lambda^{*}\left(v_{1}+v_{2}\right)$.

Theorem 3.2. [5]. $\left(L^{\lambda}\right)^{I}=\left(L^{\lambda}\right)^{*}$ if and only if
($\left.I^{\lambda}\right) f_{n} \downarrow 0, f_{n} \in \mathscr{L}^{\lambda}$, implies that $\lim _{n \rightarrow \infty} \lambda\left(f_{n}\right)=0$.
Proof. Since $\left|\varphi\left(f_{n}\right)\right| \leq\|\varphi\| \lambda\left(f_{n}\right)$, $\left(I^{\lambda}\right)$ implies ($I \varphi$) for every $\varphi \in\left(L^{\lambda}\right)^{*}$. Conversely if $(I \varphi)$ holds for every $\varphi \in\left(L^{\lambda}\right)^{*},\left(I^{\lambda}\right)$ holds [5, p. 671, Lemma 22.6].

Theorem 3.3. If $\left(L^{\lambda}\right)^{I}=\left(L^{\lambda}\right)^{*}$ then $\bar{M}^{\lambda}=L^{\lambda}$.
Proof. \mathscr{M}^{λ} is a vector subspace of L^{λ}. Assuming that $\overline{\mathscr{M}}^{\lambda} \neq L^{\lambda}$, let $f^{\prime} \in L^{\lambda}-\bar{M}^{\lambda}$. A corollary of the Hahn-Banach theorem then shows that there exists $\varphi \in\left(L^{\lambda}\right)^{*}$ with $\varphi(f)=0, f \in \mathscr{M}^{\lambda}, \varphi\left(f^{\prime}\right) \neq 0$. Since

$$
\varphi\left(f^{\prime}\right)=\varphi^{+}\left(f^{\prime+}\right)-\varphi^{+}\left(f^{\prime-}\right)-\varphi^{-}\left(f^{\prime+}\right)+\varphi^{-}\left(f^{\prime-}\right)
$$

we can assume that $\varphi, f^{\prime}>0$. Then

$$
\varphi(f)=\int f d \mu_{\varphi}, \quad f \in L^{\lambda}
$$

There exists a sequence $f_{n} \in M^{\lambda}$ with $f_{n} \uparrow f^{\prime}$. Using the countable additivity of φ and the Lebesgue monotone convergence theorem, $0<\varphi\left(f^{\prime}\right)=\lim _{n \rightarrow \infty} \int f_{n} d \mu_{\varphi}=0$, a contradiction.
4. The spaces $\left(\mathscr{L}^{2}\right)^{\infty}$. In [3] Zorn's lemma was used to show that in an arbitrary measure space (X, S, μ) there exists a decomposition

$$
X=X_{1} \cup X_{2}
$$

with $X_{1} \cap X_{2}=\phi ; X_{2}=\cup_{a \in \mathscr{A}} e_{a}, 0<\mu\left(e_{a}\right)<\infty, a \in \mathscr{A} ; \mu\left(e_{a} \cap e_{a^{\prime}}\right)=0, a \neq a^{\prime}$, and such that if $e^{\prime} \in S, e^{\prime} \subset X_{1}$ then either $\mu\left(e^{\prime}\right)=0$ or $\mu\left(e^{\prime}\right)=+\infty$. For each $e \in S$ with $0<\mu(e)<\infty$, there is then a countable collection of subscripts $\left\{a_{i}\right\}$ with

$$
\mu(e)=\sum_{1}^{\infty} \mu\left(e \cap e_{a_{i}}\right)
$$

Such a decomposition was called an $N D$-decomposition.
When X is σ-finite, X_{1} and X_{2} are measurable, $\mu\left(X_{1}\right)=0$ and X_{2} is expressed as a union of sets of finite positive measure with null intersections.

