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By a composition of a positive integer n is meant a 
representation of n as a sum of one or more positive integers 
where the order of the summands is taken into account. Thus 
for example 4 has the eight compositions 4 = 3 + 1 = 1 + 3 
= 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1. Now 
n can be written in the form 1 + 1 + . . . + 1 with n - 1 plus 
signs. Deletion of any subset of these plus signs breaks n into 
par ts which form a composition of n. Conversely, any comp­
osition of n corresponds to a subset of plus signs, so that the 
number of compositions of n is the number of subsets of a set 
with n - 1 elements, namely 2 x . In this note we obtain a 
number of generalizations of this ra ther obvious r emark by 
making use of the notion of a weighted composition and the 
method of generating se r ies . 

Let { w} : w , , w^, w?, . . . be a sequence of numbers 
called weights. Corresponding to such a sequence we define 
another sequence { W } : W., W?, W^, . . . by 

(1) W = 2 , w w, w . . . 
n a+b+c+. . . = n a b c 

where the sum is taken over al l compositions of n. If w n = 1 
for n = l , 2 , 3 , . . . then Wn will simply be the number of comp­
ositions of n which i s , as we have seen, 2n~ . We will 
consider ,more generally, relations between {w} and {W} . 

We form the power ser ies generating functions for {w} 
and { W} name ly 

(2) w(x) = 2 M w x11 

n=l n 

(3) W(x) = 2 °° W x n 

n=l n 
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and prove 

THEOREM 1. 

w(x) 
W(x) = 

W" 

1 - w(x) 

a n d 1 1 w<*> 
w ( x ) = ÏTWM ' 

The two par t s of the theorem are clearly equivalent so we 
prove only the first . Note that the coefficient of x21 in 
(w(x)) = (w.x + w ? x + • • • ) *s t^ ie s u m °f t e r m s waw^ 
where a + b + c + . . . =n and the number of summands in this 
last sum is k. Thus from (1) it follows that 

(4) W(x) - Z « (W(x))k = - ^ f . 
K=l 1 - w(x) 

as required. 

F rom the second form of theorem 1 it follows that 

(5) w(x) = » 2 * ( - W ( x ) ) k 

k=l 

and by comparing coefficients of x in (5) we obtain 

THEOREM 2. 

w(n) = S - ( . w )( - W, )( - W ) . . . 
a+b+c-f. . . = n a b c 

This result affords an inversion of (1) and our theorems reveal 
that in general the sequence {w} can be determined from the 
sequence {W} as easily as conversely. 

We consider next a few simple examples of the use of 
theorem 1. 

EXAMPLE 1. w = 1, n = 1 , 2 , 3 , . . . 
n 

2 3 
Here w(x) = x + x + x + . . . = x / ( l -x ) and W(x) = x / ( l -2x) = 

2 2 3 n-1 n n-1 
x + 2x + 2 x + . . . + 2 x + . . . so that Wn = 2 as has 
already been noted, 

xn+l 
EXAMPLE 2. w n = (-1) 
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Here w(x) = x - x2 + x3 - . . . = x/(l +x) and W(x) = x. Thus 
W, = 1 and Wn =0 for n > i. Interpreting this result in the 
light of (1) reveals that for n > 1 the number of compositions 
of n involving an even number of odd parts is the same as the 
number of compositions of n involving an odd number of odd 
parts. This result can also be obtained by a direct combinator­
ial argument. 

EXAMPLE 3. w =: n. 
n 

2 3 2 
Now w(x) = x + 2x + 3x + . • . = x/(l-x) and 

(6) W(x) = 2 °° W xn = x/(l-3x+x2). 
n=l n 

Cross multiplying in (6) and comparing coefficients of x gives 
Wt = 1, W2 = 3 and Wn+2 = 3Wn + i - Wn for n > 0, which 
determines {W} . We leave it to the reader to identify these 
numbers with a subset of the Fibonacci numbers defined by 
fQ = f{ = 1, fn.f2

 = ^n + 1 + n̂ (n > 0)- &1 * a c t ** * s readily 
proved in this case that Wn = ^2n-l a n c* *kat an explicit formula 
for W is given by 

EXAMPLE 4. W = n. 
n 

2 3 2 x 
Here W(x) ~ x + 2x + 3x + . . . = x/(l-x) and w(x) = r . 

