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THE MANIFOLD OF CONFORMALLY EQUIVALENT 
METRICS 

ARTHUR E. FISCHER AND JERROLD E. MARSDEN 

Introduction. Ebin [8] gives a thorough study of the space ^é of rieman-
nian metrics on a compact manifold M and of the action of the diffeomorphism 
group 2l of M on^#. The purpose of this paper is to study the action of the 
larger group *$ of conformorphisms, or conformai transformations, on *Jt and 
on r*e/#. On^#, the L2-orthogonal decomposition induced by the action of ^ 
gives a splitting of symmetric tensors into three summands introduced by 
York [25; 26]. We find submanifolds of ^ tangent to the pieces of this de­
composition. 

The action of *$ on T*.JK is symplectic and may be reduced following 
Marsden-Weinstein [20]. This process parametrizes the space S of true 
gravitational degrees of freedom (see [14; 22; 25; 26]). The space is shown to 
be an (infinite dimensional, weak) symplectic manifold near those points 
(g, 7r) with no simultaneous conformai Killing fields. It is argued that near 
other points, $ has singularities. 

The authors thank J. Arms, M. Cantor, J. P. Bourguignon, D. Ebin, 
J. Guckenheimer, R. Palais and A. Weinstein for useful comments. 

1. The action of the conformorphism group. Let M be a compact 
oriented C°° manifold without boundary. Let SP denote the multiplicative 
group of positive C°° functions on M, which we refer to as pointwise conformai 
transformations and let Ql denote the group of C°° diffeomorphisms on M, which 
we refer to as coordinate transformations. 

Let ^ = Q) X &, with the group structure 

(<Pl, Pi) ' (<P2, Pi) = (<Pl O <P2, p2 ' (pi O <p2)), 

be the group of conformai transformations or conformorphisms. Thus, ^ is 
the semi-direct product of 3) and 0* with Si acting on 0* on the right by 
(<?, p) ^pocp. 

We get a right action of ^f on^#, the space of C°° riemanian metrics on ikf, 
denoted A : *$ X ~ ^ —->^by ((<£>, p), g) i—> p • <p*g, where <p*g is the pullback 
of g by (p G S. 

As with S, *€ is an infinite dimensional "Lie group" with Lie algebra the 
semi-direct sum of «ST, the vector fields on M with Cœ, the C°° functions on M 
(see Ebin [8]). 
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194 A. E. FISCHER AND J. E. MARSDEN 

For g £ *Jt, let Cç C *$ be the isotropy group of g; thus 

Clearly Cff is isomorphic to the conformai group of g, i.e., 

{<? 6 ^|<?*g = £g for some p £ ^ } C 9 , 

and thus if dim M ^ 3, C^ inherits the s t ructure of a Lie group (of dimension 
^ (n + l ) (w + 2 ) / 2 ) with Lie algebra 

8, = {(X, N) e 3T X C°\Ng + Lxg = 0} 

(see Kobayashi [17]). Also, note t h a t §g IS isomorphic to the Lie algebra 
{X Ç 3T\Lxg = — (2/n)(dX)g\ of the conformai group of g, i.e., the space of 
conformai Killing vector fields. Here (Lxg)a = Xt\j + Xj\t is the Lie deriva­
tive of g with respect to X and bX = —div X = —Xi\i is minus the diver­
gence of X. 

Let Of - g = 0 g = {<p*g\<p Ç 9) be the orbit of g £ Je under the action of 
2 so t ha t ©Q is the set of metrics isometric to g. Let 

%-g= {P<p*g\(<p,P)£ V\ 

be the orbit of g under the action of *i£. T h u s *io • g is the set of metrics con-
formally equivalent to g. Note t ha t if M = S2, then ^ • g = Jt by the uniformi-
zation theorem (see Wolf [24]). 

T h e group SP acts o n ^ f by multiplication, 

& XJ?' ->Jé, (p,g) ^pg. 

T h e orbit of g £ ^ # under SP, namely 

P'g= \Pg\P 6 ^ 1 
is the set of metrics pointwise conformai to g. If dim M = 1, note tha t 0 • g = 
Je. 

From Ebin [8], ©g ^J?\s a smooth submanifold of-^. We shall prove the 
same for ^ • g and 0* • g, as well as the existence of a slice for the action of c€. 

In order to sharpen these notions, we work in the corresponding Sobolev 
spaces. A superscript s,p denotes the Sobolev class Ws,v = Lf. We always 
assume tha t 5 > (n/p) + 1. T h u s Jts'p, for example, denotes metrics of 
class Ws'p (see Fr iedman [15] and Ebin [8] for properties of these spaces). 
Specifically, we need the fact t ha t &s'p is a manifold and a topological group 
in which right multiplication is C°° and tha t the action of &s+l'v o\\Jés,p is 
continuous. Thus , £ïs+l'v X &s'v is also a topological group, denoted c€s <p. 

Let us observe t ha t the orbit 3P - g oi g ^Jés'p under the action of SPStV 

ox\Jts>p is a closed C°° submanifold oi<Jts'v with tangent space a t g given by 

S2
C = r ' ' ( ^ • g) = {h € S2

s'p\h = fg for s o m e / £ Ws'p). 

