WEIGHTED COMPOSITIONS
L. Moser and E. L. Whitney
(received October 17, 1960)

By a composition of a positive integer n is meant a
representation of n as a sum of one or more positive integers
where the order of the summands is taken into account. Thus
for example 4 has the eight compositions 4 =3+ 1 =1+ 3
=2+2=2+1+1=1+2+414=1+1+2=1+1+1+1. Now
n can be written in the form 1 +1+ ... + 1 with n - 1 plus
signs. Deletion of any subset of these plus signs breaks n into
parts which form a composition of n. Conversely, any comp-
osition of n corresponds to a subset of plus signs, so that the
number of compositions of n is the number of subsets of a set
with n - 1 elements, namely 22~1, In this note we obtain a
number of generalizations of this rather obvious remark by
making use of the notion of a weighted composition and the
method of generating series.

Let {w}: w4, W, W3, ... be a sequence of numbers
called weights. Corresponding to such a sequence we define
another sequence {W }: W,, W,, W;3, ... by

1 W == ..

(1) n at+btc+. .. =n a Wb e

where the sum is taken over all compositions of n. If w, =1
for n=1,2,3,... then W, will simply be the number of comp-
ositions of n which is, as we have seen, 2™ 1. We will
consider,more generally, relations between {w} and {W}.

We form the power series generating functions for {w)
and {W} namely

(2) w(x) = Z ® w x
n={ n

(3) W(x) = Z ® w X"
n=1 n
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and prove

THEOREM 1.
W(x) = 1——‘i’(i‘v’(x)

and ) W(x)
w(x) = W

The two parts of the theorem are clearly equivalent so we
prove only the first. Note that the coefficient of x* in
(w(x))k = (wix1 + wzx‘2 + .. .)k is the sum of terms W WpWeo -
where a+ b+ c+ ... =n and the number of summmands in this
last sum is k. Thus from (1) it follows that

k w(x)

00

kg V(X))

as required.
From the second form of theorem 1 it follows that

(5) wix) = - 22 (- W(x)®

and by comparing coefficients of x in (5) we obtain
THEOREM 2.

wi{n) = = s (-W {-W }(-W ) ...
n a b c

a+btct... =

This result affords an inversion of {1) and our theorems reveal
that in general the sequence {w} can be determined from the
sequence {W} as easily as conversely.

We consider next a few simple examples of the use of
theorem 1.

EXAMPLE1. w =14, n=1,2,3,...

n
2 3
Here w(x) = x+x +x + ... =x/{1-x) and W(x) = x/(1-2x) =
2 2 - -
X+ 2x + 2 x3+ ce. + Zn 1xn+ ... sothat W, = 2n 1 as has
already been noted.
n+1

EXAMPLE 2. w_ = (-1)
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Here w(x) = x - x2 + x3 - ... =x/(1+x) and W(x) = x. Thus
W, =1 and W, =0 for n > 1. Interpreting this result in the
light of (1) reveals that for n > 1 the number of compositions
of n involving an even number of odd parts is the same as the
number of compositions of n involving an odd number of odd
parts. This result can also be obtained by a direct combinator-
ial argument.

EXAMPLE 3. w = n.
2
Now w(x) = x+ 2x + 3x3 + ... = x/(i--x)2 and

, 2

(6) Wix) = ® w Kt = x/{1-3x+x ).
n=1 n

Cross multiplying in (6) and comparing coefficients of x gives
Wy=14, Wp=3and W _,,=3W_,, - W, for n> 0, which
determines {W}. We leave it to the reader to identify these
numbers with a subset of the Fibonacci numbers defined by
fo=1f4 =1, fhi2=1fH44 + £y, (n > 0). In fact it is readily
proved in this case that W, = f, 4 and that an explicit formula
for W_ is given by

2n 2n
4 (1445 1 -.J5
(7 Wn--JS[( 2 ) '( 2 ) I
EXAMPLE 4. Wn= n.
Here W(x) = x+ sz + 3x3 + ... = x/(i-x)Z and w(x) = __x_Z_
» 1-x+x
Thus w(x) =T+x3 = x+ xz-x4—x5+x7+x8- ... so that

{w)} is a periodic sequence of period 6 which begins 1,1,0, -1,
-1,0, ... . Interpreting this result in the light of (1) yields the
following theorem for which we have not been able to find a
direct combinatorial proof.

THEOREM 3. The number of compositions of n into parts
= 1,2,4 or 5 (mod 6) and involving an even number of parts = 4
or 5 (mod 6) exceeds by n the number of compositions of n into
parts = 1,2,4 or 5 (mod 6) and involving an odd number of parts
= 4 or 5 (mod 6). ’

The preceding examples are all special cases of
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THEOREM 4. A linear recurrence relation

(8) aw. taw toeeta w0 0 (i> o0, am# 0)

among the weights in {w} induces and is induced by such a
relation among the elements of {W}.

Indeed if

m m-1
(9) Am(x) = aox + aix + ...+ am,
then

m __m-1 m-j_m-1
(10) Am(x) w(x) - aow(x)x = Zj:O x : =jai+1wi+1-j,
and

. m m-1
(11) Am(x)w(x) -Bm(x)-box +b1x + ... +bm_1x
where
+ ...+ =b,, j < m,

(12) aj+1w1+aj+2w2 amwm-j bj j m

from the form of the Cauchy product of power series. Now

(13) W(x) = B_(x)/[A_(x) - B_(x)]
so that
(14) (a -b )W, + (ai-bi)Wi+1+ ceota W =0,

i>0, a_#0,
m
as required. The argument is clearly applicable to prove the

converse part of the theorem.

Although the next example is very simple it can easily be
shown that in it the elements of {w} do not satisfy any linear
recurrence with constant coefficients.

+
EXAMPLE 5. w = (-1)""}/n
n
. -x x
In this case w(x) = 1 - e and W(x) = e  so that Wn = 1/n!

We conclude with several examples of a more complicated
nature, leaving a comment about proof to the end.
a-1 1

na
EXAMPLE 6. F 0, s = —-
or every a # a# 1 wn 2 na-i(n)
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if and only if W_= ;11- (7). This may be obtained from

theorem 1 by letting w(x) be the function determined by

(15) x = w(x)(1 - w(x))a-i.

EXAMPLE 7. Forevery a# 0, a#1,w = 21 (na) if
i n na-1'n

and only if W = (na). We obtain this result by considering the
n n

function w(x) determined by
_ w(x) w(x)\a-1
(16) x=—(1-—/7)"".

Note that in the last two examples the sequences {w} and {W}

consist of integers if a is an integer. The fact that if either of
the sequences consist of integers then both must be of this form
follows directly from (1) and theorem 2.

Our final example makes use of the inversion of the function

X = w(x)e-w(x).
nn-i nn
EXAMPLE 8. w = 7~ if and only if W_= —. This is
n n! n n!

obtained by considering the function w(x) determined by

(17) x = w(x) e-w(x)'

The results of the last three examples involve an applica-
tion of Lagrange's coefficient formula for Taylor series
expansions, namely: if y=w(x), w,=0, w, # 0 then

fly) = =, ® c,x1
1=-00
where

1
£y _ _+’L::1;+

<0 ..

as a Laurent series in y. Thus

if y
University of Alberta
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