Fixing an $N D$-decomposition, where $\left(e_{a}, S_{a}, \mu\right)$ is the restriction of (X, S, μ) to e_{a}, we set

$$
\mathbf{M}^{\mathscr{L}}=\prod_{a \in \mathscr{A}} \mathbf{M}\left(e_{a}, S_{a}, \mu\right)
$$

and denote points by $g_{\mathscr{A}}=\left\{g_{a} \in \mathbf{M}\left(e_{a}, S_{a}, \mu\right) ; a \in \mathscr{A}\right\}$.
If $E \in S$ is σ-finite, then $\mu\left(E \cap e_{a}\right)=0$ except for a countable collection $\left\{a_{i}\right\}$. Defining

$$
\begin{gathered}
g_{E}=\left(\sup _{i} g_{a_{i}}\right) \chi_{E} \text { if } \mu\left(E \cap e_{a}\right) \neq 0 \text { for at least one } a \in \mathscr{A} \\
g_{E}=0 \text { if } \mu\left(E \cap e_{a}\right)=0 \text { for all } a \in \mathscr{A}
\end{gathered}
$$

we have $g_{E} \in \mathbf{M}(X, S, \mu)$. For an arbitrary length function λ on (X, S, μ) we define

$$
\lambda^{*}\left(g_{\mathscr{A}}\right)=\sup \left\{\lambda *\left(g_{E}\right), E \in S, E \sigma \text {-finite }\right\},
$$

and denote by $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}$ the elements $g_{\mathscr{A}} \in \mathbf{M}^{\mathscr{A}}$ with $\lambda^{*}\left(g_{\mathscr{A}}\right)<\infty$. Then $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}$ is a vector subspace of $\mathbf{M}^{\mathscr{L}}$ on which λ^{*} is a seminorm; a norm with identifications modulo λ^{*}-null functions. We note that

$$
\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}} \subset \prod_{a \in \mathscr{A}} \mathscr{L}^{\lambda^{*}}\left(e_{a}, S_{a}, \mu\right)
$$

Lemma 4.1. If $\lambda^{*}\left(g_{\mathscr{A}}\right)<\infty, f_{0} \in \mathscr{L}^{\lambda}$, then for at most countably many $a \in \mathscr{A}$

$$
\begin{equation*}
\int f_{0} g_{a} d \mu \neq 0 \tag{4.1}
\end{equation*}
$$

Proof. There is no loss of generality in assuming that each $g_{a} \geq 0$ almost everywhere in e_{a} and that $f_{0}>0, \lambda\left(f_{0}\right)=1$. Suppose that (4.1) holds for uncountably many $a \in \mathscr{A}$. There then exists $d>0$ and $\left\{a_{i}\right\}$ with

If $E=\cup e_{a_{i}}$,

$$
\lambda^{*}\left(g_{\mathscr{A}}\right) \geq \lambda^{*}\left(g_{E}\right) \geq \int f_{0} g_{E} d \mu=\sum_{1}^{\infty} \int f_{0} g_{a_{0}} d \mu=+\infty
$$

giving a contradiction.
Definition. For each $g_{\mathscr{A}} \in\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}, f \in \mathscr{L}^{\lambda}$ define

$$
e\left(g_{\mathscr{A}}, f\right)=e(f)=\cup\left\{e_{a}, a \in \mathscr{A}: \int\left|f g_{a}\right| d \mu>0\right\}
$$

Set $g_{f}=g_{e(f)}$ if $e(f) \neq \phi ;=0$ if $e(f)=\phi$. Then $e(f) \in S$, is σ-finite and $g_{f} \in \mathbf{M}$. We denote the complement of $e(f)$ by $\tilde{e}(f)$.

Lemma 4.2. If $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ and μ_{φ} is the corresponding measure on S, then each set $e_{a}, a \in \mathscr{A}$, is $\mu_{\varphi} \sigma$-finite.