1-x + x6, 

, , x + x2 2 4 5 7 8 
Thus w(x) = Ô = x + x - x - x + x + x - . . . so that 

1 - xJ 

{w} is a periodic sequence of period 6 which begins 1,1,0,-1, 
- 1 , 0 , . . . . Interpreting this result in the light of (1) yields the 
following theorem for which we have not been able to find a 
direct combinatorial proof. 

THEOREM 3. The number of compositions of n into parts 
= 1, 2, 4 or 5 (mod 6) and involving an even number of parts = 4 
or 5 (mod 6) exceeds by n the number of compositions of n into 
parts = 1, 2,4 or 5 (mod 6) and involving an odd number of parts 
= 4 or 5 (mod 6). 

The preceding examples are all special cases of 
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THEOREM 4. A l i n e a r r e c u r r e n c e r e l a t i on 

(8) a w + a w. + . . . + a w. = 0 (i > 0, a ^ 0) v ' o i 1 i+ 1 m i + m v m 

among the we igh t s in {w} induces and i s induced by such a 
r e l a t i on among the e l e m e n t s of {W} . 

Indeed if 

, % . , . m m - 1 
(9) A (x) = a x + a x + . . . + a , 

m o i m 
then 
. ~, / v , * / % ra , ~ m - l m - i m - 1 
10 A ( x w x ) - a w ( x ) x = S x J S . _ a w 

m o j = 0 i = j l + l i + 1-j , 
and 
(11) A (x)w(x) = B (x) = b x m + b , x m " + . . . + b t x 

m m o l m-1 
whe re 
(12) a. w + a. ^ w^ + . . . + a w = b # î j < m , 

j + 1 1 j + 2 2 m m - j j 

f rom the f o r m of the Cauchy p r o d u c t of p o w e r s e r i e s . Now 

(13) w(x) = B (x ) / [A (x) - B (x)] 
m m m 

so that 

(14) (a - b )W. + (a - b )W + - . . + a W. = 0, 
o o i l l i + 1 m i + m 

i > 0, a i 0> 
m 

a s r e q u i r e d . The a r g u m e n t i s c l e a r l y app l i c ab l e to p r o v e the 
c o n v e r s e p a r t of the t h e o r e m . 

Although the nex t e x a m p l e i s v e r y s i m p l e it can ea s i l y be 
shown tha t in it the e l e m e n t s of {w} do not sat isfy any l i n e a r 
r e c u r r e n c e with cons t an t coe f f i c i en t s . 

E X A M P L E 5. w = ( - i ) n + 4 / n ! 
n 

In t h i s c a s e w(x) = 1 - e~ and W(x) = e so tha t W = l / n ï 
n 

We conclude with s e v e r a l e x a m p l e s of a m o r e c o m p l i c a t e d 
n a t u r e , l eav ing a c o m m e n t about proof to the end. 

E X A M P L E 6. F o r e v e r y a i 0, a i l , w = — — — ( n a ) 
n a n a - 1 v n ' 
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if and only if W = - ( Y This may be obtained from 
n n v n- 1 ' 

theorem 1 by letting w(x) be the function determined by 

(15) x = w(x)(i - w(x ) ) a " 1 . 

EXAMPLE 7. For every a i 0, a i 1, w = — 7 ( n a ) if 
n na-1 v n 

and only if W = ( ) . We obtain this resul t by considering the 
n n 

function w(x) determined by 

IAL\ w ( x ) / . wJxKa-1 
( 1 6 ) x = ~ l 1 " " ) ' 

Note that in the las t two examples the sequences {w} and {W} 
cons i s t of integers if a i s an integer. The fact that if e i ther of 
the sequences cons i s t of integers then both must be of this form 
fol lows direct ly from (1) and theorem 2. 

Our final example m a k e s use of the invers ion of the function 
-w(x) 

x = w(x) e 
n-1 n 

EXAMPLE 8. w = *?—- if and only if W = ^ 7 . This i s 
n n! 7 n n! 

obtained by considering the function w(x) determined by 

(17) x = w(x) e ~ w ( x ) . 

The resu l t s of the las t three examples involve an appl ica­
tion of Lagrange1 s coefficient formula for Taylor s e r i e s 
expans ions , namely: if y = w ( x ) , w = 0 , w , ^ 0 then 

f(y) = S . °° c . x 1 

1 = - 00 1 
where 

fT(y) . ncn^ 
x11 y 

a s a Laurent s e r i e s in y . Thus 

J _ _ n c n 

if x y . 
00 1 

y = S . w. x = w(x). 
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