Indeed, p >-» pg is an immersion and a homeomorphism onto its image. For 
more complicated actions, the following is useful. 
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CONFORMALLY EQUIVALENT METRICS 195 

1.1 LEMMA. Letf : N —» P be a CT map of Banach manifolds, r ^ 1, such that 
Ker Tf C TN is a Cr subbundle of TN and for each x £ N, Range Txf is closed 
with a closed complement. Then f(N) is a (locally) immersed submanifold of P 
and if f is open onto its image, f{N) Çf_SP is a submanifold. 

The proof is s tandard ; cf. Lang [19] (the version here was pointed out by 
J. Guckenheimer) . Sufficient conditions f o r / to be open, which we shall use 
below are these (a) the range of / near x Ç N depends only on f(x) [i.e., if 
f(xi) — f(xz) thenf(Ui) = / ( t / 2 ) for some neighborhoods U\ of x\ and £/2 of 
x2) , and (b) if f(xn) —> y then xn has a convergent subsequence in N. This is 
easy to see using the fact t ha t locally/(TV) is immersed. If these conditions hold, 
f(N) will then be a closed submanifold of P. 

We shall also make use of a splitting lemma. Let E, F be vector bundles over 
M with a fixed riemannian s tructure (i.e., inner products on the fibers and a 
volume fixed on M). Let D : C°°(£) - » Cœ(F) be a feth order differential 
operator, and D* : Cœ(F) —> Cœ(E) its L2 adjoint (see Palais [23]). 

1.2 SPLITTING LEMMA, (cf. Berger-Ebin [3]). Assume D has infective symbol 

or that D* has infective symbol. Then 

WS'V(F) = Range D 0 Ker D*. 

On the right, D is regarded mapping Ws+k'p(E) -> WS'V(F) and D* : WS'V(F) -> 
Ws~k,p(E). Here 00 ^ s ^ k, 1 < p < co. If D has infective symbol, Ker D 
is finite dimensional and consists of C°° elements. 

Remarks. 1) This is proved in Berger-Ebin [3] in case p = 2 and D has 
infective symbol. I t is not difficult to give a direct proof of 1.2 using the 
elliptic estimates and Rellich's theorem (see, e.g. [1 ; 16; 18] in which ' 'el l iptic" 
means "infective symbol") . The main point to be proved is tha t the range of D 
is closed. The case of D* with infective symbol can be deduced from tha t for D, 
for if D* has infective symbol, Range (D) = Range (DD*) and as DD* is 
elliptic, this is closed. 

2) If an operator D maps into a product space F = F\ © . . . © Fi with 
different orders in each factor Dt : Cœ(E) —> C 0 0 ^ ) and if one computes the 
symbol of each Dt separately and their direct sum is injective, then the basic 
elliptic estimates, and hence the splitting lemma still holds. Similarly, if E = 
Ei © . . . © Em, the symbol may be computed as an m X / matrix of sub-
symbols. Finite dimensionality of Ker D requires order (D t) ^ 1 ; if some Dtj 

has order zero, one must assume dim E < dim F. (These remarks are based 
on the work of Agmon-Douglis and Nirenberg [1] ; see also Hormander [16]). 

3) Applying the splitting theorem to the Laplacian on a Riemannian mani­
fold results a t once in the Hodge decomposition for forms. 

For fixed g (E ^s+r,p, the orbit map 

% : ^s+1>p -+^s'p, (<p, p) >-> p<p*g 
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is of class C\ r ^ 0. For r ^ 1, its tangent (derivative) at the identity (id, 1) 
is 

r*„(id, 1) = r0 :3TS+1* X Ws>p -+S2
S'P 

r0(X,N) = Lxg + Ng. 

Here, Ws,p stands for the real valued functions on M of class WStP, and S2
S'P 

denotes the symmetric two tensors of class Ws,p. (See Ebin [8] for the relevant 
facts needed to prove differentiability of the orbit map.) 

The Z/2-adjoint of T0 is 

T„* : S2 -*3£ X T ; h*-> (2ôft, tr ft) 

where (oh)* = — hji\j is the contravariant divergence of ft, and tr ft = ft% is 
the trace of ft. Note that Ker T0* = S2

TT, the transverse (ôh = 0), traceless 
(tr h = 0) tensors. If dim ^ 3, it is infinite dimensional [4]). 

The symbol of r0 is (see the remarks following (1.2)), 

o-ç(v, s) = sg + vb ® £ + £ ® vb 

where £ G TX*M, v G Ï^M, s G R and vb G TX*M is the corresponding one 
form via g. 

It is easy to see that for £ ^ 0, and dim M ^ 2, <7£ is injective, for if sg + vb 

® £ + £<8>^& = 0, taking the trace yields 5 = — (2/n)v • £ and contracting 
with»» ® £ gives (1 - 2/n)(v • £)2 + |M|2||£||2 = 0, so v = 0 and 5 = 0. 

1.3 Remark. If dim ^ 3, dim E < dim T7 (E and Fare the domain and range 
bundles for rg) and so Ker rg is finite dimensional. Thus one gets a proof that 
if dim M ^ 3, the conformai group of g is a Lie group using the general result 
of Palais (Kobayashi [7, p. 13]). 

From 1.2, 52 = Range rg © Ker rg*. That lemma as stated needs the assump­
tion that g is C00, but actually g G ^s+TtP, r ^ 1 is sufficient for the decomposi­
tion in WStP, by examination of the proofs. 