Proof. Let $\left\{e_{b}, b \in B\right\}$ denote the measurable subsets of e_{a} satisfying

$$
0<\mu_{\varphi}\left(e_{b}\right)<\infty, \quad 0<\mu\left(e_{b}\right) \leq \mu\left(e_{a}\right)
$$

Order collections of disjoint subsets from $\left\{e_{b}\right\}$ by inclusion. Each chain then has an upper bound so that Zorn's lemma implies the existence of a maximal collection which is countable since $\mu\left(e_{a}\right)<\infty$. Let e_{a}^{\prime} denote the union of the sets in this maximal collection. Then $e_{a}-e_{a}^{\prime} \in S$. If $\mu\left(e_{a}-e_{a}^{\prime}\right)=0, \mu_{\varphi}\left(e_{a}-e_{a}^{\prime}\right)=0$. If $\mu\left(e_{a}-e_{a}^{\prime}\right)>0$, $\mu_{\varphi}\left(e_{a}-e_{a}^{\prime}\right)=0$ or $+\infty$ as does e^{*} for any $e^{*} \in S, e^{*} \subset e_{a}-e_{a}^{\prime}$. Thus $e_{a}-e_{a}^{\prime}$ is either μ_{φ} null or μ_{φ} purely infinite. Since the definition of μ_{φ} does not permit purely infinite sets we conclude that $\mu_{\varphi}\left(e_{a}-e_{a}^{\prime}\right)=0$ and thus e_{a} is $\mu_{\varphi} \sigma$-finite.

If $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ then for each $e_{a}, a \in \mathscr{A}, \mu_{\varphi}$ is absolutely continuous with respect to μ on e_{a}, e_{a} is μ-finite and $\mu_{\varphi} \sigma$-finite and the Radon-Nikodym theorem gives $g_{a}: e_{a} \rightarrow \mathbf{R}^{+}$with $g_{a} \in \mathbf{M}$ and such that

$$
\mu_{\varphi}(e)=\int_{e} g_{a} d \mu, \quad e \in S, \quad e \subset e_{a}
$$

It then follows that for each $f \in \mathscr{L}^{\lambda}$,

$$
\begin{equation*}
\varphi\left(f_{e}\right)=\int_{e} f d \mu_{\varphi}=\int_{e} f g_{a} d \mu, \quad e \in S, \quad e \subset e_{a}, \quad a \in \mathscr{A} \tag{4.2}
\end{equation*}
$$

Set $g_{\mathscr{A}}=\left\{g_{a}, a \in \mathscr{A}\right\}$. Then

$$
\lambda^{*}\left(g_{s \Omega}\right)=\sup \left\{\int_{E} f d \mu_{\varphi} ; E \sigma \text {-finite, } \lambda(f) \leq 1\right\} \leq \lambda^{*}\left(\mu_{\varphi}\right)=\|\varphi\|
$$

Thus to each $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ corresponds $g_{\mathscr{A}} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{A}}$ related by (4.2). It follows from (4.2) that if $f \in \mathscr{L}^{\lambda}$,

$$
\varphi\left(|f| \chi e_{a}\right) \neq 0
$$

iff $e_{a} \subset e\left(g_{a}, f\right)=e(f)$, and in particular for at most a countable collection of subscripts a. For an arbitrary $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$,

$$
e(\varphi, f)=\cup\left\{e_{a}, a \in \mathscr{A}: \varphi\left(|f| \chi e_{a}\right) \neq 0\right\}
$$

will coincide with $e\left(g_{\mathscr{A}}, f\right)$ for the $g_{\mathscr{A}}$ determined by φ and will also be denoted by $e(f)$.

Theorem 4.1. There is an isometric isomorphism between $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}$ (with identifications) and the subspace of $\left(\mathscr{L}^{\lambda}\right)^{I}$ of different elements φ with $\varphi(f \chi \tilde{e}(f))=0$ for each $f \in \mathscr{L}^{\lambda}$. To each $g_{\mathscr{A}}$ corresponds φ by

$$
\begin{equation*}
\varphi(f)=\int f g_{f} d \mu, \quad f \in \mathscr{L}^{\lambda} \tag{4.3}
\end{equation*}
$$