If we apply the trivial pointwise orthogonal splitting 

S2 = S2
T 0 S2

C, ft = (ft - ( l /n ) ( t r A)g) + ( l /n ) ( t r h)g 

where S2
T = {ft G 52 |tr ft = 0}, S2

C = {/g|/ G Cœ}, to the range of rg, we get 
the finer splitting 

S2 = S2
TT 0 S2

C © (S2
T n Range rg) 

written as ft = hTT + (l/w)(tr ft)g + ((2/n)(bX)g + Lxg) where S,7^ = 
Ker T0*, the transverse traceless tensors. This is the splitting of York [25; 26]. 
Summarizing: 

1.4 THEOREM. Let dim M ^ 2 and g £ J(s+r>v. Then 

S2
S* = Range r0 0 Ker T„* = 

= (S2
TT)S'P © (52

c) s ' p 0 (S2
Tr\ Range r , ) s ' p 

wftgre r , : ^ S + 1 ' P X Ws'p ->S2
S*P and r„* : S2

S>P -> (^ s~1 'p , W7S-P). 
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Using (1.4), we can prove that the conformai orbit is a manifold: 

1.5 THEOREM. Let dim M ^ 3, g £<Jifs+r'p1 and & - g be its orbit under 
<jfs+i,p = @s+i,p x 0>s,pt Then eg . g QJ[:V is a c dosed submanifold with 

tangent space at g given by 

TA& • g) = {Lxg + Ng\X G 9T*^>\ N G W*}. 

Proof. Let ^ : &s+1 -*<Jts>p be the orbit map through g, ^ 0 , p) = pcp*g. 
Then SF is a CT map and has tangent at the identity given by 

TitA.»*(X,N) = T,(X,N), 

and at (<p, p), 

TtotP)*(X o <p, p(N o <p)) = p<p*{rg(X, N)} 

which is just rg extended to be right invariant. Thus ker TÇtV^ is Ker TQ extended 
to be right invariant over c£s'p. This is a finite dimensional Cr subbundle of 
Tcé>s,p by the arguments of Ebin-Marsden [9, Appendix A]. By 1.4, the range 
of T^f is closed with closed complement. 

To finish the proof we need to verify that ^ is open onto its image and has 
closed range. This will be done using the remarks following (1.1). By right 
invariance of ^ , the local ranges depend only on the image. Next one shows 
that if pn<Pn*g —> 7, then {(<pnf pn)} has a covergent subsequence in c€s,p. 
Since the proof proceeds in the same way as Ebin [8], Prop. 6.13, we shall omit 
the details (replace his TÇn by \Tp~n T<pn where appropriate). 

One can also prove this result, as in Ebin [8] by putting a Cr manifold 
structure on &s'p / C g

s+1 ,p and showing that the map from this to cnfs+1'p • g 
is an injective immersion which is a homeomorphism. The fact that Cg need 
not be compact causes no difficulty in the proof. The proof above is the same 
argument in different language. 

In analogy with the slice theorem for the action of 2) o n ^ (Ebin [8]), we 
now prove that there exists a slice for the action of ^ o n J ^ ; assume dim 
M ^ 3. 

1.6 THEOREM. If g £ ^s+r'p, r ^ 1, then the action of <é*+i* on<Jts'p admits 
a slice S at g; i.e. S is a submanifold containing g such that 

(l)if(v,P) e Cg'+i*,Â((v,p)tS) = 5 ; 
(2) if (r,, p) e ^s+1'p and Â((v, p), S) H S * 0, then (77, p) £ Cg

s'p; 
(3) there is a local cross-section x : ci£8+1'p/Cg'+

1-p -> V'*1" defined on a 
neighborhood U of the identity coset such that ([77, p], gi) \—> Â(x[Vi P]> &i) 
is a homeomorphism of U X S with a neighborhood of g. (One can also 
allow s = co.) 

Proof. Introduce the space of tensor densities 

w°>p = {g® n0-
2/n\g e^s'p}. 
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This space is "conformally invar ian t" ; i.e., pg ® {vpg)~
2,n = g ® ^i~2/n so tha t 

ëPs,v leaves each element of WSiV fixed. T h u s the orbit space <Jé*-v
;
!SP8* (also 

see (2.1)) is canonically isomorphic X,oW8,v. 

@s+l* acts o n # s « p by pullback and the orbits of &s+u\ lifted back to 
<J?S'V via 7T \<Jts>v -+Jt**l&** œW'v, are just the orbits of r£*^« o n ^ i P . 
Proceeding along the s tandard lines of the Ebin-Palais Slice Theorem it is 
straightforward to show tha t the action of Qfs+l>v on # / , s , / ? has a slice, which 
can be identified with a slice S for the action of cés+l 'p o n ^ # v / \ As in Theorem 
1.5, the fact t h a t the isotropy groups for the action of é ? S r i /; on '0/s-p need 
not be compact causes no difficulty in the proof. As in [8j, one can also allow 
s = co. This completes the proof. 

The usual consequences of the existence of a slice, such as locally decreasing 
conformai groups, and generically trivial conformai groups, Cg = (id, 1), if 
dim M ^ 3, follow directly. 

If /x is a volume form on M, let JVM = {g £ <Jt\\x{£) = /x}. Then ,,V^ (or ,/V/tP) 
is a submanifold o f ~ # ( o r ^ s , p ) with tangent space S2

T (see Ebin [8]). 

Remark. If S0 is a slice a t g for the action of 2l, then we can choose 

S g = S g C\JV ^(g) 

with tangent space ker rg* = S2
TT = S2° P\ S2

T, which is orthogonal to the 
conformai orbit fâ • g of g. Indeed, by the construction in Ebin [8] Sg is the 
L2-exponentiation of 52°, ̂ ^g) is the L2-exponentat ion of ST, and Sg is the 
L2-exponentation of S2

TT = S2
T H S2

Q. 
T h u s the decomposition S2 = ker r / © Range rg can be writ ten as 

the second summand describing the deformations along the conformai orbit 
*$ - g and the first summand describing the deformations along the slice Sg 

for this action. This is the analog of the canonical split t ing (Ebin [8]) 

TgJ( = TgSg ® Tgûg = S ^ 8 OL g (T ) . 

Remark. One can approach the decomposition (1.4) using the conformai Lie 
derivat ive in place of the Lie der ivat ive; i.e. LX = Lxg + (2/n) (ôX)g. In this 
approach one uses the action of 3) on the s p a c e d of (pointwise) conformally 
invariant tensor densities g 0 ixg~

2ln(iig = \x(g) is the volume element of g) 
ra ther than the action of *& o n ^ # . See Fischer-Marsden [13, § 2] below, and 
Cantor [6]. 

Finally we remark t ha t one can form the orbit s p a c e ^ # / ^ , the space of 
equivalence classes of metrics conformai to one another . This space is some­
times called "conformai superspace" (York [25; 26]). Since the conformai 
groups CQ change from metric to m e t r i c , ^ / ^ is not itself a manifold. How­
ever, like the stratification oi^/31 (Fischer [10]), it also can be stratified into 
sets of manifolds. See York [25] for a linearized version of this stratification. 
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2. T h e g e o m e t r y of York's d e c o m p o s i t i o n . In this section we construct 
manifolds which are tangent to the summands in York 's decomposition 
(Theorem 1.4). First we consider the geometry behind the pointwise or tho­
gonal splitting S2 = S2

C © S2
T by showing tha t the splitting is globally 

integrable. 
In the action &s'p X^s'p —+^s'p, the isotropy a t each g is the identi ty 

so the action is free. Moreover, the map 

&>'" X^s'p -^^s'v X*J?S'P, (p,g) i-> (p,pg) 

is proper, for if p lies in a compact set K C_ &s'p, and pg lies in a compact set 
H C<^s'p, g lies in (1/K)H, where K > 0 is a lower bound for {p 6 K}. 
T h u s the action of £PS'P o n ^ # s , p is free and proper, so tha t the quotient space 
JV*-*/&>*'visa. manifold. 

We summarize as follows: 

2.1 PROPOSITION. The orbit & • g of g £^s'p under ^s,p is a closed C°° 
submanif old of ̂ s , p with tangent space S2

C = {h£S2
s'p\h — fgfor somef £ Ws,p). 

AlsoJés>plëP8<p is a C°° manifold such that the projection TT \Jés* ->Jïs>p/âPs'v 

is a submersion. 

Now l e t ^ denote the space of positively oriented volume forms on M, and 
recall (1.6) t ha t 

2.2 T H E O R E M . ( a ) ~ # S i P is diffeomorphic to <Jts'p/0>s'p xVs'p [orWs'p X 
r°>p] via g .-* (0>*>p • g, fi(g)) [or g^(g® ng-

2/n, n(g))]. 
(b) T0J(*'V = Tg(0>s>p-g) © TçyV^'V and if ^s'pg' meets J/»,>•**, it does 

so in a single point g. 

Proof. First (b). The assertion Tg<Jé = Tg{& • g) © Tg/Y^ is just S2 = 
S2

C © S2
T, the pointwise orthogonal decomposition above. If gi, g2 ^ SP - g! C\ 

^»0" then g2 = £gi and ju(gi) = Mfe). But /x(g2) = M ( ^ I ) = Pn/2»(gi) so 
£ = 1, and g2 = gi. 

T h e result (a) also follows since g i—» ( ^ • g, /*(#)) is one to one; as it is 
obviously onto with invertible derivative it is a diffeomorphism. 

The result may be paraphrased by saying tha t there is a "coordinate gr id" 
for<^#, the coordinates of g being SP • g and /x(g). The manifolds where these 
coordinates are constant are orthogonal whenever they intersect, and their 
tangent spaces split Tg*Jé. 

T h e decomposition S2 = Ker rg* © Range rg is a splitting of the tangent 
space of ^ # into a piece along the conformai orbit *& • g and along the slice Sg 

for this action (see Fig. 1 (a) ) . 
Of course, the splitting T^Jt = TgSg © Tg(f$ • g) is not globally integrable 

since the isotropy groups of the action of c€ on <Jé are not locally constant . 
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T o intersect this splitt ing with the previous one, we first consider a decom­

position of Tg(^ - g); see Figure 1(b) . 

2.3 LEMMA. Let g £ <J?s+r'p. Then *$ • g ntyf/
M(f7)

s'p is a Cr closed submanifold 
ofJts+r>v with tangent space {h = (2/n)(ôX)g + Lxg\X G &s+1>p} at g. Thus 
we have the splitting Tg{& • g) = T„(& • g) © Tg(& • g r\J/,{g)). 