Proof. Let $g_{\mathscr{A}} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{L}}$. Defining φ by (4.3),

$$
|\varphi(f)| \leq \lambda(f) \lambda^{*}\left(g_{f}\right) \leq \lambda(f) \lambda^{*}\left(g_{\mathscr{A}}\right)<\infty
$$

and $\varphi: \mathscr{L}^{\lambda} \rightarrow \mathbf{R}$.
Since $e(a f)=e(f), a \neq 0 ; e\left(f+f^{\prime}\right) \subset e(f) \cup e\left(f^{\prime}\right)$, (a countable union of sets $\left.e_{a}, a \in \mathscr{A}\right)$. It is easy to verify that $\left(f+f^{\prime}\right) g_{f+f^{\prime}}=f g_{f}+f^{\prime} g_{f^{\prime}}$ almost everywhere and φ is linear and so in $\left(\mathscr{L}^{\lambda}\right)_{+}^{*}$. To see that $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ let $f_{n} \in \mathscr{L}^{\lambda}, f_{n} \downarrow$. Since $e\left(f_{n}\right) \subset e\left(f_{1}\right)$,

$$
\varphi\left(f_{n}\right)=\int f_{n} g_{f_{n}} d \mu=\int f_{n} g_{f_{1}} d \mu, \quad n=1,2, \ldots
$$

The Lebesgue general convergence theorem then implies that $\lim _{n} \varphi\left(f_{n}\right)=0$.
Finally we observe that $\int f \chi \tilde{e}(f) g_{a} d \mu=0$ for every $a \in \mathscr{A}$ which implies that $\varphi(f \chi \tilde{e}(f))=0$ for each f in \mathscr{L}^{λ}.

Let $g_{\mathscr{A}} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{Q}}$ and define φ by (4.3). Then $\|\varphi\| \leq \lambda^{*}\left(g_{\mathscr{A}}\right)$. As shown after Lemma 4.2, φ determines $g_{\mathscr{A}}^{\prime} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{A}}$ with $\lambda^{*}\left(g_{\mathscr{A}}^{\prime}\right) \leq\|\varphi\|$ and with (4.2) holding. Thus if $f \in \mathscr{L}^{\lambda}, a \in \mathscr{A}$,

$$
\int f\left(g_{a}-g_{a}^{\prime}\right) d \mu=\varphi(f)-\varphi(f)=0
$$

This implies that $\lambda^{*}\left(g_{\mathscr{A}}-g_{\mathscr{A}}^{\prime}\right)=0$ and thus

$$
\lambda^{*}\left(g_{\mathscr{}}\right)=\lambda^{*}\left(g_{\mathscr{A}}^{\prime}\right) \leq\|\varphi\| \leq \lambda^{*}\left(g_{\mathscr{A}}\right)
$$

so that $\|\varphi\|=\lambda^{*}\left(g_{\mathscr{A}}\right)$.
On the other hand if we start with $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}, \varphi$ determines $g_{\mathscr{A}}^{\prime} \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{A}}$ with $\lambda^{*}\left(g_{\mathscr{A}}^{\prime}\right) \leq\|\varphi\|$. As in the preceding paragraph, $g_{\mathscr{A}}^{\prime}$ determines φ^{\prime} with $\left\|\varphi^{\prime}\right\|=$ $\lambda^{*}\left(g_{\mathscr{A}}^{\prime}\right)$. Furthermore for every $f \in \mathscr{L}^{\lambda}$,

$$
\varphi^{\prime}(f)=\varphi^{\prime}(f \chi e(f))=\varphi(f \chi e(f))
$$

It follows that $\varphi=\varphi^{\prime}$ if and only if $\varphi(f \chi \tilde{e}(f))=0$ for every $f \in \mathscr{L}^{\lambda}$.
We next consider the behavior of the functionals in $\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ on the sets $\tilde{e}(f)$, $f \in \mathscr{L}_{+}^{\lambda}$. Since $e(f)$ is σ-finite, $\tilde{e}(f) \in S$. There are three possibilities
(i) $\mu(\tilde{e}(f))=0$. Then, setting $f^{0}=f \chi \tilde{e}(f), \lambda\left(f^{0}\right)=0$ and so $\varphi\left(f^{0}\right)=0$;
(ii) $0<\mu(\tilde{e}(f))<\infty$. Then $\tilde{e}(f)$ is the union of a null set and an most countable collection of sets $e_{a}, a \in \mathscr{A}$. If $\mu\left(\tilde{e}(f) \cap e_{a}\right) \neq 0, e_{a}$ is not contained in $e(f)$ and $\varphi\left(f^{0} \chi e_{a}\right)=\int f g_{a} d \mu=0$. It follows again that $\varphi\left(f^{0}\right)=0$.
(iii) $\mu(\tilde{e}(f))=+\infty$. If X_{1} contains a purely infinite set $s \in S$ with $\varphi\left(f_{s}\right) \neq 0$, $\varphi\left(f_{s} \chi \tilde{e}\left(f_{s}\right)\right) \neq 0$ and φ has no isometric correspondent in $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{L}}$. A simple example is given by taking $X=\{a, b\}, S=\mathscr{P}(X), \mu\{a\}=1, \mu\{b\}=+\infty, \lambda(f)=$ $\max \{f(a), f(b)\}, X_{1}=\{b\}, X_{2}=\{a\}$. Then $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}$ coincides with the functionals vanishing at b and is different from $\left(\mathscr{L}^{\lambda}\right)^{I}=\left(\mathscr{L}^{\lambda}\right)^{*}$.

On the other hand if $\tilde{e}(f)$ is σ-finite it follows as in (ii) that $\varphi\left(f^{0}\right)=0$.
Theorem 4.2. If $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ then $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{L}}$ if and only if for every $s \in S^{\lambda}$,

$$
\begin{equation*}
\varphi(\chi s)=\mu_{\varphi}(s)=\sup \left\{\varphi\left(\chi s^{\prime}\right)=\mu_{\varphi}\left(s^{\prime}\right), s^{\prime} \subset s, \mu\left(s^{\prime}\right)<\infty\right\} . \tag{4.4}
\end{equation*}
$$

Proof. Consider $f \in \mathscr{L}_{+}^{\lambda}, f^{0}=f \chi \tilde{e}(f)$. There then exists $\left\{f_{n}\right\} \in \mathscr{M}_{+}^{\lambda}, f_{n} \uparrow f^{0}$ with

$$
\varphi\left(f^{0}\right)=\int f^{0} d \mu_{\varphi}=\lim _{n \rightarrow \infty} \int f_{n} d \mu_{\varphi}
$$

Now $f_{n}=\sum_{i}^{n} c_{i} \chi s_{i}$ with each $s_{i} \in S^{\lambda}, s_{i} \subset \tilde{e}(f)$. If $s \subset s_{i}, \mu_{\varphi}(s)<\infty$ then $s \in S^{\lambda}$,

$$
\mu_{\varphi}(s)=\varphi(\chi s) \leq \frac{1}{c_{i}} \varphi(f \chi s)=0
$$

as in (i) and (ii) above. It follows that $\int f_{n} d \mu_{\varphi}=0$ for each n and therefore $\varphi\left(f^{0}\right)=0$.

Conversely if $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{L}}$ and $s \in S^{\lambda}$, then

$$
\varphi(\chi s)=\varphi(\chi s \cap e(\chi s))=\varphi\left(\chi \bigcup_{1}^{\infty} s \cap e_{a_{i}}\right)
$$

for certain $a_{i} \in \mathscr{A}$. Then (4.4) follows from (Iq).
THEOREM 4.3. $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}=\left(\mathscr{L}^{\lambda}\right)^{I}$ if and only if (4.4) holds for every $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$. If the simple functions are dense in \mathscr{L}^{λ}, (4.4) holds for every $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I} .\left(\mathscr{L}^{\lambda}\right)^{\mathscr{Q}}=$ $\left(\mathscr{L}^{\lambda}\right) *$ if and only if $\left(I^{\lambda}\right)$ holds and $\bar{M}^{\lambda}=\mathscr{L}^{\lambda}$.