Proof. Let p : # • g - > * ' • • * , gl .-> /x(g l). For h = fgl + Lxgl £ T0l(^ • g), 
Dfi(gi) - h = J tr A /z(g) = ( ( n / 2 ) / — ôX)ju(g). This derivative is surjective, 
since for p G W 7 ^ , a solution of (w/2) / - ÔZ = p is X = 0 , / = (2/w)p. T h u s 
M - 1 ( M ( & ) ) = ^ * g ^^n{o)s'v is a submanifold with the s ta ted tangent space. 

Remarks. (1) Since ^ • g f^^^{g)
s,v is the intersection of ^ • g with a /* = 

constant coordinate i n ^ , it is diffeomorphic to a submanifold oiWs,v. This 
submanifold is, natural ly, the orbit of g ® /x(g)~2/w under ^ 5 + 1 , p . 

(2) T h e summand TQ(fê • g n^4 /
M ( & )) represents the infinitesimal deforma­

tions t ha t preserve both the conformai class of g and its volume element. Note 
t h a t intersecting the splitt ing 5 2 = Tg(& • g) © Tg-Jf ^ with ^ ( ^ • g) gives 
the splitt ing for T($ • g) in (2.4). There is also a corresponding coordinate 
grid for this split t ing: 

which represents a finite version of this split t ing. 
Using the splitting in (2.3) and TQ^ = TgSg © T fë • g, York 's decomposi­

tion 

52 = S2
TT © S 2

C © (Range rg C\ S2
T) 

can be wri t ten in terms of t angent spaces as 

(2.5) TgJ( = TgSg ®Tg(0>- g) ® Tg(tf -g r\.Jf»{g)), 

Sg = Sg r^^nig) where the first summand is orthogonal to the orbit through g 
by ^ (or orthogonal to the orbit through g by 2f and preserves the volume 
element) , the second summand preserves the pointwise conformai class of g, 
and third summand preserves both the conformai equivalence class and the 
volume element, and these three deformations are mutual ly orthogonal (see 
Figure 1(c)) . 

Further Remarks. (1) For applications to general relat ivity, the interesting 
component is the one which changes the conformai equivalency class, namely 
T0Sg. T h e other two summands preserve this class and therefore for relativit ists 
are of lesser interest (see O 'Murchadha and York [22], York [25; 26] and 
Fischer-Marsden [14] for further detai ls) . 

(2) T h e factors TgSg © Tg(^ê • g C^^V^g)) in 2.5 are natural ly isomorphic 
to the split t ing of Tg®flg-2/i?0/ along a slice and the orbit for the action of Ql on 
W and Tg{SP • g) is along the orthogonal ^ - c o n s t a n t manifolds in the co­
ordinate g r i d ^ f KW X ^ . 
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FIGURE 1 

A schematic representation of the decomposition 2.5. 
(a) A = B + C; A G T0M, B 6 TgSg, C G T0(? • g) ; the splitting 52 = Ker Tg* © 

Range T> 
(b) C = D + E; D £ Tg{& • g), E £ Tg((<# • g) n jr,) ; the splitting in 2.3. 
(c) A = B +D +E £ TgSg 0 T0(g> • g) © Tg((v • g) n ^M) ; the splitting in 2.5 where 

Sg = Sg n jr^. 

(3) The above splitting has the feature that there are no curvature restric­
tions on g. The analogous Barbance-Deser-Berger-Ebin splitting requires p = 
constant. Setting ^#p = {g\R(g) = p}, we have 

TQJé = Range y* 0 Tg{Jlp C\ S0) 0 Tgûg 

where yg*(f) = g A/ + Hess / — / • Ric (g). If g is Einstein, Tg{^pC\ Sg) 
consists of transverse, trace-constant tensors so^#p P\ 5^ is analogous to Sg. 
See Fischer-Marsden [13] for details. 

3. The action of *% on T*^#. Let T*<J?S'P be the L2-cotangent bundle of 
t^s'p; i.e. Tg*^SfP = {T = wf ® M(#)K' is a 2-contravariant symmetric tensor 
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of class Ws'p; i.e. (w') Ç (52) s , : p}. We have a natural L2 pairing between 
Tg*Jf8" and TgJ(&* given by 

<ir,A> = f ir'-hdn(g). 
J M 

As usual, T**J(carries a canonical (weak) symplectic s t ructure (see Chernoff-
Marsden [7]). The action of *$ o n ^ # lifts natural ly to a symplectic action of c6 
on r t / # given by 

(v, P) • (g, *) *-* (Pv*g, £ ~ V V ) 

where r)*ir = 77*71-' ® rçV(g) and where r?*^' is the pullback of cont ravar ian t 
tensors. 

Indeed, by the general formula for the lifted action (see Chernoff-Marsden 
[7]), if G acts on M by mappings <&g : M —> M, the lifted action on T*M is 

<*>,*« G r ^ ( x ) * M if a 6 7^*lf 

In our case, T regarded as a linear form on Tg%JP is transformed to 

*•(*.*) -h = (w, ((p~l)*p~lh) 

= I (<p*ir) - p~ h (change of variables) 

so 7T is transformed, as a tensor density, to p~l(p*w. 
Note tha t this action preserves the L2 metric on 7"*^#, as does the action 

of 2 . 
If G acts on a manifold i f and hence on T*M, the moment, or conserved 

quantity for the action is a map \p 

t : T*M -> a*, 

where fi* is the dual of the Lie algebra fi of G, given by 

rfr(a) • £ = < « , M " ) > , « G r / M , J G fi. 