Proof. The first statement follows from Theorem 4.2.
If $\bar{M}^{\lambda}=\mathscr{L}^{\lambda}$ and $s \in S^{\lambda}$ then, given $\varepsilon>0$, there exists $f=\sum_{1}^{m} c_{i} \chi s_{i} \in M^{\lambda}$ with $\lambda(\chi s-f)<\varepsilon$. If $s^{\prime}=\{x: f(x)>0\} \cap s, \mu\left(s^{\prime}\right)<\infty$ and

$$
\lambda\left(\chi s-\chi s^{\prime}\right) \leq \lambda(\chi s-f)<\varepsilon
$$

Thus for any $\varphi \in\left(\mathscr{L}^{2}\right)_{+}^{I}$,

$$
\varphi(\chi s)-\varphi\left(\chi s^{\prime}\right) \leq\|\varphi\| \lambda\left(\chi s-\chi s^{\prime}\right)<\|\varphi\| \varepsilon
$$

which implies (4.4).
If $\bar{M}^{\lambda}=\mathscr{L}^{\lambda},\left(\mathscr{L}^{\lambda}\right)^{\mathscr{L}}=\left(\mathscr{L}^{\lambda}\right)^{I}$ and, if $\left(I^{\lambda}\right)$ holds

$$
\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}=\left(\mathscr{L}^{\lambda}\right)^{I}=\left(\mathscr{L}^{\lambda}\right)^{*}
$$

by Theorem 3.3.
Now assume that $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}=\left(\mathscr{L}^{\lambda}\right)^{*}$. Since $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}} \subset\left(\mathscr{L}^{\lambda}\right)^{I} \subset\left(\mathscr{L}^{\lambda}\right)^{*}$ it follows from Theorem 3.3 that $\left(I^{\lambda}\right)$ holds and $\bar{M}^{\lambda}=\mathscr{L}^{\lambda}$. Assuming that $\bar{M}^{\lambda} \neq \mathscr{L}^{\lambda}$, an argument similar to that in Theorem 3.3 gives the existence of $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{\mathscr{L}}$, $f \in \mathscr{L}_{+}^{\lambda}$ with $\varphi(f)>0$ and $\varphi(g)=0$ for every g in M^{λ}. Then $\varphi(f)=\varphi(f \chi e(f))$ with $e(f) \sigma$-finite. Since there then exists $\left\{g_{n}\right\} \subset M^{\lambda}$ with $g_{n} \uparrow f \chi e(f)$,

$$
\varphi(f)=\lim _{n \rightarrow \infty} \varphi\left(g_{n}\right)=0
$$

giving a contradiction.
We observe that the spaces \mathscr{L}^{∞} with X not finite gives examples where

$$
\left(\mathscr{L}^{\lambda}\right)^{\mathscr{Q}} \neq\left(\mathscr{L}^{\lambda}\right)^{I}=\mathscr{L}^{1} \quad \text { with } \quad \bar{M}^{\lambda} \neq \mathscr{L}^{\lambda} .
$$

Note that in this case $\left(\mathscr{L}^{\lambda}\right)^{\mathscr{L}} \neq\left(\mathscr{L}^{\lambda}\right)^{*}$.
5. The spaces $\mathscr{L}^{\lambda^{*}}$. If $\varphi \in \mathscr{L}_{+}^{\lambda^{*}}$ there exists $g \in \mathbf{M}_{+}$with $\lambda^{*}(g)=\|\varphi\|$ and

$$
\varphi(f)=\int f g d \mu \in \mathbf{R}, \quad f \in \mathscr{L}^{\lambda}
$$

It is clear that $\varphi \in\left(\mathscr{L}^{\lambda}\right)_{+}^{I}$ with $\mu_{\varphi}(s)=\int_{s} g d \mu, s \in S^{\lambda}$.