Here i-M denotes the infinitesimal generator of the action (see, for example, 
Chernoff-Marsden [7]). We now work out \p for the action of c€ on •>#. 

3.1 LEMMA. The moment for the action of c€ on^Jé is given by: 

* : T*JV -^3T* © (Cœ)* = A,1 © Cd
œ 

*(g , i r ) = (2(8T)\ trie) 
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where 3T* = A^1 are the l-form densities, and Cd
œ the scalar densities {i.e. An, 

the space of n-forms), and (ÔT)* is the l-form density associated with the vector 

density 8w. 

Proof. The infinitesimal generator of the action of *$ on <Jt is given by 

ZAg) =Lxg+fg£ TrJf, 

where £ = (X,f) £ St 0 Cœ. Therefore, 

^ • ?^(g) - / 

= J 7T • LXg + J X • (fe) 

= 2 J Z-Ô7T + J / t r 7T. 

Thus the corresponding L2 dual object is \p(g, T) = (2(Ô7r)ft, tr w). 

Note t ha t ^ : T*Jf8>p -> (^"*-1-p)* © (ITS 'P)*. 
If a group G acts symplectically on a symplectic manifold P and \// : P —• Q* 

is a moment , then to obtain a new symplectic manifold in which the symmetries 
have been divided out, we form the reduced phase space: 

P„ = ^ « ( M ) / G M -

Here ^ 9 * and GM C G is the isotropy subgroup for the co-adjoint action of 
G on g*; (see Marsden-Weinstein [20]). 

In our case, P = T * ^ , G = ^ , /x = 0 (so GM = G) and \p is given by (3.1). 
Since 

where &s = {(g, 7r)|<57r = 0} and &u = {(g, 7r)|tr T = 0}, we obtain: 

3.2 T H E O R E M . The reduce phase space for the action of c€ on T**J( is 

s = vsr\vtt/v. 
T h u s <D is the space of (g, ir) with ir transverse-traceless and with (gi, in) 

identified with (g2, 7r2) if there is a conformai transformation (<p, p) such tha t 

(£*>*gi, P~l<P*Tr\) = fe, TT2). 

Although it follows automatical ly from the general theory tha t ^ leaves 
^?§ C\ ^xx invariant , it is instructive to see it directly. Indeed, if 

(I, TT) = (P<P*g, £~V*ir) 
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then in general, 

t r it = <p*(tr 7r) 
and 

b-git = £ " > * («,*•) + ( l / 2 ^ 2 ) ^ * ( t r TT) • grad p. 

T h u s ^ 5 P\ 9% r is mapped into itself by the action of ^f. 
Next we examine when S3 is a manifold. This is done in a series of steps. 

3.3 PROPOSITION. &tT
s,p C T*^s,p is a smooth submanifold with tangent space 

T(9,^trs'p = {(A, to) G Ti0iT)*^'>*œS28-pX (S r i
2)^|/*-7r + trco = 0} 

wAere (S r f
2)s 'p = S s , p

2 ® /*(g). 

Proof. Consider the map tr : T\4KS,P —> A/»p = (M/S,p)*, the w-forms of 
class W*,p, given by (g, 7r) >—» tr x, the g-trace of 7r. This is a smooth map 
with derivat ive 

D t r (g, ir)(h, œ) = A • 7T + t r co. 

This is clearly surjective; to solve h • it + tr co = /x, let A = 0, co = g# ® /i/w 
where (g# ) ° = gij, i.e. # raises the indices. Since the kernel can be directly 
seen to split, we have a submersion and the result. (The spli t t ing lemma 1.2, 
can also be used here) . 

A 

Likewise, *i£tr = {(g, 7r)|tr TT = (constant) - n(g)\ is a manifold, as is 
9%r=P = {(g, 7r)|tr 7T = pju(g)} the manifold of (g, 7r) with prescribed trace. 

We notice t ha t fé%r = UMe^ T^jV^ so t ha t ^ t r is the union of the cotangent 
bundles to the manifold part i t ion {«yKM : JU Ç ' f ) o f ^ # . 

We now examine the set ^ 5 . 

3.4 PROPOSITION. Let (g, 71-) £ féV,p satisfy the following condition: 

Cs : if X G <5TS,P is sw^A tfAa/ L x g = 0 and Lxw = 0, //^w X = 0. 

77^?z ^ V , p C T**J%S'V is a manifold in a neighborhood of (g, x) W//Ê tangent space 

T(ç,^6s>p = {(A,«o) G 7 ^ ( , f T ) ^ * ^ | ô « + I T T ^ J * 

- T T ^ S ^ } = KerZ)5(g, TT) 

Proo/. Consider the C°° map «5& : T*Jf8'p -> ( ^ * ) s ~ ^ 1 = (A^1)5"1^ (one-
form densities) given by 8b(g, ir) = (8w)b, the g-divergence of TT. 

We can compute 

0(, i l r ) - Z) ô&(g, TT) : S 2 " X W ) s ' ^ -> (A,1)5"1 ' " 
to be 

Pi9.r)(h,ù>) = (<5co)& + èir l wft I r o | , - Tlmhillm - Tlm
lmhu. 

I t s naturalf Z2-adjoint pi0tT)* :&s<p-+ (Sd
2)s'up X S2

s~l'p can be computed 

|This refers to the fact that we are using the natural pairing between tensors and densities, 
so that the Hermetian structure of the bundles is not needed (cf. Palais [23]). This is purely a 
matter of style at this point. 
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from this as f}ittT)*(X) = %(— (Lxir), (Lxg)) but the following seems simpler: 

= l £ j (Lx(g + XA), ( T + Xco)>|x_o 

(since 2ôçir and Lxg are adjoints) 

= - J Lxh • 7T + L x g • œ 

= g J ~~* ' i^7r + ^*£ ' œ-

(Tha t we can write JLxh • w = J — h • I/x^r follows from the expression of 
the Lie derivative in terms of flows and the change of variables formula.) 
T h u s the above expression for /3(g<ir)* follows. 

From this expression for P(g>7r)* and our assumption on (g, ir) we see t ha t 
the kernel of (3^,*)* is trivial. Also, fi^,*)* has infective symbol, as is easily 
checked. T h u s from the splitt ing lemma, db is a submersion and the result 
follows. 

Remarks. 1) The condition Cs says t ha t the pair (g, T) has no simultaneous 
Killing vector fields, i.e. the group 

Ig r\ Iv = {V £ V\^g = g and r?T = IT) 

is discrete. 
2) T h e space ^ 5 also arises as one of the constraint spaces in the dynamics 

of general relat ivity; see Fischer-Marsden [11]. 

If we consider the intersection ^iC\ ^ t r , then the condition C5 (on the 
absence of simultaneous Killing fields for (g, T)) changes to a stronger condi­
tion Caftr (on the absence of simultaneous conformai Killing fields). 

Simultaneous conformai Killing fields (X, N) satisfy 

Lxg = -Ng, Lxir = Nir 

and are elements of the Lie algebra of the Lie group 

cQ c\ a = {(*>, p) e v\p<p*g = g, p - ^ i r = TT} 

( that Cg C\ CT is a Lie group is proved the same way as for Cg, as was sketched 
i n § l ) . 
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3.5 T H E O R E M . Let (g, TT) <E ^ V , p C\ ^ t / ' p satisfy: 

C M r : if (X, N) e 3fs'v Ws+Up is such that Lxg = -Ng and 

LXT = Nir, then X = Q, N = 0. 

Then in a neighborhood of (g, TT), rif h
s<V C\ 9?tr

s'p C T*,J/S'P is a smooth sub-
manifold with tangent space 

given by 3.3 and 3.4. 

Note. Condition Cgftr implies CQ C\ Cv is discrete (i.e. has trivial Lie algebra) . 

Proof. Let $ = (2d\ t r ) : T*Jf*'p - » C^*"1 ' T 0 (H /S>p)* be given by 
iKg, TT) = (2(<5TT)&, tr TT), as in (3.1). Thus 

Zty(g, TT) • (A, co) = (2Z)^(g, ,r) • (A, co), Z) tr(g, TT) • (A, co)) 

given by (3.3) and (3.4). T h e natura l adjoint of D (g, TT) is 

DHi, *)*(X, N) = (2Dô"(g, *)*(X) + D t r(g, T)*(N) 

= ( ( - / , v x ) , (Lxg)) + (Nir, N) = ((-L.V1T + Nir), (L,,g + Ng). 

Using the remarks following (1.2), D\p(g, ?r)* has symbol 

*i(Y, s) = ( ^ V + T'^Y* + **%¥« + sir», (Y£j + ZtYj) + sgij). 

If a^(Y, s) = 0 then (Y£j + ZiYf) + sg f / = 0 in part icular and so, as for T(1 

(see the proof of (1.3)), 5 = 0 and Y — 0. Thus D\p(g, 7r)* has injective 
symbol. T o show D\f/(g, T)* is injective, note t ha t 

A K g , T T ) % Y , TV) = 0 

is equivalent to Lxg + Ng = 0, and LXTT - TVg = 0. T h u s X = 0, iV = 0, by-

Condition C^.tr-
Thus , by (1.2), D\p(g, TT) is surjective with spli t t ing kernel, so \p is a sub­

mersion and the result follows. 

3.6 Remarks. 1) In the proof, tr TT = 0 was not used. Thus , for given p, 
the same proof shows ^'5 O r^tr=P is a manifold. If p is a non-zero constant 
then interestingly we can replace Cô , t r by C5. Indeed, taking the trace of 
Lxg + Ng = 0 and LXTT - Nir = 0 gives -2<5X + wiV = 0 and X • d tr TT -

*•' * £*g - (àX) • (tr TT') - N tr TT7 = 0, or X • ci tr TT' - TT' • ( - N g ) -
(n/2)iV tr TT' - TV tr TT' = X • ci tr TT' - (w/2)7V tr TT' = 0. Thus if tr TT' -
constant F^ 0, TV = 0 and so from condition C5, X = 0. 

2) In general, one can expect t ha t if G acts on M and hence on T*M, 
\p : T*AI —> Q* is the moment of the action, and if for a £ ^ _ I ( 0 ) the isotropy 
group of a is trivial or discrete, then T\p(a) will be surjective. (In our case we 
had to check the ellipticity so tha t (1.2) could be used ; in the finite dimensional 
case this would be automat ic . ) 
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We now examine the manifold s t ructure of the quotient space <f = & & P\ 

As w i t h ^ # s , p , note t ha t the action of ^ s , p on T\J(StV is a C° action, although 
translat ion by any (ç>, p) £ cês^v is a C°° map. 