For an arbitrary $N D$-decomposition define $g_{\mathscr{A}}=\left\{g \chi e_{a} ; a \in \mathscr{A}\right\}$. If $s \in S^{\lambda}, g \in$ $\mathscr{L}^{1}(s),\{x \in s: g(x) \neq 0\}$ is σ-finite and (4.4) follows easily. Thus $\mathscr{L}^{\lambda *} \subset\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}}$ and, in general,

$$
\begin{equation*}
\mathscr{L}^{\lambda^{*}} \subset\left(\mathscr{L}^{\lambda}\right)^{\mathscr{A}} \subset\left(\mathscr{L}^{\lambda}\right)^{I} \subset\left(\mathscr{L}^{\lambda}\right)^{*} \tag{5.1}
\end{equation*}
$$

On the other hand if $\varphi \in\left(L^{\lambda}\right)^{\mathscr{A}}$, then $\varphi \in L^{\lambda *}$ if and only if there exists $g \in \overline{\mathbf{M}}$ with $\lambda^{*}\left[\left(g-g_{a}\right) \chi e_{a}\right]=0$ for every $a \in \mathscr{A}$.

We observe that if X is σ-finite or if every $f \in L^{\lambda}$ has σ-finite support then $L^{\lambda *}=\left(L^{\lambda}\right)^{\mathscr{A}}=\left(L^{\lambda}\right)^{I}$.

Speaking loosely, if $\varphi \in\left(L^{\lambda}\right)^{\mathscr{A}}$ then φ will be in $L^{\lambda *}$ if it is possible to piece the g_{a} together to form a measurable function g on X. Examples are given in [3] for L^{1} where the $\left\{g_{a}\right\}$ determine a function g which is not measurable and where there can be no function g equal to each g_{a} almost everywhere in $e_{a}, a \in \mathscr{A}$.

Theorem 5.1. If $L^{\lambda *}=\left(L^{\lambda}\right)^{*}$ then $\left(I^{\lambda}\right)$ holds and $\bar{M}^{\lambda}=L^{\lambda}$. If $\left(I^{\lambda}\right)$ holds, if $\bar{M}^{\lambda}=L^{\lambda}$ and (5.2) to each $\varphi \in\left(L^{\lambda}\right)^{*}$ corresponds a σ-finite set E with $\varphi(f \chi E)=\varphi(f)$ for every $f \in L^{\lambda}$, then $L^{\lambda *}=\left(L^{\lambda}\right)^{*}$.

Proof. The first part is given by Theorem 4.2 since $L^{\lambda *}=\left(L^{\lambda}\right)^{*}$ implies that $L^{\lambda *}=\left(L^{\lambda}\right)^{\mathscr{L}}$.

Assuming $\left(I^{\lambda}\right)$ and $\bar{M}^{\lambda}=L^{\lambda}$, then $\left(L^{\lambda}\right)^{\mathscr{A}}=\left(L^{\lambda}\right)^{*}$ by Theorem 4.2. To $\varphi \in\left(L^{\lambda}\right)^{*}$ corresponds $g_{\mathscr{A}}$ with $\lambda^{*}\left(g_{\mathscr{A}}\right)=\|\varphi\|$. By (5.2) $\varphi(f)=\varphi(f \chi E)$ for every $f \in L^{\lambda}$ where E is σ-finite, $\mu\left(E \cap e_{a}\right)=0$ for all but a countable set of subscripts in \mathscr{A}, say $a_{i}, i=1,2, \ldots$ If $g=\sum_{1}^{\infty} g_{a_{i}}$ then