3.6 LEMMA. If (g, TT) Ç T**J?s+r'p then the orbit tfs+1'p(g, TT) of (g, TT) W a 
C r submanifold with tangent space 

7 W ^ + 1 - - ( g , 7 r ) ) 
= {(Lxg + Ng, LXTT - Nw)\X 6 ST****, N Ç W"}. 

Also, ^s+1 tP - (g, T) projects to the orbit (tfs+1 tP • g under the projection T*Jés>p —> 
<JZS-P. 

Proof. Same as (1.5). 

3.7 LEMMA. Let (g, T) £ ^ V ,P F\ ^tv
s,p satisfy condition C&M. Then there is 

a V8*1-*-invariant neighborhood U of ^ s + ^ . (g, TT) such that U C\ rifô
s>pC\ 

&u
s'p is a C°° submanifold of T*Jé*>p. 

Proof. Since translation by each (<p, p) £ ^ s + 1 , p is C00 and leaves ^ 5 S , P ^ 
^ t r s , p invariant, the points a t which ^ V , p C\ ^tv

s'p is a C00 manifold can be 
merely translated. 

3.8 LEMMA, r&e ac/iow 0/ ^ s + ^ on U C\ ^h
s<p C\ ̂ fu

s'p has a Cr slice 
S(ç,*)at (g,7r) G 9 Y + ' * H <£%/+'•*. 

Proof. Let / : T(0>ir)*^s'p —* T(giir)*^s,p be given by , the usual 
symplectic form. Let 

f = r ( , i T ) (9Y* n Sf tr**) n / (r ( , . T ) (<£%••* n <£%,••*)). 
A calculation like tha t in (3.5) shows tha t F is an L2 orthogonal complement 
to r ( , i 7 r ) ( ^ s + 1 - p • (g, TT)) in T(g>T)(^ô

s'p H ^ t r
s - p ) . Our slice is then obtained 

by exponentiating V near (g, 7r) as in the proof of the slice theorem o n ^ # 5 , p 

(see (1.6)). 

T h e slice S^^) projects to the slice Sg o n ^ # S J ? for ^ ? s+1-p (see (1.6)) as is 
easily checked. 

T h e appearance of the symplectic s tructure in this decomposition is not 
an accident. In fact York 's decomposition and the Moncreif decomposition 
[21] (generalizing the Barbance-Deser-Berger-Ebin splitting) can be viewed 
as special cases of a general splitting for symplectic manifolds (see Arms-
Fischer-Marsden [2]). 

3.9 T H E O R E M . Let (g, TT) £ # V + r ' p C\ (é?
tv

s+r'p, r ^ 1 and suppose the iso-

tropy group Cg C\ CT is trivial = {(id, 1)J. Then in a neighborhood of ^/fs+1'p • 

(g , * • ) , 
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is a C°° manifold for which the canonical projection w : c€s,v C\ c€tv
s,v —•» S>s'v 

is a CT submersion. 
Furthermore, (fs'p carries naturally a (weak) symplectic (i.e. Poission bracket) 

structure. 

Proof. By (3.7) we can choose a neighborhood U such t h a t U f~\ cé'StV C\ 
%?\T

S'V is ^ ^ - i n v a r i a n t , so the quot ient makes sense. Since the isotropy group 
of (g, 7r) is trivial, it is also trivial nearby since the action has a slice (3.8). 
This can be assumed to hold on U. T h u s (on U), <os'p is identifiable with 
S(ÇtT) and so has a C00 manifold s t ructure . Using the fact t ha t the orbit 
<gs+\,v . ( ^ Tj.) j s Qr^ w e s e e j - n a j - ^ } i e projection onto the slice S(gtT) is Cr. T h e 
last result follows from general results about the symplectic s t ructure on re­
duced phase spaces mentioned earlier (see Marsden-Weinstein [20]). 

If (g, 7r) has discrete isotropy group, then (fs'p may be a manifold with 
identifications, namely S(giT)/(Cg Pi Cv). 

T h e kernel of D\//(g, w)* is the Lie algebra of the isotropy group CQ C\ Cv. 
Thus , if we pass from a point (g, w) with trivial isotropy group to one with 
dimension k > 0, then we can expect Cs P CtT to increase in dimension by k. 
T h e slice S(gtT) increases in dimension 2k (on a formal level, of course) since 
the space increases by dimension k and the orbit ctfs+1'p • (g, T) decreases by 
dimension k. T h u s S(g>T)/Cg P\ CT will increase in dimension by a t least k. 
For these reasons, we expect <f to contain genuine singularities when the 
conformai group of (g, w) undergoes a change in dimension. 

T h e space S is one representat ion of the "space of gravi ta t ional degrees of 
freedom"; see [14; 22]. 

In the non-compact case, where M = R 3 and we deal with asymptotically 
flat metrics in Ms^

v spaces of Nirenberg-Walker-Cantor (cf. Cantor [5; 6]), 
the si tuation in 3.9 is probably less pathological because the isotropy groups 
are always trivial. However, the analysis is complicated because there is no 
general splitting lemma and because it is necessary to include asymptot ic con­
ditions relevant for relat ivi ty (namely g{j should be btj + 0(l/r) as r —> oo ). 
For a consideration of these results in the non-compact case, see Cantor [6] 
and for the s tudy of the scalar curva ture in the non-compact case, see Fischer-
Marsden [13]. 
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