$$
\varphi(f)=\int f g_{f} d \mu=\int f g d \mu
$$

for every $f \in L^{\lambda}$ and $\lambda^{*}(g)=\|\varphi\|$. We conclude that $L^{\lambda *}=\left(L^{\lambda}\right)^{\mathscr{L}}=\left(L^{\lambda}\right)^{*}$.
That (5.2) is not a necessary condition is shown by the following
Example. Let $X=(0,1), S=\mathscr{P}(X), \mu(e)=$ number of points in $e(=+\infty$ if e is infinite); $\lambda(f)=\int f d \mu, f \in \mathbf{M}_{+}$. Then $L^{\lambda}=L^{1}$. An $N D$ decomposition of X is given by $X_{1}=\phi, X_{2}=\bigcup_{a \in(0,1)}\{a\}$ (where the sets are disjoint). Since $\left(I^{\lambda}\right)$ holds in L^{1} and $\bar{M}^{\lambda}=L^{1} ;\left(L^{1}\right)^{*}=\left(L^{1}\right)^{\mathscr{g}}=L^{\infty}$. Clearly each g determines $g=\sum g_{a} \in M$ so that $\left(L^{1}\right)^{*}=L^{\lambda *}$. However $\chi X \in\left(L^{\lambda}\right)^{*}$ without (5.2) holding.

Halperin [4] has solved the problem of necessary and sufficient conditions for the reflexivity of L^{λ}. His conditions (1.3), (1.3)* correspond to (5.2) for $\left(L^{\lambda}\right)^{*}$ and ($\left.L^{\lambda^{*}}\right)^{*}$ with $\mu\left(e_{i}\right)$ replaced by $\lambda\left(\chi e_{i}\right), \lambda^{*}\left(\chi e_{i}\right)$. The condition $\left(I^{\lambda}\right)$ together with $\bar{M}^{\lambda}=L^{\lambda}$ imply his (1.1) and $\bar{M}^{\lambda *}=L^{\lambda *}$ is his (1.2). We sketch a proof in the present context. It shows that when L^{λ} is reflexive (5.2) is a necessary condition.

Theorem 5.2. L^{λ} is reflexive if and only if
(i) $\left(I^{\lambda}\right)$ and $\left(I^{\lambda^{*}}\right)$ hold in L^{λ} and $L^{\lambda *}$;
(ii) $\bar{M}^{\lambda}=L^{\lambda}, \bar{M}^{\lambda *}=L^{\lambda *}$;
(iii) (5.2) holds in $\left(L^{\lambda}\right)^{*}$ and in $\left(L^{\lambda^{*}}\right)^{*}$;
(iv) Every $f \in \mathbf{M}$ can be expressed as $f=f_{1}+f_{2}$ with $\lambda^{* *}(f)=\lambda\left(f_{1}\right), \lambda^{* *}\left(f_{2}\right)=0$.

Proof. Necessity. By [4, Lemma 3.3] if $L^{\lambda}=\left(L^{\lambda}\right)^{* *}$ then $\left(L^{\lambda}\right)^{*}=L^{\lambda *}$ and $\left(L^{\lambda^{*}}\right)^{*}=L^{\lambda * *}=L^{\lambda}$. By Theorem 5.1 (i) and (ii) are necessary. (5.2) is then a consequence of (ii) in $L^{\lambda^{*}}$ and $L^{\lambda^{* *}}=L^{\lambda}$. As in [4] (iv) is also necessary.

Sufficiency. (i), (ii) and (iii) imply that $L^{\lambda^{*}}=\left(L^{\lambda}\right)^{*}$ and $L^{\lambda^{* *}}=\left(L^{\lambda^{*}}\right)^{*}$ by Theorem 5.1. As in [4] (1.4) implies that $L^{\lambda^{* *}}=L^{\lambda}$ and completes the proof.

References

1. S. Banach, Théorie des opérations linéaires, Monografje Matematyczne Warsaw, 1932.
2. H. W. Ellis and Israel Halperin, Function spaces determined by a levelling length function, Canad. J. Math. 5 (1963), 576-592.
3. H. W. Ellis and D. O. Snow, On ($\left.L^{1}\right)^{*}$ for general measure spaces, Canad. Math. Bull. 6 (1963), 211-230.
4. Israel Halperin, Reflexivity in the L^{λ} function spaces, Duke Math. J. 21 (1954), 205-208.
5. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces, Proc. Acad. Science, Amsterdam, (Indag. Math). Note V, A. 66 (1963), 496-504; Note VI, A. 66 (1963), 655-668.

Queen's University, Kingston, Ontario
University of Lethbridge, Lethbridge, Alberta

